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The Hamiltonian formulation of Hořava gravity is derived. In a closed universe the Hamiltonian is a

sum of generators of gauge symmetries, the foliation-preserving diffeomorphisms, and vanishes on shell.

The scalar constraint is second class, except for a global, first-class part that generates time reparamet-

rizations. A reduced phase space formulation is given in which the local part of the scalar constraint is

solved formally for the lapse as a function of the 3 metric and its conjugate momentum. In the infrared

limit the scalar constraint is linear in the square root of the lapse. For asymptotically flat boundary

conditions the Hamiltonian is a sum of bulk constraints plus a boundary term that gives the total energy.

This energy expression is identical to the one for Einstein-aether theory which, for static spherically

symmetric solutions, is the usual Arnowitt-Deser-Misner energy of general relativity with a rescaled

Newton constant.
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I. INTRODUCTION

Hořava [1] has proposed a theory of gravity that is
closely related to general relativity (GR), but is power-
counting renormalizable and possesses a preferred
spacelike foliation of spacetime that breaks the spacetime
diffeomorphism symmetry down to time-dependent three-
dimensional diffeomorphism symmetry and a reparametri-
zation of global time. Several variants of this theory have
been considered (see Ref. [2] for a review). In this paper we
study the ‘‘consistent extension’’ of Blas, Pujolàs, and
Sibiryakov [3]. This theory is just the ‘‘nonprojectable’’
version of Hořava’s original proposal with the inclusion of
terms involving ðlnNÞ;i, the spatial gradient of the log of the
lapse function N, which are compatible with the symmetry
but were not explicitly mentioned in Ref. [1]. This variant
of the theory is free of known pathologies (instabilities,
overconstrained evolution, or strong coupling at low ener-
gies) which afflict some other variants. We will refer to this
theory simply as Hořava gravity.

In this paper, we consider theHamiltonian formulation of
Hořava gravity. While this was already considered in
Ref. [4] (see also comments in Ref. [3]), there are several
reasons to revisit the analysis. In Ref. [4], it was argued that,
unlike other theories with time-reparametrization sym-
metry, Hořava gravity has a nonvanishing Hamiltonian.
A vanishing Hamiltonian is one aspect of the so-called
‘‘problem of time’’ in quantum gravity: quantization leads
to a theory in which there is no unitary evolution with
respect to an external time [5]. Here we find that although
the Hamiltonian density is a sum of second-class con-
straints, the total Hamiltonian is a sum of first-class con-
straints, one of which was overlooked previously. Once this
constraint is recognized, we see that the Hamiltonian for a

closed space is indeed a sum of constraints, and therefore a
global version of the problem of time persists.
We also consider the Hamiltonian formulation with

asymptotically flat boundary conditions. In Ref. [6] it was
shown that in the infrared (IR) limit Hořava gravity
is closely related to Einstein-aether theory with a
hypersurface-orthogonal aether field, in the sense that
every hypersurface-orthogonal aether solution is also a
Hořava solution.1 We show that the energy of asymptoti-
cally flat solutions of Hořava gravity can be expressed as a
surface integral at spatial infinity that agrees with the
expression for energy in Einstein-aether theory.

II. HOŘAVA GRAVITY

In a covariant formulation [8], the dynamical objects of
Hořava gravity are a 4 metric and a preferred foliation. In
the Hamiltonian formulation one specifies an additional
foliation, which need not coincide with the preferred folia-
tion. However, it will be useful to use the preferred foliation
in the Hamiltonian formulation, since then the Lagrangian
depends only on first time derivatives of the fields. We will
therefore present the theory in coordinates ðt; xiÞ adapted to
the preferred foliation. This is the original formulation of
Hořava[1].2 In these coordinates Hořava gravity has the
symmetry of foliation-preserving diffeomorphisms
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1In fact there can be a global topological obstruction to this
equivalence. If � has a nontrivial first homotopy group then it is
possible to have an aether field that is locally hypersurface
orthogonal but is not normal to any global foliation. A simple
example is provided by the ‘‘tilted aether’’ Bianchi type I
cosmologies discussed in Ref. [7], if a homogeneous aether field
on a homogeneous spacetime with topology R3 � S1 is tilted
along the S1 direction.

