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We consider a self-gravitating system consisting of perfect fluid with spherical symmetry. Using the

general expression of entropy density, we extremize the total entropy S under the constraint that the total

number of particles is fixed. We show that extrema of S coincides precisely with the relativistic Tolman-

Oppenheimer-Volkoff equation of hydrostatic equilibrium. Furthermore, we apply the maximum entropy

principle to a charged perfect fluid and derive the generalized Tolman-Oppenheimer-Volkoff equation.

Our work provides strong evidence for the fundamental relationship between general relativity and

ordinary thermodynamics.
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I. INTRODUCTION

In the past few decades, research in general relativity has
suggested a very deep connection between gravitation and
thermodynamics. The four laws of black hole mechanics
were originally derived from the Einstein equation at the
purely classical level [1,2]. The discovery of the Hawking
radiation [3] allows a consistent interpretation of the laws
of black hole mechanics as the ordinary laws of thermo-
dynamics. By turning the logic around, Jacobson [4]
showed that the Einstein equation may be derived from
the first law of local Rindler horizons. Inspired by
Jacobson’s work, a lot of efforts have been made to derive
the dynamical equations from black hole thermodynamics
[5–9]. In fact, this idea can be traced back even before the
establishment of black hole mechanics. In 1965, Cocke
[10] proposed a maximum entropy principle for self-
gravitating fluid spheres. Let S be the total entropy of
spherically symmetric perfect fluid. Cocke showed that
the requirement that S be an extremum yields the equation
of hydrostatic equilibrium which was originally derived
from the Einstein equation. However, a critical assumption
in Cocke’s derivation is that the fluid is in adiabatic motion
so that the total entropy is invariant. By imposing the
adiabatic condition, the entropy density s is expressed as
the function of the energy density �, while for a general
fluid, s is a function of at least two thermodynamic varia-
bles. In my opinion, the variation of S is performed on a
spacelike hypersurface and the dynamic revolution of the
fluid is irrelevant. Furthermore, variation of S is not con-
sistent with the adiabatic condition. If the entropy is re-
quired to be invariant, as indicated by the adiabatic
condition, the variation of entropy would be meaningless.
Thus, it is not appropriate and consistent to impose the
adiabatic condition. In relation to Cocke’s work, Sorkin,
Wald and Zhang (SWZ) [11] developed a different entropy
principle for radiation. The major difference is that the
adiabatic condition was not needed in SWZ’s derivation.

Moreover, only the Einstein constraint equation was used
in the proof while Cocke used both the constraint equation
and the radial-radial component of Einstein’s equation.
However, SWZ’s discussion was restricted to radiation
for which the thermodynamic relations can be expressed
explicitly and the entropy density only depends on one
thermodynamic variable. It is important to know whether
SWZ’s treatment can be generalized to an arbitrary perfect
fluid. In this paper, we prove a maximum entropy principle
for a general self-gravitating perfect fluid. The new argu-
ments used in our proof are as follows. First, we use the
Gibbs-Duhem relation as the expression of entropy density
for a general fluid. Second, our maximum entropy princi-
ple is under the constraint that the total number of particles
is invariant. Consequently, the method of Lagrange multi-
pliers plays an important role in our derivation. Third, in
addition to the Einstein constraint equation, we only make
use of the ordinary thermodynamic relations to derive the
Tolman-Oppenheimer-Volkoff (TOV) equation. No other
assumptions are needed. Finally, we extend our treatment
to a general charged fluid. With modified arguments,
we derive the generalized TOV equation for the charged
fluid.

II. REVIEW OF SWZ’S DERIVATION ON
SELF-GRAVITATING RADIATION

Since our work is closely related to SWZ’s prescription,
we shall give a brief review on the derivation in [11].
Consider a spherical box of radiation having total energy
M and confined within a radius R. For thermal radiation,
the pressure p and energy density � satisfy the equation of
state

p ¼ 1

3
�; (1)

and then the stress energy tensor is given by

Tab ¼ �uaub þ 1

3
�ðgab þ uaubÞ; (2)
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where ua is the 4-velocity of the local rest frame of the
radiation. In terms of the locally measured temperature T,
the energy density � and entropy density s are given by

