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Correction to the Dirac field entropy of a Schwarzschild black hole by a
modified dispersion relation
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Taking the WKB approximation to solve the Dirac field equation in a Schwarzschild black hole
spacetime, we can get the classical momenta. Employing the classical momenta and state density equation
corrected by a modified dispersion relation, we will obtain the number of quantum states with energy less
than w. Then, it is used to calculate the statistical-mechanical entropy of the Dirac field. Solving the
integral for r exactly, we obtain the leading term of entropy that is proportional to the event horizon area,
and correction terms take the form of A™!, but the logarithmic correction term by this approach is not

given.
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L. INTRODUCTION

About three decades ago, Bekenstein and Hawking [1,2]
found that the black hole entropy is proportional to the
area of the event horizon by comparing black hole physics
with thermodynamics. This is one of the most profound
discoveries in modern physics. Entropy is a statistical-
mechanical concept, but the study of general relativity
shows that a black hole has no hair. So, the statistical origin
of black hole entropy becomes an important question in
theoretical physics. Progress has been made by 't Hooft
[3], whose brick wall model is extensively used to calculate
the entropy in a variety of black holes. In this model, the
Bekenstein-Hawking entropy is identified with the
statistical-mechanical entropy arising from a thermal bath
of quantum fields propagating outside the event horizon.
Subsequently, the brick wall model was applied to study a
variety of black hole entropies [4—13]. However, in order to
remove the ultraviolet divergence near the horizon, one
must introduce an artificial cutoff . There are other draw-
backs in the brick wall model such as the little mass
approximation, neglecting logarithm term, and taking the
infrared term L3 as a contribution of the long-distance
vacuum. Solving these problems, an improved brick wall
method has been introduced by taking the thin layer out-
side the event horizon of a black hole as the integral region
[14]. As a result, this model has solved these drawbacks
except for the artificial ultraviolet cutoff.
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The origin of ultraviolet divergence is that the number of
quantum states is divergent at the horizon. Recently, in order
to remove this divergence, people employ the idea that
minimal length would correct the state density. The minimal
length originates from the quantum effect of the gravitational
field in which the Feynman propagator displays an exponen-
tial ultraviolet cutoff of the form exp(—Ap?), where the
parameter A actually plays the role of a minimal length
[15]. Moreover, quantum gravity phenomenology has been
tackled with effective models based on generalized uncer-
tainty principles and/or modified dispersion relations [16,17]
containing a minimal length as a natural ultraviolet cutoff
[18]. At the quantum mechanical level, the essence of the
ultraviolet finiteness of the Feynman propagator can be
captured by a modified dispersion relation p = f(k), where
p and k are the momentum and the wave vector of the
particle, respectively. At the same time, the commutator
between the operators x; and p; is generalized to [x;, p;] =

igf‘_’ ; moreover, the usual momentum measure in 3 +
J

1-dimensional spacetime d° p is modified to
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where ‘(% = §; je“’? [15,19-21]. From this momentum mea-
J

sure, we can easily obtain the number of quantum states in a
volume element in phase cell space

A dxd®p
Qm)?3’

where p = p'p; is the square of momentum.

dn = e

2)
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Up to now, a series of papers have studied black hole
entropy by state density (2) [16,17,21]. All these works
obtained the entropy to the leading-order term that is
proportional to the horizon area without any artificial cut-
off. In this paper, we employ the corrected state density (2)
to study statistical entropy arising from the Dirac field in a
Schwarzschild black hole background. In calculating, we
attempt to calculate the integral for r exactly and introduce
a correction to the leading-order term.

II. ENTROPY OF THE DIRAC FIELD IN A
SCHWARZSCHILD BLACK HOLE

Taking the unit G = ¢ = 1, a Schwarzschild black hole
metric is given by

ds* = f(r)dt* — f~Y(r)dr* — r*(d6* + sin®0d¢?), (3)

where f(r) =1 —2M/r. Its horizon is located by r;, =
2M, and horizon area is A = 4r7.

