
Energy equipartition and minimal radius in entropic gravity

Hanno Sahlmann*

Asia Pacific Center for Theoretical Physics, Pohang, South Korea, and Physics Department,
Pohang University of Science and Technology, Pohang, South Korea

(Received 15 March 2011; published 3 November 2011)

In this article, we investigate the assumption of equipartition of energy in arguments for the entropic

nature of gravity. It has already been pointed out by other authors that equipartition is not valid for low

temperatures. Here we additionally point out that it is similarly not valid for systems with bounded energy.

Many explanations for black hole entropy suggest that the microscopic systems responsible have a finite

dimensional state space, and thus finite maximum energy. Assuming this to be the case leads to drastic

corrections to Newton’s law for high gravitational fields, and, in particular, to a singularity in acceleration

at finite radius away from a point mass. This is suggestive of the physics at the Schwarzschild radius. We

show, however, that the location of the singularity scales differently.

DOI: 10.1103/PhysRevD.84.104010 PACS numbers: 04.70.Dy, 04.20.Cv, 04.60.�m

I. INTRODUCTION

In the interesting recent article [1], Verlinde argued that
the gravitational force is an entropic force, and thus emer-
gent from some more fundamental theory. This is a con-
tinuation of the quest to explain gravitation as the
thermodynamic limit of some underlying microphysics,
begun in earnest in the seminal work [2] (see also [3]).
While there is an ever-growing literature on extensions
and applications of these ideas, there are also serious
concerns regarding the theoretical [4] and experimental
[5–8] viability of Verlinde’s proposal. This debate is far
from settled, and entropic explanations of the gravitational
interaction remain controversial.

Verlinde assumes that gravity admits a holographic de-
scription, in terms of systems that exist on equipotential
surfaces and represent ‘‘bits of information.’’ Each such
system is assumed to contribute an area l2at, and thus

Nat ¼ A

l2at
(1)

is the integer number of systems that make up an equipo-
tential surface of area A. We will call these systems ‘‘atoms
of area.’’ In [1], lat is equal to the Planck length lP, but the
general argument can support an independent length scale
[9], or even several atom species with different sizes [10].

A key point in the argument is the use of the energy
equipartition law

Eat ¼ 1

2
kBT: (2)

Here, Eat is the average energy of a single atom of area, and
T the temperature corresponding to the gravitational ac-
celeration a of a test mass via the Unruh effect,

T ¼ 1

2�

ℏ
ckB

a: (3)

We also refer the reader to the interesting independent
discussion of this law in the context of gravitational phys-
ics in [11]. It has been pointed out in the literature [12,13]
that this formula is usually valid only in the high tempera-
ture regime, with corrections due to the quantization of
energy expected at low temperatures. This is interesting
because the temperatures associated to normal gravita-
tional accelerations are extremely low. Here, we would
like to make a complementary point: There are also cor-
rections if we consider atoms with energy bounded from
above. In this case the average energy carried by an indi-
vidual atom starts to saturate when kBT becomes compa-
rable to the highest energy level of the atom, and
corrections to (2) ensue, see, for example, Fig. 1.
One reason for the assumption of finite energy comes

from explanations for black hole entropy. In many of them,
the systems that account for the entropy are finite dimen-
sional, at least as long as the area of the black hole is held
fixed. It is natural to identify black hole entropy with the
entropy from the entropic gravity scenario for the special
case that the equipotential surface is a black hole horizon.
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FIG. 1 (color online). Energy versus temperature for the sys-
tem described in Sec. III (in units of the energy spacing E0, with
N ¼ 10 energy levels).*sahlmann@apctp.org
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This suggests that the atoms of area have a finite dimen-
sional state space in general, and hence bounded energy.

