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Rua Santa Adélia, 166, 09210-170, Santo André, SP, Brazil,
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We consider scalar field perturbations of the asymptotically Gödel 5-dimensional charged rotating

black holes with two equal angular momenta. It is shown that the spectrum of proper oscillations of the

perturbation includes superradiant unstable modes. The reason for the instability is the confining Dirichlet

boundary condition at the asymptotically far region of the Gödel Universe. The confining box makes

superradiant modes extract rotational energy from the black hole and, after repeated reflections from the

black hole, grow unboundedly. A similar instability takes place for rotating black holes in the asymptoti-

cally anti-de Sitter (AdS) space-time.
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I. INTRODUCTION

Stability of a black hole’s space-time against small
perturbations is the basic requirement for its existence.
Stability acquires a special meaning in higher dimensional
gravity, because there is no traditional uniqueness theorem
for higher dimensional solutions with an event horizon.
A number of ‘‘black’’ solutions with various topologies
have been found [1] and stability could be the criterium
which could discard unphysical solutions [2,3]. Through
the gauge/gravity duality, classical instability of black
holes can be interpreted as the onset of thermodynamical
phase transition in the dual field theory in some cases [4].
Therefore, stability of various black holes has been actively
studied during past decade [5]. In most cases it is difficult
to prove (in)stability of black holes analytically. Then,
analysis of its proper oscillations, described by the called
quasinormal modes, is used: If no unstable modes are
found in the spectrum, the space-time is believed to be
stable.

Stability of various higher dimensional black holes have
been proved in[5,6] in the context of string theory and
higher dimensional gravity. Instability, once it happens,
can be stipulated by different reasons. Various instabilities
have been observed for higher dimensional black holes in
[6]. A special kind of instability takes place for rotating
black holes in the AdS space-time, because of the phe-
nomenon called the superradiance [7]. The latter is the
amplification of the reflected wave due to extraction of
rotational energy from the black hole. If the perturbation
propagate under the Dirichlet boundary condition at

infinity, what occurs for asymptotically AdS black holes,
the superradiance naturally leads to instability. Super-
radiance and the instability induced by it have been studied
in a great number of works (see for instance [3,8] and
references therein). It was shown [9] that all (and only)
superradiant modes are unstable for gravitational perturba-
tion of the higher dimensional simply rotating asymptoti-
cally AdS black hole.
In the previous paper [10] we considered the proper

oscillation frequencies, called quasinormal modes, of the
nonrotating 5-dimensional black hole immersed in the
higher dimensional analogue of the Gödel (rotating)
Universe [11,12]. The exact solution for the black hole
metric was found by Gimon and Hashimoto in the super-
gravity [12] and was further investigated in a number of
works [13]. In [10] we have shown that the quasinormal
spectrum is similar to the spectrum of normal modes of the
pure Gödel space-time. The latter has a number of common
features with the spectrum of pure AdS space-time, where
the scale of the universe’s rotation j plays the role of the
inverse anti-de Sitter radius.
In the present research we shall consider quasinormal

modes of a much more general space-time: 5-dimensional
charged rotating black holes with both equal angular
momenta in the Gödel Universe. Our main result here is
observation of the superradiant instability for such black
holes. In comparison with the earlier work [10], we have
two extra parameters, the black hole’s rotational param-
eters a and the black hole charge Q. We shall analyze the
dependence of the quasinormal modes, and first of all of
unstable superradiant modes, from these parameters and
determine the parametric regions of instability.
The paper is organized as follows: Sec. II gives basic

formulas for the 5-dimensional charged rotating black hole
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in the Gödel Universe. Section III is devoted to separation
of variables in the test scalar field equation, Sec. IV briefly
describes numerical methods which we used for analysis of
quasinormal modes. Finally, in Sec. V we discuss the
obtained results and parametric regions of instability.

II. CHARGED ROTATING ASYMPTOTICALLY
GÖDEL BLACK HOLES

The bosonic fields of the minimal (4þ 1) supergravity
theory consist of the metric and the oneform gauge field,
which are governed by the following equations of motion

R�� ¼ 2

�
F��F

�
� � 1

6
g��F

2

�
; (1)

D�F
�� ¼ 1

2
ffiffiffi
3

p "�����F��F��; (2)

here, "����� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg��

p
������.