2It can happen that such coordinates do not cover the complete
manifold as, for example, in black hole formation by collapse
[9].
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t ! t0ðtÞ; xi ! x0iðxi; tÞ: (1)

The metric can be expressed in Arnowitt-Deser-Misner
(ADM) form in terms of the lapse N, shift vector Ni, and
three-dimensional metric gij,

ds2 ¼ N2dt2 � gijðdxi þ NidtÞðdxj þ NjdtÞ; (2)

where letters i; j; . . . ¼ 1; . . . ; 3 denote spatial indices. The
extrinsic curvature Kij of the constant t surfaces and its

trace K are given by

Kij ¼ 1

2N
½ _gij �riNj �rjNi�; K ¼ gijKij; (3)

where the dot denotes partial derivative with respect to t,
and ri is the three-dimensional covariant derivative
compatible with the metric gij. The acceleration of the

congruence normal to the constant t surfaces has the spatial
projection

ai � ri lnN: (4)

In terms of these variables the Lagrangian density of
Hořava gravity is

L ¼ 1

16�GH

ffiffiffi
g

p
NðKijK

ij � �K2 � Vðgij; aiÞÞ; (5)

where V is a potential that depends on the 3 metric and the
acceleration. The potential contains all terms that are spa-
tial scalars of dimension up to six, where the spatial coor-
dinates xi are taken to have dimension �1. In the IR limit,
the potential is dominated by the lowest dimension terms

Vðgij; aiÞ ¼ ��R� �aia
i þ . . . ; (6)

where R is the Ricci scalar of the 3 metric gij, and . . . refers

to terms containing more than two spatial derivatives. The
term r � a is also of second order in derivatives, but its
contribution to the Lagrangian differs from that of a2 by a
total derivative since Nr � a ¼ r2N � Na2. The dimen-
sionless free parameters of the IR limit of the theory are �,
�, and �. When � ¼ 0 and � ¼ � ¼ 1, the theory reduces
to general relativity. From here on we adopt units where
16�GH ¼ 1. In this paper we do not consider matter
couplings.

III. HAMILTONIAN AND CONSTRAINTS

We now consider the Hamiltonian formulation of the
theory, following Ref. [4]. First, since the time derivatives
of N and Ni do not appear in the action, the corresponding
conjugate momenta pN and pi vanish; i.e., we have pri-
mary constraints

pN ¼ 0; pi ¼ 0: (7)

The momentum conjugate to gij is

pij � ffiffiffi
g

p ðKij � �KgijÞ; (8)

and this relationship can be inverted yielding

Kij ¼ 1ffiffiffi
g

p
�
pij þ �

1� 3�
pgij

�
; (9)

where p � pijgij.

The Hamiltonian density H has the usual form
pij _qij �L plus the primary constraints times Lagrange

multipliers. Up to total derivatives it takes the form

H ¼ NH t þ NiH i þ vipi þ vpN; (10)

H t ¼ 1ffiffiffi
g

p
�
pijpij þ �

1� 3�
p2 þ gV

�
; (11)

H i ¼ �2gikrjp
jk: (12)

For now we will assume that � has no boundary, so that
total derivative terms play no role, but they will be con-
sidered in Sec. V when asymptotically flat boundary con-
ditions are imposed. The Hamiltonian is then given by

H ¼
Z
�
d3yH ðyÞ �

Z
H : (13)

Here and below we adopt a notation in which
R

meansR
� d3y and the dependence on spatial coordinates of in-

tegration is suppressed.
The primary constraints (7) must be preserved in time; in

other words they must have a vanishing Poisson bracket
with the Hamiltonian. Among these constraints there is a
particular combination

R
NpN that generates constant re-

scalings of N. Since ai is invariant under such rescalings,
only explicit N and pN dependence need be considered.
Preservation of this constraint in time thus requires that

