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Anisotropic spherically symmetric systems are studied in the connection and densitized triad variables

used in loop-quantum gravity. The material source is an anisotropic fluid, which is arguably the most

commonly used source term in anisotropic studies within general relativity. The gravitationalþ anisotropic

fluid constraints are derived and analyzed and then quantum gravity inspired holonomy replacements are

performed. The quantum properties of the fluid are dictated by the modified constraint equations. Particular

attention is paid to wormhole throats, as they provide a simplistic model of the structures thought to be

ubiquitous in the quantum gravity space-time foam at high energy scales. In comparison to the purely

classical theory, the quantum corrections act to increase the energy density of the fluid, which indicates that

they may lessen the energy condition violation present in the classical theory. Related to this, in principle it

would be possible to have scenarios where the classical solution yields everywhere negative (with a zero at

the throat) fluid energy density but the corresponding quantum-corrected theory possesses only small

regions of negative energy density or even everywhere non-negative energy density.
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I. INTRODUCTION

In classical general relativity, anisotropy has often
played an important role from models of stellar structure
and cosmologies to more exotic solutions [1–6]. In the
category of exotic solutions exhibiting spherical symmetry,
anisotropy is almost always present in systems such as
wormholes, gravastars, and even certain black hole models
forming from gravitational collapse or singularity-free
models. (See, for example, [7–14] and references therein).
These sorts of anisotropic solutions usually involve strong
gravity effects, and in some cases it may be argued that
they are in the realm where effects from a quantum theory
of gravitation should be considered. For example, the
vicinity of the classical singularity formed during the
gravitational collapse is almost certainly a domain where
quantum gravity effects are expected to apply. More re-
cently, Bojowald, Paily, Reyes and Tibrewala have per-
formed a thorough, in-depth study of midi-superspace
models containing horizons with scalar fields [15] in order
to study quantum effects in these space-times.

In the arena of nontrivial topologies, a common rationale
for studying wormholes is that they may provide a simple
model for the space-time foam, a potential model for the
vacuum in theories of quantum gravity, where not only the
geometry but also the topology of space-time may fluctuate
due to quantum effects, [16,17], as illustrated in Fig. 1. It
has been argued that systems of wormholes may provide
good models for such a foam [18–20]. Therefore, in the
vein of wormhole-like structures, there is good reason to
study these systems utilizing the variables of loop-quantum
gravity due to their relevance in topology change which
may exist in the quantum gravity realm. In the context of
black hole physics, topologically nontrivial horizons

have already been studied within loop-quantum gravity
[21–24].
There have been a number of works produced studying

the possibility of a change in the topology of space-time at
the classical and semiclassical level [25–44]. It is known
that if one allows for the possibility of topology change in
space-time, there are arguments that if V0 and V1 are
distinct compact 3-manifolds, there will exist a space-
time whose boundary is comprised of the disjoint union
of V0 and V1 [25] (see Fig. 2 for reference). Regarding this,
Geroch’s theorem states that if a segment of space-time has
V0 and V1 as boundaries possessing differing topology,
then a singularity or closed timelike curves must exist
somewhere on the manifold [26]. It has been convincingly
argued that these singularities that arise in certain topology
changing space-times are extremely mild [27] in the sense
that the tetrad becomes degenerate (introducing metric
degeneracy) but the resulting curvature remains well de-
fined. The loop-quantum gravity approach utilized here
relies on densitized tetrads and SU(2) connections, and it
is known that solutions with classically degenerate metrics
can yield finite equations when using these new Ashtekar
variables [45]. Therefore, even before implementing quan-
tum corrections, it is worthwhile using these alternate
variables as they are better suited to study systems with
nontrivial topology. In fact, it is possible that degenerate
tetrads may play an important role in quantum gravity
[28,29].
The cases for topology change or the existence of a

space-time foam are still open. It is not yet completely
clear if either of these are indeed possible or not. However,
they are actually related issues as the existence of a space-
time foam as a sea of fluctuating topologies is directly
linked to the possibility of topology change. That is, if
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this picture of the space-time foam is correct, then topol-
ogy change is allowed, at least in the quantum gravity
realm. Although we also cannot answer this question de-
finitively here, we do find that the existence of nontrivial
topologies is less exotic when loop-quantum corrections
are present in the equations of motion, and hence this may
be an indication that in the full loop-quantum gravity
picture topology change would be at least more probable
than in the classical regime. In Wheeler–DeWitt theory, a
study has also been performed by Visser [30] to determine
whether the existence of nontrivial topologies is favored or
not in that theory.

As well, the existence of wormholes in gravity theories
which deviate from general relativity in the high-curvature
(high-energy) realm are of interest to the wormhole com-
munity. Of particular recent interest has been fðRÞ theory,
where higher-curvature scalar terms may appear in the
gravitational Lagrangian. (See, for example, [31]).
Wormholes have been studied in the fðRÞ theory [32–35].
The study in this article can be seen as another extension of
general relativity to the high-energy realm. Specifically
related to discerning effects from quantum gravity, some

studies of wormholes within the paradigm of Wheeler–
DeWitt theory have been carried out in [7,46]. As well,
many authors have used classical higher-derivative theories
of gravity to capture some possible effects of high-energy
corrections to the general relativity solutions [47–49], some
of which fall into the fðRÞ category mentioned above.
Others still have approached the problem by considering
semiclassical gravity where the nontrivial topologies are
supported by quantum matter [50–54].
Given that the above solutions are necessarily aniso-

tropic, we aim to study here inhomogeneous anisotropic
systems. As most of the studies of such solutions have to
date been classical, we also add some low-order loop-
quantum gravity holonomy corrections. We use a midi-
superspace approach where we freeze the symmetry
a priori to be spherical symmetry and then apply an
‘‘effective quantization’’ by replacing the configuration
variable [the SU(2) connection] with a function incorpo-
rating some holonomy corrections from the quantum
theory. Although we analyze anisotropic structures in
general, we will pay special attention to the wormhole
solutions, given the above arguments for their possible
importance in quantum gravity.
Regarding the possible detection of quantum gravity