In the Euler coordinates (t, r, �, c , �), the solution for
the 5-dimensional charged rotating asymptotically Gödel
black hole with two equal angular momenta a ¼ a1 ¼ a2
is given by [14]

ds2 ¼ �fðrÞdt2 � qðrÞr	3
Ldt� hðrÞr2ð	3

LÞ2 þ
dr2

vðrÞ
þ r2

4
ðd�2 þ dc 2 þ d�2 þ 2 cos�dc d�Þ; (3)
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L ¼ d�þ cos�dc ,

qðrÞ¼2jrþ6jQ

r
það2M�QÞ

r3
�aQ2

r5
;
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r2
�a2ðM�QÞ

2r4
þa2Q2

4r6
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fðrÞ¼1�2M

r2
þQ2

r4
;

vðrÞ¼1�2M

r2
þ8jðMþQÞðaþ2jMþ4jQÞ

r2

þ2ðM�QÞa2þQ2ð1�16ja�8j2M�24j2QÞ
r4

:

(4)

Here M and Q are charge and mass of the black hole.
When Q ¼ 0 and a ¼ 0, the above solution is reduced to
the Gimon-Hashimoto solution. When a ¼ j ¼ 0 we have
the 5-dimensional Reissner-Nordström solution. For
Q ¼ 0 and j ¼ 0 we obtain the Myers-Perry black hole
with two equal angular momenta.

III. SEPARATION OF VARIABLES

In order to derive the wave equation one can use the
relation

q2ðrÞ þ fðrÞð1� 4hðrÞÞ ¼ vðrÞ;
which implies

g ¼ � r6sin2�

64
:

Perturbations of the scalar field in a curved background
are governed by the Klein-Gordon equation

h� � 1ffiffiffiffiffiffiffi�g
p @�ðg�� ffiffiffiffiffiffiffi�g

p
@��Þ ¼ �2�: (5)

Since the background metric has the Killing vectors @t, @c ,

@�, one can choose the ansatz for the wave-function as

�ðt; r; �; c ; �Þ ¼ e�i!tþincþim�Yð�ÞRðrÞr�3=2: (6)

Substituting (6) into (5) and separating the variables, one
can find that the angular part of the function satisfies the
equation

�
1

sin�

d

d�
sin�

d

d�
þ 2mn cos��m2 � n2

sin2�
þ �

�
Yð�Þ ¼ 0;

(7)

where � is the separation constant with the eigenvalues

�¼ ‘ð‘þ 1Þ; ‘¼maxðjmj; jnjÞ þ i; i¼ 0;1;2 . . . :

Then, the equation for the radial part takes the wavelike
form

�
d2

dr2?
þQðr?Þ

�
Rðr?Þ ¼ 0; (8)

where r? is the tortoise coordinate, which is defined as

dr? ¼ dr

vðrÞ : (9)

The effective potential can be written in terms of the
coordinate r as follows [10]

QðrÞ¼ð1�4hðrÞÞ
�
!� 2mqðrÞ

rð1�4hðrÞÞ
�
2

�vðrÞ
�
4�

r2
þ�2þ 16m2hðrÞ

ð1�4hðrÞÞr2þ
3vðrÞþ6rv0ðrÞ

4r2

�
:

(10)

Now we are in position to perform analysis of the
quasinormal spectrum for the obtained wave equation.

IV. BOUNDARY CONDITIONS
AND NUMERICAL METHODS

There are two positive solutions of the equation
vðrÞ ¼ 0: the event horizon rþ and the inner horizon r�

2r2�¼2M�8ajM�16j2M2�8ajQ

�48j2MQ�32j2Q2� ffiffiffiffi
P

p ðrþ>r�>0Þ; (11)

where
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P ¼ ð2M� 8ajM� 16j2M2 � 8ajQ� 48j2MQ

� 32j2Q2Þ2 � 4ð2a2M� 2a2QþQ2 � 16ajQ2

� 8j2MQ2 � 24j2Q3Þ:
At the classical level, a wave cannot be emitted from the
event horizon of a black hole, so that the standard boundary
condition for a great variety of black holes is requirement
of the purely in-going wave at the event horizon,

R / e�i ~!r?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4hðr?Þ

p
; r? ! �1;

~! ¼ !� 2mqðrþÞ
rþ � 4rþhðrþÞ ¼ !�m�þ:

(12)

With respect to the coordinate r (12) reads

R / ðr� rþÞ�i ~!b; r ! rþ; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4hðrþÞ

p
v0ðrþÞ :

(13)

At spatial infinity we have

Rðr ! 1Þ ¼ Cþ�þðrÞ þ C���ðrÞ; (14)

where

��ðrÞ ¼ e�j!r2r��
�
1þ A1�

r
þ A2�

r2
þ A3�

r3
. . .