�Z
NpN;H

�
¼

Z
ðNH t þ vpNÞ ¼ 0; (14)

which shows that
R
NH t ¼ 0 when the constraints are

preserved in time. It follows that the Hamiltonian is a
sum of constraints. Moreover, the requirement that all
constraints are preserved in time implies that the
Hamiltonian is first class; i.e., it has zero Poisson brackets
with all constraints.
The fact that the Hamiltonian is a sum of first-class

constraints is a feature of systems that have time-
reparametrization symmetry. What distinguishes Hořava
gravity from GR is that arbitrary deformations of the
constant-time surfaces cannot be regarded as pure gauge.
In this regard, Hořava gravity is like a partial gauge-fixing
of GR in which the global time-reparametrization freedom
is left unfixed.
Preservation of the primary constraints in time leads to

secondary constraints

C ¼ �H=�N ¼ 0; Ci ¼ �H=�Ni ¼ 0; (15)

where
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C ¼ H t � 1

N
riV

i; (16)

Ci ¼ H i; (17)

and we have defined the vector density

ViðxÞ ¼ �

�aiðxÞ
Z ffiffiffi

g
p

NV: (18)

The vector constraintCi is the same as in GR, but the scalar
constraint C is modified. Note that the constraint C is
invariant under a constant rescaling of N. The source of
this rescaling freedom is the reparametrization symmetry
(1), under which the lapse transforms as N ! N=f0ðtÞ.

In the IR limit,

Vi ¼ �2�
ffiffiffi
g

p riN; (19)

and the constraint C ¼ 0 becomes

1

g

�
pijpijþ �

1�3�
p2

�
��R��

ðrNÞ2
N2

þ2�
r2N

N
¼0:

(20)

There are different strategies for solving the scalar con-
straint. For example, one could solve for the conformal
factor of the metric while keeping the other degrees of
freedom fixed as is often done in GR. In Hořava gravity
there is the scalar degree of freedom N, and it is natural to
view C as an equation for N [3,4]. Note, however, that
Eq. (20) can determine N at most up to a constant
rescaling.

The constraint equation in the IR limit can be linearized
by the change of variables [10]N ¼ n2, resulting in the
equation

Ln ¼ 0; (21)

where L is the linear differential operator

L � �4�r2 � 1

g

�
pijpij þ �

1� 3�
p2

�
þ �R: (22)

Such an equation admits a solution if and only if the
spectrum of the Schrödinger-like operator L contains
zero. Moreover, if the foliation by constant t surfaces is
to be smooth the lapse must be positive everywhere, which
requires that nðxÞ is positive for all x. A solution with
positive n exists if and only if zero is the least eigenvalue
of L: this is the familiar statement that the Schrödinger
equation admits a unique eigenstate with no nodes, and this
state is a ground state [11]. Thus Eq. (21) contains a
condition on the metric gij and its conjugate momentum

pij. If this condition is met the constraint has a unique (up
to rescaling) positive solution for n, and hence the lapse is
determined up to a constant scaling.

A. Propagation of constraints

The constraint equations C ¼ 0 and Ci ¼ 0must hold at
each time. One way to satisfy this requirement is to solve
these two equations as independent constraints at each
time. For example, one could imagine solving the con-
straint C for N as a function of the metric and its conjugate
momentum, up to a time-dependent prefactor. If this could
be done, the constraint would hold for all times and there
would be no need to add an independent condition to
ensure its preservation with time. The time evolution of
N is governed by the Lagrange multiplier v, which is
entirely free to begin with, so can always be chosen so as
to produce the required time evolution of N. (The situation
would be quite different however if V had no N depen-
dence. Then the constraint would impose a relation be-
tween gij and p

ij alone that is not generally consistent with

their evolution equations, except in the GR case.)
Rather than solving the constraint at all times, one can

instead solve it at one time, and then choose the Lagrange
multiplier such that the constraint is preserved. We now
proceed to analyze the preservation of the constraints in
this way. This approach implements the general formalism
for constrained Hamiltonian systems discussed in
Ref. [12], and allows one to identify the first-class con-
straints without any guesswork.