effects at the macroscopic level, it was suggested in
Ref. [55] that one could imagine an extremely advanced
civilization [56] pulling a wormhole from this submicro-
scopic space-time quantum foam and enlarging it to macro-
scopic dimensions. However, in a more plausible scenario,
the possibility that inflation might provide a natural
mechanism for the enlargement of such wormholes to
macroscopic size was explored [57]. Some authors have
also investigated the effects of such a foamy space on the
cosmological constant. One example is the Coleman
mechanism, where micro-wormhole contributions suppress
the cosmological constant, explaining its small observed
value [58]. However, even in the absence of detectable
effects, predictions of a quantum gravity theory are impor-
tant for understanding physics at the Planck scale [59].

II. SPHERICALLY SYMMETRIC ANISOTROPIC
STRUCTURES AND QUANTUM CORRECTIONS

The basic variables in loop-quantum gravity (fixed to the
time gauge) are the SU(2) connection as the configuration
variable and the densitized triad as the conjugate momen-
tum variable. In terms of more traditional variables in the
3þ 1 space-time decomposition, the densitized triad, Ei

a,
is directly related to the spatial three-metric, qab, via

Ei
aEj

b�ij ¼ detðqÞqab: (1)

In this work, we adopt the convention that indices a, b, c,
etc., denote spatial components whereas indices i, j, k, etc.,
are internal indices coupling to the su(2) algebra.
The SU(2) connection encodes information about the

extrinsic curvature of the spatial 3-surface via

(a) (b)

p
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FIG. 2. Schematics of topology changing space-times via
wormhole formation. (a) represents topology change via the
formation of an inter-universe wormhole. (b) represents topology
change via the formation of an intra-universe wormhole. The
points p represent the critical point of the topology change,
where quantum gravitation effects are expected to become
important. This sort of topology change is thought to be ubiq-
uitous at the Planck scale.

FIG. 1. A possible picture for the space-time foam. Space-time
that seems smooth on large scales (left) may actually be en-
dowed with fluctuating topologies (represented by handles on the
right) due to quantum gravity effects. One of the simplest models
for such a handle is the wormhole.
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Ai
a :¼ �i

a þ �Ki
a; (2)

where � is the Barbero–Immirzi parameter. Here, �i
a is the

spin connection whose associated derivative annihilates
the regular (i.e., nondensitized) inverse-triad, eib:

@½aeib� þ �ijk�
j
½ae

k
b� ¼ 0; (3)

andKi
a :¼ 1ffiffiffiffiffiffiffiffiffiffi

detðEÞ
p �ijEj

bKab (Kab being the usual extrinsic

curvature of the 3-surface). �i
a may be explicitly solved

for via inversion of (3) as

�i
a¼�1

2
�ijkej

b½@aekb�@be
k
aþ�kl�mnel

cema@be
n
c�: (4)

Writing the Einstein–Hilbert action in the 3þ 1 form of
the ADM formalism in terms of A and E, and varying with
respect to the shift-vector, Na, and the lapse function, N,
yields the gravitational vector constraint and scalar con-
straint, respectively:

VðgravÞ
a ¼ Ei

bFi
ab ¼ 0; (5i)

SðgravÞ ¼
8<
: Ei

aEj
bffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp ½�ijkFk
ab � 2ð1þ �2ÞKi

½aK
j
b��

þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞ

p 9=
; ¼ 0; (5ii)

where we have included the cosmological constant (�)
term for generality (which we set to zero in the subsequent
analysis). The field-strength is given by Fi

ab
:¼ @aA

i
b �

@bA
i
a þ �ijkA

j
aA

k
b. To this set, one adds the Gauss con-

straint in order to eliminate redundant degrees of freedom
from internal rotations:

GðgravÞ
i

:¼ @aEi
a þ �ij

kAj
aEk

a ¼: DaEi
a ¼ 0: (6)

The formal quantization occurs by replacing the ‘‘clas-
sical functions’’ Ai

a and Ei
a in (5i), (5ii), and (6) with

operators which obey the noncanonical algebra of loop-
quantum gravity. The resulting constraint operators then
serve to constrain a ray in the Hilbert space with an
appropriate inner-product [60–62].

As dealing within the full quantum theory is technically
difficult, we will deal with an effective quantum theory
such as that which is often used in studies of loop-quantum
cosmology and the study of vacuum black hole interiors.
That is, the connection shall be replaced with functions of
A which can more easily be represented by holonomies.
Details on this procedure shall be provided later.
Specifically, it has been shown that, within this approxi-
mation, the true singularities present in the classical theory
are alleviated in the corresponding quantum theory in both
black hole interiors as well as in cosmological models.
(See [63,64] and references therein for details). As well,
much progress has been made regarding the partial quan-
tization of spherically symmetric inhomogeneous pure

gravity in the interesting works on the exterior
Schwarzschild space-time [65–68].
The systems studied here are necessarily inhomogene-

ous, anisotropic, and nonvacuum, which leads to compli-
cations not present in simpler systems. To begin with, we
will require an appropriate inhomogeneous and anisotropic
matter contribution to the Eqs. (5i), (5ii), and (6). For this,
we choose an anisotropic fluid whose four-dimensional
stress-energy tensor is given by:

T�� ¼ ð�þ p?Þu�u� þ p?g�� þ ðpk � p?Þs�s�: (7)