� ¼ bT4; (3)

s ¼ 4

3
bT3; (4)

where b is a constant. So s can also be expressed as

s ¼ ��3=4 (5)

with � ¼ 4
3 b

1=4. As shown by SWZ, the extrema of the

total entropy S corresponds to a static spacetime metric

ds2 ¼ gttðrÞdt2 þ
�
1� 2mðrÞ

r

��1
dr2 þ r2d�2: (6)

The constraint equation, which is obtained from the time-
time component of the Einstein equation, yields

� ¼ m0ðrÞ
4�r2

: (7)

Thus, mðrÞ is a mass function.
Let the gas be confined in the region r � R. Then the

total entropy is given by

S ¼ 4�
Z R

0
sðrÞ

�
1� 2mðrÞ

r

��1=2
r2dr

¼ 4��
Z R

0
�3=4

�
1� 2mðrÞ

r

��1=2
r2dr

¼ ð4�Þ1=4�
Z R

0

�
1

r2
m0ðrÞ

�
3=4

�
1� 2mðrÞ

r

��1=2
r2dr:

(8)

Our task is to find a function mðrÞ such that the total
entropy S is extremized. Note that the total mass M within
R is

M ¼ 4�
Z R

0
�ðrÞr2dr ¼ mðRÞ; (9)

and obviously

mð0Þ ¼ 0: (10)

Hence, all the variations must satisfy

�mð0Þ ¼ �mðRÞ ¼ 0: (11)

By using this condition, the extrema of S is equivalent to
the Euler-Lagrange equation

d

dr

�
@L

@m0

�
� @L

@m
¼ 0 (12)

for the Lagrangian

L ¼ ðm0Þ3=4
�
1� 2mðrÞ

r

��1=2
r1=2: (13)

By straightforward calculation, Eq. (12) yields

� 3

16
m00r2 þ 3

8
m00mrþ 3

8
m0r� 1

4
m02r� 3

2
m0m ¼ 0:

(14)

By substituting Eq. (7), one can show that Eq. (14) is
equivalent to

d

dr
ð�=3Þ ¼ � ð�þ �=3Þ½mðrÞ þ 4�r3ð�=3Þ�

r½r� 2mðrÞ� : (15)

Since p ¼ �=3 for radiation, we see immediately that
Eq. (15) is just the relativistic Tolman-Oppenheimer-
Volkoff equation.

III. MAXIMUM ENTROPY PRINCIPLE
FOR PERFECT FLUID

To generalize SWZ’s prescription to an arbitrary perfect
fluid, we first need to find a formula for entropy density s.
Because radiation has a vanishing chemical potential, its
entropy density depends on only one thermodynamic vari-
able, e.g. T or �. For fluids consisting of particles, there are
at least two independent variables. We start with the famil-
iar first law

dS ¼ 1

T
dEþ p

T
dV ��

T
dN; (16)

where S, E, N represent the total entropy, energy, and
particle number within the volume V. Write Eq. (16) in
terms of densities

dðsVÞ ¼ 1

T
dð�VÞ þ p

T
dV ��

T
dðnVÞ: (17)

By expansion, we have

sdV þ Vds ¼ 1

T
�dV þ Vd�þ p

T
dV ��

T
ndV ��

T
Vdn:

(18)

Applying Eq. (16) to a unit volume, we find

ds ¼ 1

T
d���

T
dn: (19)

Combining Eqs. (18) and (19), we arrive at the integrated
form of the Gibbs-Duhem relation [12]

s ¼ 1

T
ð�þ p��nÞ: (20)

To derive this formula, we only used the first law of the
ordinary thermodynamics. So it is a general expression for
perfect fluid. We treat (�, n) as two independent variables,
e.g.,

s ¼ sð�; nÞ; � ¼ �ð�; nÞ: (21)

The equation of state is assumed to be
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p ¼ pð�Þ: (22)

For example, the thermodynamic quantities for a mona-
tomic ideal gas are given by [13]

� ¼ 3

2
nkT; (23)

p ¼ nkT; (24)

s ¼ 3

2
nk lnT � nk lnnþ 3

2
nk

�
5

3
þ ln

�
2�mk

h2

��
: (25)

Our task is to extremize the total entropy

S ¼ 4�
Z R

0
sðrÞ

�
1� 2mðrÞ

r

��1=2
r2dr: (26)