1. Propagation of diffeomorphism constraints

Let us consider first the diffeomorphism constraint Ci.
Since it generates spatial diffeomorphisms, and the
Hamiltonian is a spatial scalar (a number, not a field),
one might think that the Poisson bracket fCi;Hg would
vanish, implying that Ci is constant and therefore the
constraint Ci ¼ 0 is preserved in time. There is a catch
in this reasoning however, since Ci only generates diffeo-
morphisms of gij and pij, whereas the Hamiltonian also

depends on N andNi, so in fact fCi;Hg � 0. The impact of
the Ni dependence is transparent, since Ni only enters H
linearly in the combination NiCi, and the Poisson bracket
algebra of diffeomorphism generators closes,

fCiðxÞ; CjðyÞg ¼ CiðyÞ�;jðx; yÞ þ CjðxÞ�;iðx; yÞ: (23)

This Ni dependence therefore produces a contribution to
the time derivative of CiðxÞ that is proportional to the
constraint itself, which vanishes when the constraint is
satisfied.
The impact of the N dependence is more subtle.

However, a simple way to see that it does not spoil the
conservation of the diffeomorphism constraint is to modify
the diffeomorphism constraint to include the term N;ipN

that generates diffeomorphisms of N (and pN), which
vanishes when the primary constraints (7) are satisfied.3

3Such a modified constraint was considered in Ref. [4] but not
explicitly identified as a generator of diffeomorphisms.
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Similarly one could add the term that generates diffeo-
morphisms of Ni. The resulting extended diffeomorphism

constraint ~Ci is defined such that

Z
�i ~Ci ¼

Z
pNL�N þ piL�N

i þ pijL�gij

¼
Z

�i½ðriNÞpN þL ~Npi � 2gikrjp
jk�; (24)

where L� is the Lie derivative. This extended constraint

generates diffeomorphisms of all the variables, so it ac-
tually does have a vanishing bracket with the Hamiltonian.
Since the secondary constraints (15) already imply that the
primary constraints (7) are preserved in time, the time

independence of ~Ci also implies the preservation of the
secondary constraint Ci ¼ 0.

2. Propagation of scalar constraint

Next we turn to the issue of propagation in time of
the scalar secondary constraint C ¼ 0. First we recall
how it works in GR, then we consider the case of non-
projectable Hořava gravity without the ai dependence in V,
and finally we include the effects of this dependence.
In GR, the potential V ¼ ��R is independent of N, so
that C ¼ H t. Moreover, these constraints are first class;
i.e., their Poisson brackets with each other are combina-
tions of the constraints themselves. This is obvious for the
Poisson brackets with Ci, since Ci just generates diffeo-
morphisms. The only other bracket is [13]

fCðxÞ; CðyÞg ¼ ðgijðxÞCiðxÞ þ gijðyÞCiðyÞÞ�;jðx; yÞ; (25)

which closes on the Ci constraint (for any value of �). Thus
the time derivative of C is a combination of the constraints;
hence the constraints are preserved in time.

In Hořava gravity, let us consider first the case where
VðgijÞ is independent of N. Then, when � � 1 and/or

V � ��R, the bracket of two C’s does not close on a
constraint, so the constraints are not first class. Pre-
servation of C then imposes a further tertiary constraint
that depends on gij, p

ij, and N. This case was analyzed in

Ref. [14] (see also Ref. [15]), where it was shown that for
generic gij and pij, the only solution for N is N ¼ 0. This

is unacceptable since the kinetic term of the action (5) is
proportional to 1=N and the Hamiltonian generates no
evolution, so we will assume N � 0 everywhere. When
V ¼ ��R, the tertiary constraint then holds if and only if
�=

ffiffiffi
g

p
is constant, and the theory is equivalent to GR in

constant mean curvature gauge (provided such a gauge is
accessible) [16]. The case where V is independent of N has
also been considered in the presence of R2-type terms both
in the linearized [17] and nonlinear [18] settings, where it
was found that the structure of the constraint algebra as
well as the number of propagating degrees of freedom
depend on which R2 terms are included. In what follows

we will consider the generic case where V depends on N
and � � 0.
In the generic case, N and its spatial derivative occur in

the ai dependence of Vðgij; aiÞ, so that the constraint C

does not commute with pN; i.e., pN and C are second class.
A possible way to proceed is to simply solve the constraint
CðxÞ ¼ 0 for one of the dynamical variables, such as N as
suggested in Ref. [4]. The subtlety in doing this reduction
is that N can only be so determined up to an arbitrary time-
dependent, spatially constant multiple. This is related to
the fact that among the constraints pNðxÞ and CðxÞ are two
linear combinations that are first class. These first-class
combinations should not be set to zero strongly, since the
symplectic form pulled back to such a subspace would be
degenerate, and therefore the Poisson brackets would be
ill-defined [12]. Thus to carry out the reduction we identify
the full set of first-class constraints.