�
;

with

�� ¼ � 1

2
� K; (15)

K ¼ 2m�!2 ��2

4!j

þ 2j!ðMþQÞð3� 8ja� 16ðMþ 2QÞj2Þ: (16)

Since the exponents e�j!r2 have purely real index, they
do not describe in-going or out-going waves. Therefore, we
are unable to impose usual quasinormal boundary condi-
tions. However, we can use the analogy with AdS back-
grounds and require Dirichlet boundary conditions at
spatial infinity. This implies that Cþ ¼ 0 for Reðj!Þ> 0
or C� ¼ 0 for Reðj!Þ< 0.

The nontrivial behavior of the functions�� is observed
when Reð!Þ ¼ 0. In this case both exponents have oscil-
latory behavior at spatial infinity. Thus, in order to impose
the Dirichlet boundary conditions we must consider the
factor r�� . When Reð!Þ ¼ 0 one can find that

Re ð��Þ ¼ � 1

2
� 2m;

implying that one of�� is convergent and the other one is
divergent as r ! 1. The only exception is m ¼ 0, when
both�þ and�� are convergent. However, in this case the
function norm is divergent, so we conclude that such
modes do not exist [10].

Let us stress, that the chosen Dirichlet boundary con-
ditions is usual and physically justified for asymptotically

Gödel space-times [15–18], once we want to have the
wave-function which can be treated as a perturbation.
These boundary conditions are naturally consistent with
the normal modes of the pure Gödel space-time [15–17],
when the radius of the black hole approaches zero.
The asymptotically Gödel space-times, as well as AdS

space-times, are not globally hyperbolic. Therefore, for a
strict analytical proof of the stability of such space-times,
the well-posedness of the initial value problem should be
considered as well.
Now, we shall briefly relate the two standard methods

used for numerical search of quasinormal modes: the
shooting method and Frobenius method. These two alter-
native methods were used in order to guarantee the validity
of the obtained results. More detailed discussion of both
methods can be found in [3].
Shooting method. Since at the horizon we require the

purely in-going wave (13), it is convenient to define a new
function in such a way,

yðrÞ ¼
�
1� r2þ

r2

�
i ~!b � RðrÞ; (17)

that it becomes regular at the event horizon.
We fix the wave-function norm so that yðrþÞ ¼ 1.

Substituting (17) into (8) and expanding the wave equation
near the horizon, we find that y0ðrþÞ. This gives us bound-
ary condition at the horizon for any fixed !, which we use
for the numerical integration of the Eq. (8). At large-
distance we compare the result of our numerical integration
with the large-distance asymptotic series expansion (14)
and find the coefficients C� by using the fitting procedure.
Then, quasinormal modes can be found by minimizing
Cþð!Þ or C�ð!Þ depending on the sign of Reð!Þ. In order
to check convergence of the procedure we check that
obtained frequencies do not change within specified accu-
racy, if we increase precision of floating-point operations
or the distance at which we use the fit.
Frobenius method. This method allows us to find QNMs

by solving numerically an equation with continued frac-
tions, which takes much less computer time for finding
quasinormal modes. One can rewrite the wave-function as

RðrÞ ¼ e�!jr2r��
�
r2 � r2þ
r2 � r2�

��i ~!b � zðrÞ; (18)

where zðrÞ must be regular at spatial infinity and the
event horizon, once ! is the quasinormal frequency. We
choose ‘‘�’’ sign for Reð!jÞ> 0, and ‘‘þ’’ sign for
Reð!jÞ< 0.
The function zðrÞ can be expanded into a series near the

horizon

zðrÞ ¼ X1
i¼0

ai

�
r2 � r2þ
r2 � r2�

�
i
: (19)

After we substitute (18) and (19) into Eq. (8), we find the
five-term recurrence relation for the coefficients ai. Using
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Gaussian eliminations we numerically reduce the five-term
recurrence relation to the three-term recurrence relation [3]
and solve the equation with the infinite continued fraction
with respect to ! [19].