Here, �, p? and pk are the energy density, perpendicular

(to the inhomogeneous direction) pressure and parallel
pressure, respectively, as measured in the fluid element’s
rest frame. The vector u� is the fluid 4-velocity and s� is a
spacelike vector orthogonal to u�. On-shell these vectors
satisfy:

u�u� ¼ �1; s�s� ¼ þ1; u�s� ¼ 0: (8)

The fluid is particularly useful in anisotropic studies as it
provides one of the most general matter models allowed,
yet still respecting the symmetry constraints. Essentially,
for anisotropic structures in spherical symmetry, we require
a stress-energy tensor of Segre characteristic [1, 1, (1, 1)],
and the spherically symmetric anisotropic fluid is one of the
most general matter models which provide this. It may also
be noted that the material (7) is also capable of accommo-
dated Segre characteristic [1, (1, 1, 1)] (i.e., the perfect
fluid) in the special limit p? ¼ pk and can therefore be

seen as a generalization on perfect fluids. A possibly more
fundamental material, such as the scalar field, under certain
assumptions on the field configuration which are compat-
ible with spherical symmetry, is algebraically similar (in its
stress-energy tensor) to the anisotropic or isotropic fluid
[69], and therefore by choosing a fluid source, we poten-
tially cover these scenarios as well. Finally, using the
anisotropic fluid will simplify comparisons with purely
classical solutions which most often use a fluid material
as their source.
Hamiltonians for a dust and an isotropic perfect fluid

have already been constructed in the literature [70–76] and,
as is usual in fluid mechanics, variables more appropriate
for thermodynamic studies are usually chosen. However,
here we choose to work in the original fluid variables of (7)
as this system is more perspicuous and has immediate
physical interpretation in these variables. The price to
pay is that certain relationships between thermodynamic
quantities (such as temperature, entropy, etc.) are not en-
forced from the variational principle in this scheme, but
these are usually not of primary interest in gravitational
studies. For an in-depth treatment of more fundamental
field couplings to loop-quantum gravity, see [77,78].
As a fluid of this type is considered an effective matter

model, there seems to be no Lagrangian in the literature
describing the anisotropic fluid. Therefore, we adopt here a
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pragmatic strategy often used in field theories [79].
Specifically, we will construct a Lagrangian density, Laf ,
which produces the desired equations of motion, in this
case, the stress-energy tensor (7). After the derivation, the
conservation law (which results from having a true scalar
Lagrangian and the gravitational field equations) supple-
mented with the enforcement of the on-shell conditions (8),
which are also consequences of the variational principle in
this scheme, will guarantee that the fluid equations of
motion are obeyed. We propose the following matter action
which produces the desired result:

Iaf ¼
Z
M4

Lafd
4x

¼ 8�
Z
M4

ffiffiffiffiffiffiffi�g
p f�½u�u	g�	 þ 1� � 2p?

þ �½s�s	g�	 � 1�gd4x; (9)

where we define � :¼ ð�þ p?Þ and � :¼ ðpk � p?Þ,
which must be viewed as independent variables in their
own right (the quantity � can be viewed as the particle
number times the enthalpy). The quantities � and pk are

true scalars as can be easily checked using (7) and (8), via
T��u�u� ¼ � and T��s�s� ¼ pk. Now, having estab-

lished that � and pk are scalars, the trace T�
� ¼ ��þ

2p? þ pk establishes that p? must also be a scalar quan-

tity (and hence so are � and �). Note that with this
particular choice of action the fluid variables � and �
appear simply as Lagrange multiplier fields which give
rise to the set of constraints (8), and their dynamics are
not completely governed by their variation. Instead, as
mentioned above, the fluid dynamics are governed by
variation of the gravitational degrees of freedom via the
Bianchi identities. This is in line with the usual treatment
of fluids in classical general relativity where one does not
specify the fluid equations of motion separately.

Next, all 4-dimensional quantities need to be split into a
3þ 1 decomposition, and the 4-metric components re-
placed by functions of N, Na and qabðEi

cÞ. For this, we
write ½u�� ¼ ½u; ua� and ½s�� ¼ ½s; sa�. After some calcu-

lation, the matter action in 3þ 1 form in the appropriate
variables is found to be:

Iaf ¼8�
Z
M4

N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp �

�

�
2uub

Nb

N2
þ
�
Ei

aEi
b

detðEÞ �
NaNb

N2

�

�uaub� u2

N2
þ1

�
�2p?þ�

�
2ssb

Nb

N2

þ
�
Ei

aEi
b

detðEÞ �
NaNb

N2

�
sasb� s2

N2
�1

��
d3xdt: (10)

Having now established a matter field in the correct
variables, we freeze the symmetry of the system to spheri-
cal symmetry. For studies in the Ashtekar variables, we
require an ansatz for a connection, A ¼ Ai

a
idx
a, as well

as a densitized triad, E ¼ Ei
a
i@a, which is capable of

accommodating this symmetry. We therefore utilize the
following pair for this:

A ¼ AIII
1dyþ ðAI
2 þAII
3Þd�þ ðAI
3 �AII
2Þ
� sinð�Þd�þ cosð�Þ
1d�; (11i)

E ¼ EIII
1 sinð�Þ @@yþ ðEI
2 þ EII
3Þ sinð�Þ @

@�

þ ðEI
3 � EII
2Þ @

@�
; (11ii)

with 0<� � 2�, 0< �< � and the functions A:: and
E:: are functions of the inhomogeneous coordinate, y and
time only. The 
i represent the standard su(2) generators.
By utilizing (11i) and (11ii) in (5i) and (6), and adding to

them the matter contributions (from the variations of (10)
with respect to the shift-vector for the vector constraint), we
arrive at the following pair of constraints for our system:

V ¼ 2 sinð�ÞfAIII½EIAII � EIIAI� � EIA0
I � EIIA0

IIg
þ 16�

ffiffiffiffiffiffiffiffiffiffi
jEIIIj

q
� j sinð�Þj � E � ½�U � ux þ� � S � sx�

¼ 0; (12i)