B. First-class constraints and Hamiltonian

For convenience in the analysis, we write the Lagrange
multiplier v in the form

v ¼ Nwþ NiriN; (26)

where the functionw is initially arbitrary. In terms of w the
Hamiltonian density (10) takes the form

H ¼ NH t þ Ni ~Ci þ vipi þ NwpN (27)

up to a total derivative. The condition that C be preserved
in time is then

fCðxÞ; Hg ¼
Z

NðfCðxÞ;H tg þ wfCðxÞ; pNgÞ ¼ 0; (28)

where we have dropped the term proportional to f ~Ci; Cg,
which vanishes when C ¼ 0. By solving for w, we ensure
that the constraint C ¼ 0 is preserved in time, assuming it
has been solved at some initial time. Thus rather than
solving the nonlinear equation C ¼ 0 for N separately at
each instant of time, one can instead solve a linear equation
for w. The presence of the free function w can solve the
overconstraining problem, provided the bracket (28) can be
set to zero by solving for w.
The Lagrange multiplierw is not completely determined

by preservation of C, instead the Eq. (28) determines w up
to a solution of the homogeneous equation

Z
NwfCðxÞ; pNg ¼ 0: (29)

Each such solution is a gauge freedom in the evolution and
corresponds to a primary first-class constraint,

R
wNpN . In

this case wðxÞ ¼ � is such a solution, where � is constant.
The existence of this solution follows from the fact that the
constraint

Z
NpN (30)
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generates constant rescalings ofN, andC is invariant under
such a rescaling.

Equation (28) is a linear partial differential equation for
w of up to sixth order. In the IR limit it reduces to a second-
order equation,

@iðN ffiffiffi
g

p
gij@jwÞ ¼ � N

2�

�
C;

Z
NH t

�
: (31)

This equation is elliptic, and in fact the left-hand side can

be written as
ffiffiffi
~g

p ~r2w where ~r is the covariant derivative
compatible with the metric ~gij ¼ N2gij. It follows that the

solution exists for w provided the integral of the right-hand
side is zero, �Z

NC;
Z

NH t

�
¼ 0; (32)

which follows immediately from the definition of C (16).
This solution is unique up to the addition of the homoge-
neous solution wðxÞ ¼ �.

Beyond the IR limit, the equation determining w is of
higher order and might admit nonconstant homogeneous
solutions. However, any theory admitting additional solu-
tions to Eq. (29) will have additional first-class constraints,
which may be regarded as generators of gauge transforma-
tions [12]. For a generic choice of parameters, we expect
there will be no additional gauge symmetry, so that the
general solution of (28) has the form

w ¼ �w½gij; pij; N� þ �; (33)

where � is constant and �w is a particular solution of
Eq. (28).

The solution for w can be substituted back into the
Hamiltonian to obtain a Hamiltonian that preserves the
constraints in time,

H ¼
Z

NðH t þ �wpNÞ þ �
Z

NpN þ
Z
ðNi ~Ci þ vipiÞ:

(34)

By varying the Hamiltonian by a constant rescaling of N,
we can see that the first two terms in Eq. (34) are the
Poisson brackets of the Hamiltonian with the first-class
constraint

R
NpN ,�
H;

Z
NpN;

�
¼

Z
NðH t þ �wpNÞ: (35)

The Hamiltonian H is therefore a sum of first-class con-
straints generating the two types of foliation-preserving
diffeomorphisms: global time reparametrizations, and spa-
tial diffeomorphisms.