In addition to the constraint Eq. (11), it is natural to require
the total number of particles

N ¼ 4�
Z R

0
nðrÞ

�
1� 2mðrÞ

r

��1=2
r2dr (27)

to be invariant, i.e.,

�N ¼ 0: (28)

Following the standard method of Lagrange multipliers,
the equation of variation becomes

�Sþ ��N ¼ 0: (29)

Define the ‘‘total Lagrangian’’ by

Lðm;m0; nÞ ¼ sð�ðm0Þ; nÞ
�
1� 2mðrÞ

r

��1=2
r2

þ �nðrÞ
�
1� 2mðrÞ

r

��1=2
r2: (30)

Now the constrained Euler-Lagrange equation is given by

@L

@n
¼ 0; (31)

d

dr

@L

@m0 þ
@L

@m
¼ 0: (32)

Thus, Eq. (31) yields

@s

@n
þ � ¼ 0: (33)

Using Eq. (19), we have

��

T
þ � ¼ 0; (34)

which shows that �T must be a constant for self-gravitating

fluid.

From Eq. (30), we have

@L

@m
¼ r

�
1� 2m

r

��3=2ðn�þ sÞ; (35)

and

@L

@m0 ¼
@s

@m0 r
2

�
1� 2m

r

��1=2
: (36)

Here

@s

@m0 ¼
@s

@�

@�

@m0 ¼
1

T

1

4�r2
; (37)

where Eqs. (7) and (19) have been used. Hence,

@L

@m0 ¼
1

4�T

�
1� 2m

r

��1=2
; (38)

and

d

dr

@L

@m0 ¼
Tðm0r�mÞ � rðr� 2mÞT0

4�T2ðr� 2mÞ3=2r2 : (39)

Using Eqs. (34), (20), and (35) becomes

@L

@m
¼ r

�
1� 2m

r

��3=2
�
�þ p

T

�
: (40)

So the Eular-Lagrange Eq. (32) yields

ð4�pr3 þmÞT þ ðr� 2mÞrT0 ¼ 0: (41)

Since there are two independent variables, it is conve-
nient to assume T ¼ Tð�;�Þ. Then

T0ðrÞ ¼ @T

@�

���������
�0 þ @T

@�

���������
�0: (42)

The constraint Eq. (34) yields

�0 ¼ �T0: (43)

Substitution in Eq. (42) gives

T0 ¼
�
1� �

@T

@�

���������

��1 @T

@�

���������
�0: (44)

Rewrite Eq. (20) as

p ¼ Tsþ�n� �: (45)

The differential of p is

dp ¼ Tdsþ sdT þ�dnþ nd�� d�: (46)

By substituting Eq. (19), we have

dp ¼ sdT þ nd�: (47)

Since

p ¼ pð�Þ; (48)

Eq. (47) yields
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@T

@�

���������
¼ �n

s
; (49)

@T

@�

���������
¼ p0ð�Þ

s
: (50)

Hence, Eq. (44) becomes

T0 ¼
�
1þ�

T

n

s

��1 p0ð�Þ
s

�0ðrÞ ¼ T

pþ �
p0ðrÞ: (51)

Substituting Eq. (51) into Eq. (41), we obtain the desired
TOV equation

p0 ¼ � ðpþ �Þð4�r3pþmÞ
rðr� 2mÞ : (52)

IV. MAXIMUM ENTROPY PRINCIPLE FOR
CHARGED FLUID

For a charged fluid, the local thermodynamic relations
remain unchanged. For example, we can still use Eq. (20)
as the expression of entropy density. But the presence of
charge will change the distribution of the fluid in
spacetime.