If the atoms indeed have bounded energy, there is
a maximum total energy that a system of Nat atoms can
carry. We will see that in the gravitational context, this
translates to a minimal radius Rmin—for a given massM—
above which the gravitational acceleration can be calcu-
lated. At the minimal radius, the gravitational acceleration
diverges. This is strongly reminiscent of the physical situ-
ation at the Schwarzschild radius RS. A straightforward
identification of Rmin with RS is however prohibited by the
scaling of the former: We find

Rmin ¼
ffiffiffiffiffiffiffi

�

2�

r

ffiffiffiffiffiffiffiffiffiffiffiffi

RSRat

p

(4)

where Rat ¼ cℏ=Emax is the (reduced) Compton wave-
length of an atom at maximum energy, and� is a numerical
constant that depends on the detailed physics of the atoms.
Moreover, there is an argument that shows that Rmin must
always stay below RS; see the note added at the end of this
article. Thus the minimal radius is only comparable to the
Schwarzschild radius, ifRat andRS are comparable, in other
wordsEmax � EPðmP=MÞ. This is, for example, the case for
M of the order Planck mass, and Planck energy atoms. For
larger masses, and the same Emax, Rmin stays far below the
Schwarzschild radius, and Verlinde’s argument reproduces
Newton’s law beyondRS. We should stress that this result is
obtained by working with the nonrelativistic version of
Verlinde’s argument. Since the corrections due to finite
energy are relevant for strong field, it would be interesting,
and perhaps more appropriate, to study their effects in the
derivation of general relativity also given in [1].

In the following section, we discuss the physical impli-
cations of atoms with maximal energy, without referring to
the details of the microscopic physics. In Sec. III, we
discuss a simple explicit model of the atoms. A discussion
of the results can be found in Sec. IV.

II. MINIMAL RADIUS FROM
MAXIMUM ENERGY

Let us first recapitulate Verlinde’s derivation of
Newton’s law, in a suitably generalized form. For this,
we assume an unspecified relation T ¼ TðEatÞ between
the temperature and the average energy of an atom of area.

We consider a spherical equipotential surface with area
A ¼ 4�R2 around a point mass M. Then the gravitational
acceleration of a test mass at distance R is calculated as

a ¼ 2�
ckB
ℏ

TðEatÞ (5)

¼ 2�
ckB
ℏ

TðMc2=NatÞ (6)

¼ 2�
ckB
ℏ

T

�

1

4�
c2l2at

M

R2

�

: (7)

For the usual energy equipartition E ¼ �kBT with � a
numerical constant, we get

a ¼ 1

2�

c3l2at
ℏ

M

R2
; (8)

and are led to identify

l2at ¼ 2�l2P: (9)

This is essentially the argument by Verlinde, with � taking
into account different prefactors in the equipartition law
(see [14,15] for a discussion and possible consequences of
such a prefactor).
When considering systems with maximum energy, the

relation between average energy Eat and temperature is
very different. There is a highest energy that can be
attained, Eat � Emax, and so, after some approximately
linear growth, the average energy per atom saturates (see
Fig. 1). This has important consequences: For a derivation
of Newton’s law as above, M and R must be independent,
but this is no longer true in general. Since

E

Nat

¼ Eat � Emax (10)

and Nat is related to A via (1), and A ¼ 4�R2, we find a
minimal value

Rmin ¼ 1
ffiffiffiffiffiffiffi

4�
p

ffiffiffiffiffiffiffiffiffiffi

E

Emax

s

lat ¼
ffiffiffiffiffiffiffi

�

2�

r

ffiffiffiffiffiffiffiffiffiffiffiffi

RSRat

p

(11)

for R. Here Rat ¼ cℏ=Emax is the (reduced) Compton
wavelength of an atom at maximum energy.