Observables in Hořava gravity must be gauge-invariant
functions; that is, they must commute with all first-class
constraints. Since the Hamiltonian is a sum of first-class
constraints, observables must also have zero Poisson brac-
ket with the Hamiltonian and hence be conserved in
time. For example, the volume of the spatial slice � is

diffeomorphism-invariant, but is not time-independent
since it fails to commute with the constraint

R
NC:

�Z
NC;

Z ffiffiffi
g

p �
¼ 1

1� 3�

Z
Np: (36)

Hence the volume is not an observable in Hořava gra-
vity, contrary to what was claimed in Ref. [4]. This reflects
the fact that it is meaningless to label an observable by
the ‘‘t’’ coordinate in a theory that has t-reparametrization
symmetry.

IV. REDUCED PHASE SPACE

We have expressed Hořava gravity as a Hamiltonian
system with second-class constraints. In the presence of
second-class constraints it is possible to reduce the phase
space by solving the constraints for one or more of the
dynamical variables as a function of the others. The
Hamiltonian and symplectic form are then restricted to
the reduced phase space, and the restriction of the sym-
plectic form defines a nondegenerate Poisson bracket on
the reduced phase space known as the ‘‘Dirac bracket’’
[12,19].
In Refs. [3,4], it was proposed that the constraint C ¼ 0

(15) be solved for N. There are two related issues with this
strategy. First, N can be determined only up to a time-
dependent rescaling. Second, among the constraints are
two first-class constraints; setting these to zero strongly
would result in a degenerate symplectic form and therefore
an undefined Dirac bracket.
To reduce the system, we need to impose as many linear

combinations of the constraints as possible without setting
the Hamiltonian to zero. In order to have a set of con-
straints that determinesN completely, we choose the gauge
in which the average lapse is one. Once this new cons-
traint is introduced the only first-class constraint that
remains (apart from the diffeomorphism constraints) is
the Hamiltonian. We therefore impose the following con-
straints strongly,

Z
N

ffiffiffi
g

p ¼
Z ffiffiffi

g
p

; pN ¼ 0; C ¼ C0

ffiffiffi
g

p
; (37)

and eliminate N from the phase space. Here C0 is a
function of time whose presence is necessary to ensure
that the Hamiltonian is not set to zero strongly. C0 can
be expressed in terms of N by integrating the identity
C ¼ C0

ffiffiffi
g

p
, or alternatively, since N is completely deter-

mined by the constraints, C0 can be written in terms of the
metric variables gij, p

ij.

The reduced phase space has coordinates gij, p
ij, and its

dynamics are expressed in terms of the Hamiltonian and
the Dirac brackets [12]. Although generically the Dirac
brackets are different from the Poisson brackets, in the
case where the second-class constraints can be written
in the form N ¼ f½gij; pij�, pN ¼ 0, the Dirac and

Poisson brackets between gij and pij coincide. Since the
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constraints (37) do not restrict the values of gij and pij,

they are of this special form and the Dirac bracket f�; �g� on
the reduced phase space is the same as the canonical
Poisson bracket,

fgijðxÞ; pklðyÞg� ¼ fgijðxÞ; pklðyÞg ¼ �ðk
i �

lÞ
j �ðx; yÞ: (38)

The Hamiltonian on the reduced phase space is found by
substituting the second-class constraints (37) into the
Hamiltonian (34):

H ¼ VC0 þ
Z
ðNi ~Ci þ vipiÞ; (39)

whereV is the volume of the spatial slice �. Note that the
terms involving �w are absent, since their only role was to
preserve the constraint C ¼ 0, which always holds on the
reduced phase space. The equations of motion are then

_g ij ¼ V
�C0

�pij þL ~Ngij; (40)

_p ij ¼ �V
�C0

�gij
þL ~Np

ij; (41)

where we have used the fact that C0 ¼ 0 on shell.
In the IR limit, �C0 can be expressed as the smallest

eigenvalue of a linear operator,

Ln ¼ �C0n; (42)

where L is given by Eq. (22), and n ¼ ffiffiffiffi
N

p
. The time

evolution then depends on first-order changes of the eigen-
value C0 with respect to g, and p. These can be found by
first-order perturbation theory, e.g.,