In coordinates (t, r, �, �), assume that a spherically
symmetric charged fluid has the line element

ds2 ¼ gttðrÞdt2 þ
�
1� 2mðrÞ

r
þQ2ðrÞ

r2

��1
dr2

þ r2d�2 þ r2sin2�d�2: (53)

Here QðrÞ is defined as the total charge up to the radius r
andmðrÞ will be determined later. The matter field consists
of a charged fluid. Let

ua ¼ 1ffiffiffiffiffiffiffiffiffiffi�gtt
p

�
@

@t

�
a

(54)

be the four-velocity of the fluid. Then the total stress-
energy tensor can be written as

Tab ¼ ~Tab þ TEM
ab ; (55)

where

~Tab ¼ �uaub þ pðgab þ uaubÞ; (56)

TEM
ab ¼ 1

4�

�
Fa

cFbc � 1

4
gabF

cdFcd

�
: (57)

The electromagnetic field Fab satisfies the Maxwell’s
equations

rbF
ab ¼ 4�ja ¼ 4��eu

a; (58)

and

r½aFbc� ¼ 0; (59)

where �e is the charge density measured by the comoving
observers. By using the identity �a

a� ¼ @
@x� ln

ffiffiffiffiffiffiffi�g
p

(see

[14]) Eq. (58) becomes

@

@x	
½ ffiffiffiffiffiffiffi�g
p

F�	� ¼ 4�j�
ffiffiffiffiffiffiffi�g

p
: (60)

Because of spherical symmetry, the only nonvanishing
components of Fab are FtrðrÞ ¼ �FrtðrÞ. Thus, Eq. (60)
yields

@rðr2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr
p

FtrÞ ¼ 4�jtr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr

p ¼ 4��er
2 ffiffiffiffiffiffiffi

grr
p

;

(61)

where Eqs. (54) and (58) have been used in the last step.
So by definition, the function QðrÞ in Eq. (53) can be
written as

QðrÞ ¼
Z r

0
4�r02

ffiffiffiffiffiffiffi
grr

p
�edr

0: (62)

By comparing Eqs. (62) and (61), one finds immediately
that

Ftr ¼ 1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgrr

p QðrÞ (63)

is a solution of Eq. (61).
Then the time-time component of Einstein’s equation

gives

m0ðrÞ ¼ 4�r2�þQQ0

r
: (64)

This formula is consistent with the result in [15]. Now we
derive the hydroelectrostatic equation from the maximum
entropy principle. The total entropy of matter takes the
form

S ¼
Z R

0
sðrÞ

�
1� 2m

r
þQ2

r2

��1=2
r2dr: (65)

For simplicity, we assume all the particles have the same
charge q. Thus, the charge density is proportional to the
particle number density n

�e ¼ qn: (66)

Together with Eq. (62), we have

n ¼ Q0

4�r2q

�
1� 2m

r
þQ2

r2

�
1=2

: (67)

Now we treat QðrÞ, Q0ðrÞ as independent variables in the
Lagrangian formalism. So the Lagrangian is written as

Lðm;m0; Q;Q0Þ ¼ s

�
1� 2m

r
þQ2

r2

��1=2
r2: (68)

The conservation of particle number N is equivalent to
the conservation of charge with the radius R. Now the
constraints are
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mð0Þ ¼ Qð0Þ ¼ 0; mðRÞ ¼ constant;

QðRÞ ¼ constant:
(69)

With these constraints, the extrema of S leads to the
following Euler-Lagrange equations

d

dr

@L

@Q0 þ
@L

@Q
¼ 0 (70)

d

dr

@L

@m0 þ
@L

@m
¼ 0: (71)

To calculate the Euler-Lagrange equations, we first note
that

s ¼ sð�; nÞ ¼ sð�ðm0; Q;Q0Þ; nðQ;m;Q0ÞÞ: (72)

With the help of Eqs. (64) and (67), we have

@s

@Q0 ¼
@s

@�

@�

@Q0 þ
@s

@n

@n

@Q0 (73)

¼� 1

T

Q

4�r3
��

T

1

q

1

4�r2

�
1�2m

r
þQ2

r2

�
1=2

: (74)

Thus,

@L

@Q0 ¼ � 1

T

Q

4�r

�
1� 2m

r
þQ2

r2

��1=2 ��

T

1

q

1

4�
: (75)

To calculate @L
@Q , first note that

@s

@Q
¼ @s

@�

@�

@Q
þ @s

@n

@n

@Q

¼ � 1

T

Q0

4�r3
��

T

QQ0

4�qr4

�
1� 2m

r
þQ2

r2

��1=2
: (76)

Then

@L

@Q
¼ � 4�r2qQsT þ ðfqrþ ffiffiffi

f
p

Q�ÞQ0

4�r2qTf3=2
; (77)

where

f ¼ 1� 2m

r
þQ2

r2
: (78)