III. A SIMPLE MODEL

To illustrate the statements of the preceding section, let
us consider a very simple model for the atoms of area: We
assume them to have N nondegenerate equidistant energy
levels with energy spacing E0. The Hamiltonian is thus
given by

H ¼ E0

X

N

n¼1

njnihnj (12)

with the energy eigenstates jni. We consider the system
immersed in a heat bath of inverse temperature � ¼
1=ðkBTÞ. With �� ¼ expð��HÞ and Zð�Þ ¼ tr��, one

finds

Eat :¼ hHi� (13)

¼ � d

d�
lnZð�Þ (14)

¼ E0ðe�E0ðNþ1Þ � ðN þ 1Þe�E0 þ NÞ
ðe�E0 � 1Þðe�E0N � 1Þ : (15)

For large temperatures, this has a well defined limit
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Emax ¼ lim
T!1EatðTÞ ¼ 1

2
ðN þ 1ÞE0: (16)

In Fig. 1 we have plotted EatðTÞ for the case N ¼ 10.
A linear regime is visible, with corrections for low T due
to nonvanishing E0, and saturation for large T.

To separate off the corrections at low temperature, which
we will not further discuss here, and to bring out the linear
regime, it is useful to take the limit N ! 1, E0 ! 0 with
E0
max :¼ NE0 fixed. In this limit

EatðTÞ ¼ kBT � E0
max

expðE0
max=kBTÞ � 1

: (17)

This is a very good approximation to the actual high energy
behavior (up to a constant shift in energy), as can, for
example, be seen from Fig. 2. The first term is the linear
part, the second term a correction that becomes dominant
at large T and leads to a maximum average energy per atom
of Emax ¼ E0

max=2. Thus there is indeed a linear regime as
needed for the derivation of Newton’s law, providedEmax is
large enough. There will be corrections for high T, i.e., for
small radius. Let us also note the scaling behavior of the
energy-temperature relation: Eat=Emax is solely a function
of the ratio T=Emax. Thus we also have

T � TðEat; EmaxÞ ¼ EmaxfðEat=EmaxÞ: (18)

Neither (15), nor (17), can be inverted (below Emax) in
terms of elementary functions, so we can not display these
corrections explicitly, but we will give two illustrative
examples. First we consider gravitational acceleration
at the surface of the Earth. The associated Unruh tempera-
ture is

T ¼ 1

2�

ℏ
ckB

g � 4:0� 10�20 K; (19)

corresponding to an energy

kBT � 5:5� 10�43 J � 3:4� 10�24 eV: (20)

Now we assume Emax ’ 1 eV. Then relative corrections
to Newton’s law at the surface of the Earth would be
extremely tiny, of the order of expð�1024Þ, and thus
completely unmeasurable. Also, Rat ’ 2� 10�7 m is
much smaller than RS ’ 9� 10�3 m, so corrections to
Newton’s law would still be imperceptible near a black
hole of earth mass. If on the other hand Emax ’ 10�5 eV,
the relative corrections to Newton’s law at the surface
of the Earth would still be extremely tiny, of the order of
expð�1019Þ, but then Rat ’ RS, so the gravitational accel-
eration would diverge at the Schwarzschild radius. Note
however, that there are reasons to believe that Emax has to
be very high, see the note added at the end of this article.
We have plotted the gravitational acceleration obtained in
this way, together with the prediction from general relativ-
ity for a static observer,

a ¼ 1

1� 2MG
c2R

MG

R2
; (21)

and from Newton’s law in Fig. 3. One sees how the entropic
gravity curve first tracks Newton’s law, then bends to join
general relativity on the horizon. We remind the reader that
Rat ’ RS in this example is due to the fine-tuning of the
parameters. With Emax remaining fixed, the gravitational
acceleration would diverge—for different masses—at radii
larger or smaller than the Schwarzschild radius.