G ¼ sinð�Þ½2AIEII � 2AIIEI þ E0
III� ¼ 0; (12ii)

where primes denote derivatives with respect to the inho-
mogeneous coordinate y, and we have dropped the index on
V and G as each constraint only yields one equation. Here,

we have used the definitions E :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
I þ E2

II

q
, U :¼ u=N2

and S :¼ s=N2 to simplify expressions. Also, we have set
the shift vector to zero after variation as there is no loss of
generality by doing this sincewe are restricting ourselves to
spherical symmetry. Note that the fluid does not contribute
to the Gauss constraint. Also of note is that in the case of a
static fluid, the fluid makes no contribution to the vector
constraint.1

For the scalar constraint, the issue is more complicated.
This is because in the gravitational part of S, (5ii), the
extrinsic curvature terms appear and the extrinsic curvature
needs to be replaced with the connection A via (2).
Therefore, we write

Ki
a ¼ 1

�
½Ai

a � �i
a�: (13)

However, �i
a is a function of the triad and inverse triad via

(4), and this must be expressed in terms of the densitized
triad Ei

a only. Therefore, we need to utilize the following
relationships in (4):

1It may be of interest to note that the staticity of the resulting
space-time is actually encoded in this statement, although it is
not obvious. Time derivatives of the metric are encoded in the
vector constraint via the connection Ai

a through the extrinsic
curvature in (2). If the matter contribution to the vector con-
straint vanishes, the only way to satisfy the spherically symmet-
ric gravitational vector constraint is to make these terms
involving the time derivative of the metric equal to zero.
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ei
a¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp Ei
a; ½eia�¼½eia��1¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðEÞp ½Ei
a��1: (14)

This yields the following spin-connection:

� ¼ 1

E2
½EIIE0

I � EIE0
II�
1dxþ

E0
III

2E2
½EI
3 � EII
2�d�

� E0
III sinð�Þ
2E2

½EI
2 þ EII
3�d�þ cosð�Þ
1d�: (15)

We now have all the quantities required to write the full
scalar constraint in these variables as

S¼2jsinð�Þjffiffiffiffiffiffiffi
EIII

p �E ½2EIEIIIA0
II�2EIIEIIIA0

Iþ2EIIIAIIIðEIAI

þEIIAIIÞþE2ðA2�1Þ��ð1þ�2Þjsinð�Þj
2

ffiffiffiffiffiffiffi
EIII

p �E3�2

�½4E4A2þE2ðE0
IIIÞ2þ4E2E0

IIIðEIIAI�EIAIIÞ
þ8EIIIðE2AIIIþE0

IIEI�E0
IEIIÞðEIIAIIþEIAIÞ�

þ16�
ffiffiffiffiffiffiffiffiffiffi
jEIIIj

q
�jsinð�Þj�E�½�U �uþ��S�s�p?�;

(16)

where the definition A :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

I þA2
II

q
, and the fluid con-

straints (8), have been used after variation.
For the effective quantization, we utilize a scheme that

has proved fruitful in studies of loop-quantum cosmology
[63] and black holes [80–82]. That is, we replace the
connection with functions that reflect the holonomy struc-
ture of the representation of the quantum algebra. The

operator Â is constructed from turning the Poisson brackets
to commutators:

½Âi
aðxÞ; Êj

bðyÞ� ¼ iℏ�b
a�

i
j�

3ðx; yÞ: (17)

Although Âi
a represented as ‘‘multiplication by Ai

a’’ can
be used to satisfy the above bracket, it turns out that the

operator Âi
a does not have a well-defined representation in

the Hilbert space of connections. However, the space of
functions of holonomies (cylindrical functions) does have a
well-defined, metric independent measure and can be
turned into a mathematically rigorous Hilbert space. The
holonomy of A is given by

heðAÞ ¼ P exp

�Z
e
A

�
; (18)

where P represents a path ordering of the holonomy paths,
e. In this vein, we make the substitution,

A J ! sinðAJ�JÞ
�J

; (19)

where �J represents the length of the holonomy path. This
holonomy path is not constant, but related to the proper
area of the holonomy loop, as has been shown in studies of

loop-quantum cosmology and black holes [82–84]. More
details of this will be provided later. Admittedly, this
method is more rigorously motivated in certain studies of
loop-quantum cosmology [84,85].
Although not required for the study of the constraints,

for completion, we construct the fluid Hamiltonian by
identifying appropriate canonical momenta for the fluid:

��
ð1Þ

:¼ �16�N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞ

p
�� � u�;

��
ð2Þ

:¼ �16�N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp �� � s�;

(20)

which leads, via the standard Legendre transformation, to
the matter Hamiltonian

Haf ¼
Z
H afd

3x

¼16�
Z
N

ffiffiffiffiffiffiffiffiffiffi
jEIIIj

q
� jsinð�Þj �E � ½����p?�d3x: (21)

(Care must be taken with minus signs as our Lagrangians
are ‘‘minus’’ the more common convention). In the case of
the perfect fluid, the above reduces simply to an integral
over the proper-energy density of the fluid.
The above analysis is general, save for the assumption of

spherical symmetry imposed from Eqs. (11i) and (11ii)
onward, and rather complex. We next simplify the system
to study specific cases of interest.