V. SUPERRADIANT INSTABILITY

It is well known that at some frequencies, waves incident
upon a rotating black hole can extract part of its rotational
energy and get amplified. This is the essence of the effect
called superradiance [7]. Once at some distance from a
black hole (or at infinity) the reflecting mirror is posed, the
reflections with increased amplitudes will be repeated
leading to unbounded increase of the wave’s energy, that
is to the superradiant instability. Therefore, such an insta-
bility for rotating black holes in Gödel space-times could
be expected, as one has to impose Dirichlet boundary
conditions (to pose mirror) at infinity. such an instability
occurs for rotating black holes in AdS for both gravita-
tional and scalar perturbations and occurs only on super-
radiant modes [9]. This shows that superradiance plus
Dirichlet boundary conditions lead to the instability. We
shall show here that the same is true for rotating black
holes in the Gödel space-time.

Similarly to the asymptotically AdS rotating black
holes, the superradiance occurs when

Re ð!Þ<m�þ: (20)

On Fig. 1 in the regime of small j, we have shown that only
the superradiant modes are unstable, while nonsuperra-
diant ones are stable. One can also see on Fig. 1 that the
larger j corresponds to the higher superradiant instability
growth rate. The highest growth rate which we have ob-

served is about �10�6M�1=2.
For j ¼ 0 positive and negative a produce the same

quasinormal spectra (under the change m ! �m) because
of the identical picture of ‘‘left’’ and ‘‘right’’ rotations. On
Figs. 2 and 3 one can see that this symmetry between left
and right rotations is broken due to the rotation of the
universe. Now, negative a allows for larger parametric
region of stability than positive one. In addition, increasing
of the Universe rotation ‘‘stabilize’’ the system, so that

already for j
ffiffiffiffiffi
M

p � 0:075 there is no superradiance for any
a (Fig. 2).
It is well known that the Reissner-Nordström metric

depends only on square of the black hole charge Q.
Therefore, the Reissner-Nordström space-time is the same
for positive and negative charges. Unlike, the RN case, the
Gimone-Hashimoto metric and its rotating generalization
are not ‘‘symmetric’’, respectively, the change Q ! �Q.
The dependence of the QNMs on the charge Q is also not

0.1 0.2 0.3 0.4 0.5 0.6
a

2.0

1.5

1.0

0.5
0.1 0.2 0.3 0.4 0.5 0.6
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1.0

0.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6
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2.0

1.5

1.0

0.5

0.5

FIG. 1 (color online). (Color online) Real (blue) and imaginary (red) parts of ~! as functions of a for m ¼ 1, � ¼ 2 (M ¼ 1,Q ¼ 0),
j ¼ 0:02 (left panel), j ¼ 0:03 (middle panel), j ¼ 0:04 (right panel).

0.05 0.10 0.15
j M

1.0

0.5

0.5

a M

No superradiance

No horizon

No horizon

FIG. 2 (color online). Region of instability (blue) for (neutral)
Myers-Perry-Gödel black holes.

1.0 0.5 0.5 1.0
Q

1.0

0.5

0.5

a

No superradiance

No horizon

No horizon

FIG. 3 (color online). Region of instability (blue) for charged
rotating asymptotically Gödel black holes for j ¼ 0:02 (M ¼ 1).
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symmetric for opposite signs of the charge. Larger values
of Q allows for bigger parametric ‘‘island’’ of stability, so
that the near extremal positively charged black hole look
like having no superradiance at any nonextremal rotation
parameter a (Fig. 3). In addition, near extremal negative
values ofQ evidently correspond to stability. In the regime
of large Universe scale j, the quasinormal frequencies
approach the normal modes of the pure Gödel space-time

[10,20] similarly to the spectrum of AdS black holes in the
limit of vanishing AdS radius [21].
As the superradiance condition (20) is almost equidis-

tant respectively m for small j, the region of instability
practically coincides for allm because Reð!Þ is equidistant
with respect to m for small j. Therefore, as can be seen on
Fig. 4, when determining the threshold of instability, one
can be limited by lower m within acceptable accuracy.
Quasinormal modes as function of the black hole

charge Q and the rotation parameter a are shown on
Figs. 6–9. When increasing the black hole charge Q the
real oscillation frequency of the quasinormal mode !
monotonically increases (see Figs. 5 and 6), while the
damping rate usually decreases, making QN modes of
the charged black hole longer lived and having higher
oscillation frequency. This means that charged black hole
is a better oscillator (i.e. has the larger quality factor, which
is proportional to jReð!Þ=Imð!Þj) than the neutral one. A
similar dependence of the QNMs on the parameter of the
black hole’s rotation a takes place, once the other parame-
ters (M,Q, j) are fixed. Therefore, in the region of stability,
the charged rotating asymptotically Gödel black hole is
considerably better oscillator than the neutral nonrotating
one.