V
�C0

�gij
¼ � �

�gij

Z ffiffiffi
g

p
nLn (43)

and similarly for p. This formula can then be rewritten in
terms of N:

V
�C0

�pij ¼
2Nffiffiffi
g

p
�
pij þ �

1� 3�
pgij

�
; (44)

V
�C0

�gij
¼ ffiffiffi

g
p

Nð�akak þ �RÞgij

þ Nffiffiffi
g

p
�
pklpkl þ �

1� 3�
p2

�
gij þ �

ffiffiffi
g

p
Naiaj

þ 2Nffiffiffi
g

p
�
pikpk

j þ �

1� 3�
ppij

�

þ �
ffiffiffi
g

p ðrirj � Rij � gijr2ÞN: (45)

These equations are equivalent to those obtained by vary-
ing the Lagrangian (5).

V. ASYMPTOTICALLY FLAT CASE

In the preceding discussion, it was assumed that the
spatial manifold � is compact with no boundary. When
there is a boundary (or in the case of asymptotic flatness, an
asymptotic region with prescribed falloff conditions),
variation of the Hamiltonian will result in a total derivative
that can be written as a boundary term. To have a well-
defined variational principle, additional terms must be
added to the Hamiltonian to make this boundary term
vanish. The appropriate boundary terms in the asymptoti-
cally flat case are determined by the falloff conditions on
the fields,

gij ¼ �ij þOðr�1Þ; Kij ¼ Oðr�2Þ; R ¼ Oðr�3Þ;
(46)

where r is the radial coordinate of a coordinate system in
which the metric asymptotically approaches the Euclidean
metric �ij. In order for the Hamiltonian to define an asym-

ptotic time translation, we must have Ni ! 0 as r ! 1,
and we choose a falloff on N such that

N ¼ 1þOðr�1Þ; riN ¼ Oðr�2Þ (47)

as r ! 1. The contributions to the boundary term H@ in
the Hamiltonian then come only from the potential V. For
any term in V that is fourth order or higher in derivatives,
the corresponding boundary term is of at least third order in
derivatives and hence vanishes subject to (46). The remain-
ing terms in V, which are of second order in derivatives, are
R and a2. The a2 term does not contribute a boundary term
because ai�N ¼ Oðr�3Þ, and the variation of R with re-
spect to gij can be canceled by adding to the Hamiltonian

the boundary term

H@ ¼ �
I
ð@igjk � @jgikÞ�iknj: (48)

Here
H ¼ H

@� d2�
ffiffiffi
h

p
where � are coordinates on the

sphere at infinity @�, h is the induced metric on @�, and
ni is the outward unit normal. This term is nothing but the
usual boundary term for general relativity, the ADM mass,
with a factor of � coming from the action (5). We have
therefore obtained a Hamiltonian that leads to a consistent
variational principle in the asymptotically flat setting,
given by

H ¼
Z

H þH@; (49)

where the first term is given by (10)–(13).
The primary and secondary constraints (7) and (15)

remain the same in the asymptotically flat setting. The
difference comes when solving for the undetermined part
of the Lagrange multiplier w to ensure the propagation of
the constraint C (29). In the asymptotically flat setting
there is no global first-class constraint

R
NpN , when the

global time-reparametrization symmetry is broken by the
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asymptotic value of N. Formally, the first-class constraint
is absent because in order for the flow generated byR
wNpN to preserve the boundary condition (47), we must

have wðxÞ ! 0 as x ! 1. Therefore the homogeneous
solution w ¼ 1 to Eq. (29) is not admissible and the con-
straints pN and C are purely second-class.