A. The static scenarios

Themodels we shall study here will be time independent.
Under the added assumption of staticity, the vector con-
straint reduces simply to the gravitational vector constraint,
as a static fluid makes no contribution to the vector con-
straint. We shall also impose the following simplification on
the connection and densitized triad, which is still compat-
ible with spherical symmetry at least in the static case:

A ¼ AII
3d��AII
2 sinð�Þd�þ cosð�Þ
1d�; (22i)

E ¼ EIII
1 sinð�Þ @@yþ EI
2 sinð�Þ @

@�
þ EI
3

@

@�
; (22ii)

where now the functions A and E are functions of y only.
The relationship between the functions above and the usual
metric in curvature coordinates is the following (with y in
this case identified as the usual radial coordinate r) from the
relation detðqÞ � qab ¼ Ei

a � Ei
b:

d2 ¼ qabdx
adxb ¼ BðrÞdr2 þ r2d�2 þ r2sin2�d�2

¼ ðEIÞ2
EIII

dr2 þ EIIId�
2 þ EIIIsin

2�d�2: (23)

From this choice, the remaining gravitational vector con-
straint is identically satisfied and the Gauss constraint (12i)
is satisfied by employing the following relation:

E 0
III ¼ 2AIIEI: (24)
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At this stage, it is worth noting a few issues regarding the
symplectic structure. By making the above simplification,
we are merely going to another set of canonical coordi-
nates. To see this, one can make the following transforma-
tion on the original set of variables

A I ¼: A� cosð	Þ; AII ¼: A� sinð	Þ; (25)

for some angle 	. Our particular choice corresponds to
	 ¼ �=2. Similarly, via rotations on the densitized triad
[both spatial and SU(2)], a canonical momentum can be
defined via

�� :¼ 2EI ¼: 2E�: (26)

These configuration-momentum coordinates turn out to be
exactly those of Bojowald and Swiderski [86], and
Campiglia, Gambini and Pullin [66,68] with symplectic
structure:

fA�ðxÞ; ��ðx0Þg ¼ 2��ðx� x0Þ: (27)

Below, we shall continue using the notationAII and EI for
these components.

Using the above simplification yields only a single con-
nection component,AII, that needs to be effectively quan-
tized. Using the method discussed earlier, we make the
substitution

A II ! sinðAII�IIÞ
�II

; (28)

where again �II represents the length of the holonomy path.
As mentioned previously, it has been shown in a cosmo-
logical setting in [83,84] and for black hole interiors in
[82], that a reasonable semiclassical limit might not be
obtained utilizing a fixed � in the above substitution.
Instead, one can relate the length of the holonomy paths
(the �’s) to the classical area. The proper area spanned by a
holonomy ‘‘square-loop’’ in the ��� sector is given by:

a�� � EIIIð�IIÞ2: (29)

By setting the above area equal to the smallest area pre-
dicted by the spectrum of the area operator of loop-
quantum gravity, we arrive at what is known as the ��0
scheme2 [83]. In full loop-quantum gravity, the infinitesi-
mal area operator is given by

cda ¼ ½naÊk
anbÊk

b�1=2; (30)

and has the following spectrum:

cdajSi ¼ 8��‘2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q
jSi; (31)

with ‘2p the Planck length. The integer p denotes which

puncture (or area element) is under consideration, and jp

can take on half-integer values which represent spins car-
ried by the punctures. The covariant normal vectors to the
surface element are denoted by na and nb. Setting jp equal

to one-half yields the smallest predicted area, which we
denote as amin:

amin :¼ 4
ffiffiffi
3

p
��‘2p; (32)

so that, by (29), we have �II ¼ ffiffiffiffiffiffiffiffiffi
amin

p
=

ffiffiffiffiffiffiffi
EIII

p
. The results

presented below are valid for any value of amin, provided it
is small. The Immirzi parameter, �, is determined by some
means such as black hole entropy calculations [87–93,95].
Putting everything together, the effective quantization
amounts to the replacement

A II !
sin

�
AII

ffiffiffiffiffiffiffi
amin

p ffiffiffiffiffi
EIII

p
�
� ffiffiffiffiffiffiffi

EIII

p
ffiffiffiffiffiffiffiffiffi
amin

p ; (33)

with amin provided by (32).
At this stage, the only constraint which remains to be

satisfied is the scalar constraint (16). With the imposition
of the other constraints and staticity, the scalar constraint
simplifies to

S¼2jsinð�Þjffiffiffiffiffiffiffi
EIII

p jEIj
½2EIEIIIA0

IIþE2
I ðA2

II�1Þ��ð1þ�2Þjsinð�Þj
2

ffiffiffiffiffiffiffi
EIII

p jEIj3�2

�½4E4
IA

2
IIþE2

I ðE0
IIIÞ2�4E3

I E
0
IIIAII�

þ16�
ffiffiffiffiffiffiffiffiffiffi
jEIIIj

q
� jsinð�Þj � jEIj � ½�U �u�p?�: (34)

Derivatives can be treated as usual continuous derivatives;
specifically, for AII:

A0
II !

2
64sin

�
AII

ffiffiffiffiffiffiffi
amin

pffiffiffiffiffiffiffi
jEIIIj

p
�
� ffiffiffiffiffiffiffiffiffiffijEIIIj
p

ffiffiffiffiffiffiffiffiffi
amin

p
3
75

0

¼ E0
III

2
ffiffiffiffiffiffiffiffiffiffijEIIIj

p ffiffiffiffiffiffiffiffiffi
amin

p sin

�AII
ffiffiffiffiffiffiffiffiffi
amin

pffiffiffiffiffiffiffiffiffiffijEIIIj
p �

þ cos

�AII
ffiffiffiffiffiffiffiffiffi
amin

pffiffiffiffiffiffiffiffiffiffijEIIIj
p ��

A0
II �

AII

2

E0
III

EIII

�
:

(35)

Alternatively, one can initially treat the derivative as a finite-
difference, as suggested in [68] for vacuum black holes:

A0
II!