IV. CONCLUSIONS

In the present work we have studied the effects that the
assumption of atoms of area of bounded energy has for the
derivation of Newton’s law in Verlinde’s entropic gravity.
Motivating this assumption is the finiteness of black hole
entropy: It is natural to identify this entropy with the one
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FIG. 2 (color online). Energy versus temperature in units of
some fixed energy E, for E0 ¼ E, N ¼ 10 (upper solid curve)
E0 ¼ E=5, N ¼ 50 (dashed curve) E0 ¼ E=10, N ¼ 100 (dot-
dashed curve) and for (17), with E0

max ¼ 10E0.
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FIG. 3 (color online). Acceleration versus radius in SI units,
withM ¼ MEarth and Emax such that Rat ¼ RS: General relativity
(solid curve), nonrelativistic entropic gravity (dashed curve),
Newton’s law (dot-dashed curve).
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from the entropic gravity scenario for the special case
that the equipotential surface is a black hole horizon.
This suggests that the atoms of area have a finite di-
mensional state space in general, and hence bounded
energy.

We saw that the assumption of bounded energy led,
intriguingly, to the divergence of the acceleration at some
nonzero radius Rmin. We could, however, not identify this
phenomenon straightforwardly with the divergence of the
acceleration of a static observer at the Schwarzschild ra-
dius, since we found that Rmin scales in a way that involves
both, the massM of the body, and the energy scale Emax of
the microscopic physics. Identification of RS with Rmin

could only be accomplished if the maximum energy Emax

of the atoms that make up the holographic screen would
depend on the mass of the body, in a specific way. This
however, is not very plausible given the physical picture of
entropic gravity.

Implicit in the use of the equipartition law, and thus
also in our present considerations, is the assumption that
the degrees of freedom of the screen are immersed in a
heat bath of a certain temperature T, given by (3). It is not
clear which physical system constitutes this heat bath. It
stands to reason that it cannot just be the Unruh radiation
that an accelerated particle is immersed in, since space
itself is supposed to emerge from a course-graining of the
degrees of freedom [1]. Thus this point merits further
investigation.

What are the consequences of our results for entropic
gravity? First of all, it can be the case that the energy of the
atoms of the holographic screen is not finite. After all, only
entropy changes enter the derivation of Newton’s law; the
entropy itself may be infinite. In fact, entropy can still be
finite for an infinite-dimensional system, if taken in a
suitable state. If the atoms of area do have bounded energy,
our arguments show that Verlinde’s reasoning is certainly
viable, as long as the maximum energy is not too low.
Furthermore we see no physical reason to suggest that this
maximum energy has to be low. In fact, there are reasons to
believe that it has to be very high; see the note added at the
end of this article. If the maximum energy is not too high,
there could be interesting phenomenological consequences
for strong gravitational fields. It should however be said
that the entire picture of entropic gravity should be re-
garded with caution in the strong field regime, as new
physical effects may enter the stage.
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Note added:—We would like to add the following very

useful observation by one of the referees regarding the
energy scale Emax. This scale must certainly be high
enough for the screen to be able to hold the mass-energy
that appears to be behind the screen. The ratio of mass-
energy per screen area is highest for the horizon of a black
hole, and turns out to be inversely proportional to the
Schwarzschild radius in this case. A lower bound

Emax � cℏ
8�RS;min

(22)

can be given in terms of the Schwarzschild radius RS;min of

the smallest physically possible black hole. Even for con-
servative assumptions about RS;min, the resulting bound is

very high. Thus corrections for astrophysical black holes
seem to be completely negligible. Moreover, an upper
bound on the minimal radius from entropic gravity is
then given by

Rmin �
ffiffiffiffiffiffi

4�
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RSRS;min

p

: (23)

Rmin is thus always smaller than (or at least of the same
order of magnitude as) the Schwarzschild radius. Cor-
rections are only appreciable very close to extremely mi-
croscopic black holes. This argument assumes that the area
atoms have universal properties and there is no binding
energy between them. The former is a reasonable assump-
tion, and the latter was assumed already in Verlinde’s
derivation. The apparently very high Emax, together with
the observation that the dimensionality of the internal state
space of the atoms seems to have to be quite small [9],
seems to lead to a tension with Newton’s law for weak
fields, as a coarsely spaced energy spectrum would lead to
corrections in this regime. It may be interesting to further
study the implications.
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