By substituting Eqs. (75) and (77), Eq. (70) becomes

0 ¼ qQ3T0 þQ½�mqT þ qrT � qrTm0 þ 4�qr3sT2

þ ffiffiffi
f

p
rT�Q0 � 2mqrT0 þ qr2T0� þ ffiffiffi

f
p

r2ðr� 2mÞ
� ð�T0 � T�0Þ þQ2½qTQ0 þ ffiffiffi

f
p

rð�T0 � T�0Þ�:
(79)

Using the thermodynamic relation (49) and (50), we find

T0ðrÞ ¼ @T

@�

���������
�0 þ @T

@�

���������
�0 ¼ � n

s
�0 þ p0ð�Þ

s
�0

¼ �n

s
�0 þ p0ðrÞ

s
: (80)

Using Eq. (80) to eliminate �0 in Eq. (79), we have

0 ¼ qQ3T0 þ
ffiffiffi
f

p
r2ðr� 2mÞðsTT0 þ n�T0 � Tp0Þ

n

þQ2
ffiffiffi
f

p
rðsTT0 þ n�T0 � Tp0Þ

n
þ qTQ2Q0

þQ½�mqT þ qrT � qrTm0 þ 4�qr3sT2

þ ffiffiffi
f

p
rT�Q0 � 2mqrT0 þ qr2T0�: (81)

Eliminating s, �, and n via Eqs. (20) and (67), we rewrite
Eq. (81) as

0 ¼ 4�r3ðr2 � 2mrþQ2Þðpþ �ÞT0

� 4�r3ðr2 � 2mrþQ2ÞTp0 þ TQ2Q02

þQQ0ðrT þ 4�r3ðpþ �ÞT þQ2T0 þ r2T0

�mT � 2rmT0 � rm0TÞ: (82)

Now we begin to calculate Eq. (71). Note that

@s

@m0 ¼
@s

@�

@�

@m0 ¼
1

4�r2T
: (83)

Then

@L

@m0 ¼
1

4�r2T

�
1� 2m

r
þQ2

r2

��1=2
r2: (84)

Equation (72) yields

@s

@m
¼ @s

@n

@n

@m
¼ �

T

Q0

4�r3q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r þ Q2

r2

q : (85)

Here we have used Eqs. (19) and (67). From Eq. (68),
we find

@L

@m
¼ @s

@m

�
1�2m

r
þQ2

r2

��1=2
r2þsr

�
1�2m

r
þQ2

r2

��3=2

¼�

T

Q0

4�r2q

�
1�2m

r
þQ2

r2

��1
rþsr

�
1�2m

r
þQ2

r2

��3=2

¼ r

�
1�2m

r
þQ2

r2

��3=2

�
�
�

T

Q0

4�r2q

�
1�2m

r
þQ2

r2

�
1=2þs

�

¼ r

�
1�2m

r
þQ2

r2

��3=2
�
�n

T
þs

�

¼ r

�
1�2m

r
þQ2

r2

��3=2�þp

T
: (86)

Thus, Eq. (71) becomes
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Q2T � 4�r4Tðpþ �Þ þm0Tr2 � TrQQ0 � rT0Q2

� r3T0 �mrT þ 2mr2T0 ¼ 0: (87)

Combining Eq. (82) and (87), one can eliminate T0. Then
by substituting Eq. (64) for m0, we finally find

p0 ¼ QQ0

4�r4
� ð�þ pÞ

�
4�rpþ m

r2
�Q2

r3

�

�
�
1� 2m

r
þQ2

r2

��1
: (88)

This is exactly the generalized Oppenheimer-Volkoff
equation for charged fluid [15].

V. CONCLUSIONS

By applying the maximum entropy principle to a general
self-gravitating fluid, we have derived the TOVequation of

hydrostatic equilibrium. We only used the Einstein’s con-
straint equation and ordinary thermodynamic relations. By
similar assumptions but more complicated arguments, we
have shown that the generalized TOV equation for a
charged fluid can also be derived by extremizing the total
entropy. The TOV equation is an important equation for
self-gravitating system which was originally derived from
the Einstein equation. Our results show that the Einstein
equation can be derived from ordinary thermodynamic
laws. This is direct evidence for the fundamental relation-
ship between gravitation and thermodynamics.
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