1

�

8<
:
2
4sin

�
AII

ffiffiffiffiffiffiffi
amin

pffiffiffiffiffi
EIII

p
� ffiffiffiffiffiffiffiffiffiffijEIIIj
p

ffiffiffiffiffiffiffiffiffi
amin

p
3
5

xþ�

�
2
4sin

�
AII

ffiffiffiffiffiffiffi
amin

pffiffiffiffiffiffiffi
jEIIIj

p
� ffiffiffiffiffiffiffi

EIII

p
ffiffiffiffiffiffiffiffiffi
amin

p
3
5

x

9=
;; (36)

where we use a constant discretization, �, for the derivative
as the derivative is takenwith respect to coordinate distance,
not a holonomy path.

2That is, the ‘‘mu-bar-prime’’ scheme. The symbol � is often
used instead of � for the length of the holonomy path in loop-
quantum cosmology.
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Wormhole

The above analysis in usual curvature coordinates is
suitable for many spherically symmetric anisotropic struc-
tures. However, as mentioned in the introduction, of par-
ticular importance in studies of quantum gravity is the
wormhole. In curvature coordinates, a submanifold of
the wormhole is generated by considering a curve with
the correct properties, and then creating a surface of revo-
lution from this profile curve. A sample profile curve, along
with the corresponding surface of revolution is illustrated in
Fig. 3. Note that in this coordinate chart two profile curves
are required, one for the ‘‘top-part’’ of the wormhole
(PþðrÞ) and one for the ‘‘bottom-part’’ of the wormhole
(P�ðrÞ).

In terms of the profile curve function, P�ðrÞ, the densi-
tized triad components read:

E I¼ r
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
¼ rf1þ½@rP�ðrÞ�2g1=2; EIII¼ r2; (37)

with r � r0 (refer to figure). Immediately, one can see a
potential problem with the variables chosen when discus-
sing the wormhole scenario. Note that at the wormhole
throat (r0 in Fig. 3), the derivative of PðrÞ becomes infinite,
and hence the densitized triad component EI is badly
behaved at the throat. This malady affects the metric for-
mulation as well. Hence, an alternative to the usual curva-
ture coordinates will be used here. We use a system of
coordinates introduced in [96], and utilized in [49,97],
which is better behaved at the throat. Essentially, we rotate
the entire chart by �=2 as shown in Fig. 4.

In this new coordinate system, the spherically symmetric
anzats (11i) and (11ii) still hold and the equations in this
chart are only slightly more complicated than in the usual
curvature coordinates. The line element is now

d2 ¼ qabdx
adxb

¼ CðxÞdx2 þQ2ðxÞd�2 þQ2ðxÞsin2�d�2

¼ ðEIÞ2
EIII

dx2 þ EIIId�
2 þ EIIIsin

2�d�2: (38)

Here we have used the same simplification for A and E as
we used previously. Note that the advantage of this chart is
that the relation

EI¼QðxÞ ffiffiffiffiffiffiffiffiffiffi
CðxÞp ¼QðxÞf1þ½@xQðxÞ�2g1=2; EIII¼½QðxÞ�2;

(39)

yields finite components at the throat as the derivative of
QðxÞ is zero, not infinite there. As well, the coordinate x
may span �1< x<1 and hence it is now possible to
cover the wormhole geometry with just a single well-
behaved chart (if the poles of the two-spheres, � ¼ 0 and
� ¼ �, are excluded).
Again in the static case, the vector constraint is satisfied.

The Gauss constraint is also again satisfied by imposing the
relation (24). However, this condition is slightly more
complicated in this chart due to the fact that the derivative
of EIII contains the derivative of QðxÞ.
We do not present all the details here as the procedure is

similar to the above. In short, the effective quantization is
accomplished by the same substitution as previously done:

A II !
sin

�
AII

ffiffiffiffiffiffiffi
amin

p ffiffiffiffiffi
EIII

p
�
� ffiffiffiffiffiffiffi

EIII

p
ffiffiffiffiffiffiffiffiffi
amin

p ; (40)

and the simplified scalar constraint reads as before (34).
The most salient features of a wormhole occur in the

throat region. For example, in classical wormholes, the
necessary violation of energy conditions in staticwormholes
occurs in the neighborhood of the throat. In fact, in the

–3

–2

1

2

3

–4–2
24

–5

5

+

r

−

r0

x

x=P (r)

x=P  (r)

FIG. 3. Wormhole profile curve, P�ðrÞ, in the � ¼ �=2 sub-
manifold. The wormhole is generated via rotation about the
x-axis (inset).

–3–2123

–4
–2

2
4

–5

5

x

r

Q 0

−1
r=Q(x)=P  (x)

FIG. 4. Wormhole profile curve in the � ¼ �=2 submanifold
using the rotated coordinate system. The profile function is given
by r ¼ QðxÞ ¼ P�1ðxÞ and the radius of the throat is Q0. As
before, the wormhole is generated via rotation about the x-axis
(inset). Only a single profile functionQðxÞ is needed now and the
densitized triad components are finite at the throat radius.
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classical scenarios if thematter field falls off sufficiently fast,
or is patched to a vacuum solution, the properties far from
the throat do not differ greatly from similar systems with
trivial topology. As well, it has been argued in [98] that the
global topology is too limited a tool to studywormholes, and
a local geometric analysis near the throat is generally more
useful in discerning interesting properties of wormholes.
We therefore now concentrate on the near-throat region
and study the quantum gravity corrections in this vicinity.