The Hamiltonian can be expressed as a sum of bulk
constraints (13) and a boundary term by multiplying the
definition of C (16) by N and integrating, yielding

Z
NH t ¼

Z
NCþ

I
niV

i: (50)

Terms in V with four or more derivatives contribute terms
in Vi with three or more derivatives, and these vanish
subject to the falloff conditions (46) so that we can replace
Vi with its IR limit, Eq. (19). Combining these results with
(27) we find that the Hamiltonian is

H ¼
Z
ðNCþ �wNpN þ Ni ~Ci þ vipiÞ þ E; (51)

which is a sum of local constraints, plus a boundary term E,
the total energy. The total energy E is the on-shell value of
the Hamiltonian, which is the sum of two boundary terms

E ¼ �
I
ð@igjk � @jgikÞ�iknj � 2�

I
ni@iN: (52)

We emphasize that this is the total energy for the full
Hořava gravity, not just in the IR limit.4

In the limit of large r, the metric can be treated as a
perturbation of flat spacetime. In Newtonian gauge,

N ¼ 1þ c ; gij ¼ ð1� 2�Þ�ij; (53)

the energy takes the form

E ¼
I

ni@ið4��� 2�c Þ: (54)

Note that the ADM energy in GR depends only on �,
whereas in Hořava gravity there is also dependence on c .

In the static spherically symmetric solutions, � ¼ c
and the asymptotic form of the solution to Oð1=rÞ is [3]

N ¼ 1� r0
2r

; gij ¼
�
1þ r0

r

�
�ij; (55)

where r0 is a parameter with dimensions of length.
Returning to units in which 16�GH � 1, the energy of
this solution is

E ¼ r0
2G

�
�� 1

2
�

�
: (56)

The gravitational constant that appears in the Newtonian
limit is not GH but GN � GH=ð�� 1

2�Þ [3,6]. Thus, if we
identify r0 ¼ 2GNM in the weak field limit then E ¼ M.

Horava gravity in the IR limit can be thought of as the
hypersurface-orthogonal restriction of Einstein-aether the-
ory, where the restriction is at the level of the Lagrangian
[6,8,21]. Because of this close relation, it is not surprising
that the total energy expression (54) is identical to the
expression for total energy in Einstein-aether theory found
in Ref. [22], whenri lnN is identified with the acceleration
of the aether, and when the parameters of Hořava gravity
are identified with the parameters of Einstein-aether theory
as in Ref. [6].
The reduction of the phase spacewith asymptotically flat

boundary conditions proceeds in much the same way as in
the compact case. The difference is that the constraints C
are all second class, so the equation C ¼ 0 can be solved
strongly as a differential equation for N with the boundary
condition N ! 1 at spatial infinity. The reduced phase
space has coordinates gij, p

ij with the canonical Poisson

brackets (38). The Hamiltonian on the reduced phase
space is

H ¼
Z

NCþ
Z
ðNi ~Ci þ vipiÞ þ E; (57)

where N is treated as a functional of gij and p
ij defined by

the constraint.

VI. CONCLUSION

We have derived the Hamiltonian formulation of Hořava
gravity for both closed and asymptotically flat spatial
manifolds, extending the analysis initiated in Ref. [4]. In
contrast with GR, the scalar constraints are not generators
of surface deformations. These constraints are of second
class, except for a single linear combination that is first
class, which generates transformations between leaves of
the preferred foliation. The Hamiltonian is a sum of con-
straints that generate three-dimensional diffeomorphisms
and global reparametrizations of time.
We have also considered a phase space reduction of

Hořava gravity in which the second-class constraints are
solved formally for the lapse. This is complicated by the
fact that the constraints have a global first-class part that
cannot be set to zero strongly. The second-class constraints
take the form of a nonlinear differential equation for N, but

in the IR limit they are linear in
ffiffiffiffi
N

p
. In the IR limit, the

Hamiltonian is expressible in terms of the least eigenvalue
of a certain differential operator, and is constrained to
vanish.
In the asymptotically flat setting, the time-

reparametrization symmetry is fixed by the constant value
of the lapse at infinity, so the associated global constraint is
absent. Instead the Hamiltonian acquires additional bound-
ary terms that contribute to the total energy. The energy
depends on both Newtonian potentials� and c , not just on
� as in GR, in exact agreement with the result from
Einstein-aether theory. For the static spherically symmetric
solutions, � ¼ c and the energy takes the same form as

4An expression for the total energy in Horava gravity was
recently found in Ref. [20] using the Noether charge formalism.
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GR, with a rescaled Newton constant. We do not know
whether there are solutions in which� � c , for which the
energy would not be just a rescaling of the GR energy.
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