0.1 0.2 0.3 0.4 0.5 0.6
a

3

2

1

1

2

3

Re

FIG. 4 (color online). Real part of ~! as functions of a for
m ¼ 1, � ¼ 2 (blue, bottom), m ¼ 2, � ¼ 6 (green), m ¼ 3,
� ¼ 12 (orange), m ¼ 4, � ¼ 20 (red), m ¼ 5, � ¼ 30
(magenta, top) (M ¼ 1, Q ¼ 0, j ¼ 0:03).

FIG. 5 (color online). Real (left panel) and imaginary (right panel) parts of the dominant quasinormal mode as a function of a and
Q for j ¼ 0:02 (m ¼ 1, � ¼ 2, M ¼ 1).

FIG. 6 (color online). Real (left panel) and imaginary (right panel) parts of the dominant quasinormal mode as a function of a and
Q for j ¼ 0:07 (m ¼ 1, � ¼ 2, M ¼ 1).

SUPERRADIANCE AND INSTABILITY OF THE CHARGED . . . PHYSICAL REVIEW D 84, 104022 (2011)

104022-5



VI. CONCLUSIONS

In the present work, we have considered scalar field
perturbations of the asymptotically Gödel 5-dimensional
Myers-Perry black holes with two equal angular momenta.
Because of the Dirichlet boundary conditions of the
wave equation which are required for the asymptotically
Gödel space-time, the quasinormal spectrum has similar
features to the 5-dimensional Myers-Perry black holes in
the anti-de Sitter space-time. A superradiant waves for

such a rotating black hole, when immersed in an effective
confining box (i.e. under Dirichlet boundary conditions)
leads to the superradiant instability for some values of the
black hole parameters. A similar kind of instability we
have observed for the Myers-Perry-Gödel black holes. It
is evident to us that the same kind of instability should
occur also for gravitational perturbations, i.e. Myers-Perry-
Gödel black holes must be unstable. Further, we have
accurately determined the parametric region of instability
for various values of the Universe rotation, black hole

FIG. 7 (color online). Real (left panel) and imaginary (right panel) parts of the dominant quasinormal mode as a function of a and
Q for j ¼ 0:07 (m ¼ �1, � ¼ 2, M ¼ 1).

FIG. 8 (color online). Real (left panel) and imaginary (right panel) parts of the dominant quasinormal mode as a function of a and
Q for j ¼ 0:07 (m ¼ 0, � ¼ 2, M ¼ 1).

FIG. 9 (color online). Real (left panel) and imaginary (right panel) parts of the dominant quasinormal mode as a function of a and
Q for j ¼ 0:07 (m ¼ 0, � ¼ 0, M ¼ 1).
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rotation and the black hole charge. The found instability
has a relatively small growth rate.

In our opinion, the instability found here for the parti-
cular black hole solution (the 5-dimensional black hole in
the presence of the gauge field) is essentially generic
phenomena which is induced only by the two factors:

(1) the rotation of the black hole, which leads to super-
radiance and

(2) the Dirichlet boundary condition in the asymptotic
region of the rotating Universe.

Therefore, we expect similar instability for any other types
of rotating black holes immersed in a rotating Gödel-like
Universe.

A question which was not completely solved here is the
stability of the extremely (positively) charged rotating
black holes: Although numerical data indicates that the
range of values of a for which instability takes place shrink
to zero when approaching the extremal positive charge Q,
there is no analytical proof for this observation.

Another interesting question is the dynamical evolution
of perturbation for the above case, which is quite nontrivial

problem due to the existence of the closed timelike curves
far from the black hole. There, the coordinate t becomes
spacelike and the azimuthal coordinate � is timelike. This
problem arises if one considers evolution of the perturba-
tion in time domain. In the frequency domain we are free
from this kind of problem and, therefore, we have consid-
ered here only self-consistent solutions.
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