In the neighborhood of the throat (x ¼ 0), the profile
function, QðxÞ must have the following properties:

(i) Q0 :¼ Qð0Þ> 0,
(ii) Q0ðxÞjx¼0 ¼ 0,
(iii) Q00ðxÞ> 0 in some neighborhood of the throat.3

Aside from the above properties, we make the mild as-
sumption that QðxÞ is analytic. Now, EI and EIII are func-
tions of QðxÞ and its derivative via (39) and one can
substitute these functions into (34) to study the remaining
scalar constraint. We shall first concentrate on the purely
classical scenario, and hence simply replaceAII in (34) by
using (24); i.e.AII ¼ E0

III=ð2EIÞ. This yields the following
scalar constraint:

S¼SgravþSaf ¼ 2jsinð�Þj
½1þðQ0Þ2�3=2 ½2Q �Q00 �ðQ0Þ2�1�

þ16�jsinð�Þj �Q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðQ0Þ2

q
�: (41)

We treat � as the unknown and hence the constraint S ¼ 0
yields:

8�� ¼ ½1� 2QQ00 þ ðQ0Þ2�
Q2½1þ ðQ0Þ2�2 : (42)

The above expression agrees with the expression one may
derive by calculating the t� t component of the Einstein
tensor using metric (38) and (39) by using an arbitrary
lapse (which does not appear in Gt

t). Next, the analyticity
of QðxÞ allows for a Taylor expansion about x ¼ 0, result-
ing in the following near-throat expression:

8��¼ 1

Q2
0

ð1�2Q00
0Q0Þ�2Q000

0

Q0

x� 1

Q3
0

½Q00
0 þQ0000

0 Q2
0

�4ðQ00
0 Þ3Q2

0�x2þ
1

3Q3
0

½Q000
0 Q

00
0Q0�Q000

0 �Q00000
0 Q2

0

þ24Q000
0 ðQ00

0 Þ2Q2
0�x3þOðx4Þ; (43)

where the subscript 0 indicates that the quantity is eval-
uated at x ¼ 0. (We do not demand that terms odd in
powers of x vanish as the wormhole does not need to be
symmetric about the throat).

Next, we tackle the more difficult case with the quantum
holonomy corrections. In this case, AII in (34) is first
replaced via (40), and the derivative of AII is replaced by
(35), after which the substitution AII ¼ E0

III=ð2EIÞ [from
the Gauss constraint, (24)] is utilized. The full analytic
expression for � can be calculated but the result is quite
complicated so we simply present the series result:

8��¼ 1

Q2
0

ð1�2Q00
0Q0Þ�2Q000

0

Q0

x

� 1

Q3
0

½Q00
0 þQ0000

0 Q2
0�4ðQ00

0 Þ3Q2
0�aminðQ00

0 Þ3�x2

þ 1

3Q3
0

½Q000
0 Q

00
0Q0�Q000

0 �Q00000
0 Q2

0þ24Q000
0 ðQ00

0 Þ2Q2
0

þ6aminQ
000
0 ðQ00

0 Þ2�x3þOðx4Þ: (44)

The purely classical limit is achieved when amin ! 0,
which agrees with (43). Note that the quantum corrections
(terms multiplied by amin) do not contribute exactly at the
wormhole throat. Instead, they come in at x2 order and,
given the sign of the second derivative of QðxÞ near the
throat, the quantum corrections contribute positively to the
energy density near the throat and hence may act to lessen
energy condition violation for the matter in the vicinity of
the throat. Even though the energy density can be positive
at the throat even in the purely classical scenario, it is
known that somewhere in the vicinity of the throat energy
conditions must be violated (see, for example, [98]). The
fact that this modified theory of gravity increases the
energy density is a positive indication for the lessening
of energy condition violation, although the pressures
should be also be studied for a concrete statement. We
make some comments on the pressures below.
Another expansion, although perhaps not as useful, is an

expansion of � in powers of amin. This yields an expression
that is order-by-order in powers of quantum corrections:

8��¼½1�2QQ00þðQ0Þ2�
Q2½1þðQ0Þ2�2 � ðQ0Þ2

3½1þðQ0Þ2�3Q4

�½ðQ0Þ4þðQ0Þ2�3Q00Q�aminþ ðQ0Þ4
180�2½1þðQ0Þ2�4Q6

�½ð9�2þ5ÞððQ0Þ4þðQ0Þ2Þ�15�2Q00Q�a2min

� ðQ0Þ6
2520�2½1þðQ0Þ2�5Q8

½ð5�2þ7ÞððQ0Þ4þðQ0Þ2Þ

�7�2Q00Q�a3minþOða4minÞ: (45)

Compatible with the previous result, it can be noted that at
local extrema whereQ0 ¼ 0 (e.g., the throat), terms arising
from the quantum holonomy corrections do not make a
contribution, but do contribute slightly away from the
extremal point. It is therefore possible in principle to
have a model where the energy densities of both the
classical and quantum corrected throat are zero at the

3More precisely, if Q’s first nonzero derivative (higher than
first order) at x ¼ 0 is of even order, the function attains a local
minimum if this derivative is positive, and hence we have a
wormhole throat. If its first nonzero derivative is of odd order, it
is a point of inflection and therefore does not describe a worm-
hole throat.
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throat, but in the vicinity of the throat region, the energy
density of the classical solution is negative and the quan-
tum one is positive.

Ideally, one would like to analyze the individual pres-
sures to completely specify the properties of the matter
field. However, in the 3þ 1 connection formalism, this is
not readily available.4 In the case of isotropic loop-
quantum cosmology with a scalar field, one can extract

information on the (isotropic) pressure and this has been
achieved in [99] where energy conditions were studied.
Finally, we present a few specific models to compare the

quantum correctedmodels with the purely classical models.
In Figs. 5(a)–5(d), a specific wormhole profile QðxÞ ¼
�0 coshðx=x0Þ is chosen and the quantum corrected (solid
lines) and classical (dashed) energy densities are plotted for
various values of the parameters, with both positive and
negative energy densities near the throat. Note that the
quantum effects tend to raise the energy of the fluid, and
hence the exotic nature of the fluid tends to be lessened
in comparison to the purely classical scenarios in the
cases where the energy densities are negative. In Figs. 6(a)
and 6(b), we also plot nonsymmetric wormholes with a
profile given byQðxÞ¼�0coshðx=x0Þþ	0x

3 for sufficiently

(c)(b)(a) (d)

FIG. 5. Symmetric wormhole models with QðxÞ ¼ �0 coshðx=x0Þ. The parameters are as follows: (a) �0 ¼ 0:38, x0 ¼ 0:86. (b) a
close up of the throat region of the previous figure. (c) �0 ¼ 0:005, x0 ¼ 0:06. (d) �0 ¼ 0:3537, x0 ¼ 0:5. In all cases, � � 0:27 and
‘p was set to 0.1 to exaggerate the differences to make them easier to see.

b)a)

FIG. 6. Nonsymmetric wormhole models with QðxÞ ¼ �0 coshðx=x0Þ þ 	0x
3. The parameters are as follows: (a) �0 ¼ 0:25, x0 ¼

0:5, 	0 ¼ 0:5. (b): �0 ¼ 0:305, x0 ¼ 0:4, 	0 ¼ �0:95. In both cases, � � 0:27 and ‘p was set to 0.1 to exaggerate the differences to

make them easier to see.

4This would involve writing the 3þ 1 action (including the
connection terms) completely in terms of the metric and its
derivatives, vary the action with respect to the metric, then
rewrite terms which can be expressed as connections, again as
connection terms, so that the substitution (33) may be performed
to get the quantum corrected pressures.

ANISOTROPIC STRUCTURES AND WORMHOLES WITH . . . PHYSICAL REVIEW D 84, 104030 (2011)

104030-9



small 	0 so as not to spoil the local minimum. It can also be
seen here that the quantum corrected versions tend to have
more positive energy densities. In all cases where negative
energy densities occur, the region of negative energy is
smaller in the corresponding quantum corrected case. It is
possible that those particular models which have outwardly
increasing energy densitymay be unstable. However, if these
models are to represent ephemeral quantum fluctuations in
the vacuum, it may be that instability is not a serious issue.

In classical general relativity, there are singularity theo-
rems which state that if the classical equations of motion
hold in scenarios describing objects such as gravitational
collapse to black holes or collapsing cosmologies, and the
material present obeys energy conditions, then a singular-
ity is inevitable [100,101]. One loophole out of these argu-
ments is the abandoning of the energy conditions, as it is
known that an energy condition violating matter can theo-
retically prevent such singularities from forming. It is also
often believed that quantum gravity effects should take
over close to singularity formation, when the curvature is
large, and that these effects may prevent the formation of
the classical singularity. In this vein, the loop-quantum
gravity paradigm has previously indicated that both in
cosmology and black holes the quantum gravity effects
have replaced the singularity with a smooth bounce
[63,80,82,102] due to gravity becoming repulsive under
certain situations in the quantum regime. That is, a scenario
that classically requires matter energy condition violation
to occur, can occur naturally within loop-quantum gravity.
What we find here in the context of wormholes is a
manifestation of the same phenomenon. In order to support
the wormhole classically, energy conditions must be vio-
lated to a certain degree. In the quantum corrected case,
however, the energy condition violation is less, and this is
directly due to the quantum properties of the gravitational
field. It is, in principle from the above expressions, possible
to find wormhole solutions where there is an energy den-
sity which is everywhere positive (with a zero at the throat)
but whose classical counterpart yields an everywhere nega-
tive (with a zero at the throat) fluid energy density. This is
due to the repulsive nature of gravity in the regime where

loop-quantum effects become important. It should be noted
that these are low-order quantum corrections, similar to
those employed in most studies of effective loop-quantum
black holes or loop-quantum cosmology. It is a possibility
that higher-order corrections may improve the energy con-
dition situation even further. Related to this, the repulsive
nature of the gravitation under such extreme conditions
could act to eliminate the singularities that are thought to
occur when space-time topology changes classically could
be alleviated. (Although, even classically it has been shown
that there are some topology-changing scenarios where the
singularities are not curvature singularities but merely
metric ones [27]).

III. CONCLUDING REMARKS

We have studied anisotropic spherically symmetric sys-
tems in the 3þ 1 Hamiltonian formalism of gravity in the
variables used in loop-quantum gravity. By replacing the
SU(2) connection with functions that encode the holonomy
structure of the corresponding operator, we essentially have
an effective theory with some quantum-inspired correc-
tions. In the case of wormhole throats, it was found that
the energy density of the material source is increased in
comparison to the purely classical case. This may indicate
that the energy condition violation ubiquitous in wormhole
throats in Einstein gravity may be lessened by quantum
gravity effects. This provides another arena to study higher
energy effects of gravity, complementing other techniques
such as those incorporating higher curvature effects through
a modified gravitational Lagrangian (such as fðRÞ theories
[31–35,49]). As well, the wormhole provides yet another
arena to test the predictions of a quantum gravity theory.
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[65] K. Kuchař, Phys. Rev. D 50, 3961 (1994).
[66] M. Campiglia, R. Gambini, and J. Pullin, Classical

Quantum Gravity 24, 3649 (2007).
[67] R. Gambini and J. Pullin, Phys. Rev. Lett. 101, 161301

(2008).
[68] R. Gambini and J. Pullin, Adv. Sci. Lett. 2, 251 (2009).
[69] A. DeBenedictis, A. Das, and S. Kloster, Gen. Relativ.

Gravit. 36, 2481 (2004).
[70] A. H. Taub, Phys. Rev. 94, 1468 (1954).
[71] B. F. Schutz and R. Sorkin, Ann. Phys. (N.Y.) 107, 1

(1977).
[72] D. Bao, J. Marsden, and R. Walton, Commun. Math. Phys.

99, 319 (1985).
[73] L. Bombelli and R. J. Torrence, Classical Quantum

Gravity 7, 1747 (1990).
[74] J. Kijowski, A. Smólski, and A. Górnicka, Phys. Rev. D
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