In order to express the Dirac equation in the Newman-
Penrose formalism, we take covariant components of the
null tetrad vectors as

)
-
m, = \/i_(o 0, r, irsinf), v
i, = 75(0 0, 7, —irsing).
.
(st &y (14
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ot B (i
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These equations can be solved by the WKB approximation
with

Fy = o1/ p(i/ms (n0.6),
F‘2 = e*(iwt/h)e(i/h)slz(r,ﬁ,go)’ (9)
G, = o/ oi/Ms(r0.0)
G, = e—(iwt/h)e(i/h)szz(r,t‘),(p)’

where
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Then, we can find the nonzero spin coefficients

AT
M 5
cotf
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Y = - _4\/-2—][;
and the differential operators read as
1 9 ad
D = lﬂaﬂ = — J‘?»
2f ot 29r
1 9 d
NI I 23
5= mhg — — 1 90 i 9
" V2r 90 \L2rsing 9@’
S =mty = _Li_k i 9
w00

\/Er sinf @

The Dirac equation in a curved spacetime is given by [22]

(D +&— p)F, + (6 + 7 — a)F, = imG, /\2h,
(A+ p—y)F, + (8 + B—1)F, = imG,/2h,
(D+&—p)G, — (8 + 7 — @G, = imF,/\2h, @)
A+ a@—9G, + &+ B—7G, = imF,/\2h

where m is the mass of the particle. Substituting Egs. (5)
and (6) into this equation, we can obtain

c0t09)F2 sz1 _0,
rsm0 ago 2r
cotG)F1 lmG2 _0
rsmﬁ 6<p 2r )
_ cotd sz2
)G1 =0,
rsmH ago
cot0 lmFl
G = 0.
rsmﬂ ago 2r ) 2
I
5ij(r. 0, ) =510 (1,6, ¢) + (0, 0) (i, j=1,2),
(10)

Substituting this into Eq. (8) and equating the leading order
of 7 on both sides, we can obtain

Afi +Bify— Ay fo + By fy
Cigo+Dig—mfy, =0, Crg+Drgr—

mgy =0, —mg, =0,
mf; =0,

an
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where

fi=e

g1 = e(i/h)szl(r,ﬁ,go)’
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©
in which p;; = %(i,j =1,2,k=1,2,3) are classical
momenta. From the third and fourth identity of Eq. (11),
one can solve out f; =-L(Cygy + Dyg;) and f, =

-+ (C 182 T Dg)). Substltutlng this into the first and second
1dent1tles of Eq. (11), we have

(AICZ L BiDi m>g1 n <A1D2 n Blcl)g2 _0,

m m m m (13)
(Ale n B2C2>g1 n (AZCI 4 BaD2 m)g2 —o.

m m m m

Similarly, solving out g; =-L(A,f; + B f2) and g, =
L(Ayf, + Byfy) from the first and second identity of
Eq. (11), and substituting this into the third identity of

Eq. (11) we can obtain

A,Cy BD B,C, A,D,

(2 1 B 1_m)f2+( 26 )f1 (4
m m

m
From the third identity of Eq. (11), one can solve out g, =
e~ C G-81: substituting it and f; =1(C,g; + D,g») into
the first 1dent1ty of Eq. (11), the relatlon between g; and f,

can be found:
) <A1D2
—m|g;+ +
C

<A1C2 _AD\D,
m mC

Taking the derivative to r of Egs. (13)—(15), and using the
WKB approximation again, we can obtain

Bl>f2 =0. (15)

A C2 B,D, A1D2 B,C,
+—L—m)g p, + g2P2n,=0,
m m
A2D1 B2C2 AZC] BZDZ
giPart - —m)gypn, =0,
A D D2
————m|gi1pau,Tt By )f2p12, =0,
mCl
B D, B,C A
( 1 _m)fzpm < 2714 )f1P11r=0~
(16)

From Egs. (13)-(16), we can easily find the relation
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P22rs ( 1 7)

which shows that the radial momenta are equal for differ-
ent component wave functions. Taking the derivative to 6,
¢ of Eq. (13), and using the same method, we have the
analogous identity

Piir = P12r = P21r =

P16 = P12 = P21 = P226»

(18)

Plieg = P12¢ = P21¢ = P22¢-

Solving Eq. (13), we can find g; and g,. If we require that

the solution is nontrivial, it is necessary for the determinant
of the matrix of coefficients to become zero, that is,

MGy Blop ABBG

=0. (19

ADy y ByGy —m
m m

A6 ByDy
m m

Substituting Egs. (17) and (18) into Eq. (12), we have A; =

C,, A, =C,, By = —D,, B, = —D,;. Considering this
relation, Eq. (19) gives that
2 i g L 2
Pii = Pubui = —fprh, ﬁpne mpllw
2
_w 2
=——m". (20)
f

This is the square of classical momentum for the first
component wave function. There is a similar equation for
other component wave functions.

In order to simplify calculations, we let m = 0. Then,
the number of quantum states with energy less than w can
be given out by substituting Eqs. (17), (18), and (20) into
Eq. (2); it reads

g(w) = g1(@) + gp(w) + g1(w) + grn(w)

4 a2
:er ’\p”d”dedﬁodpl1rdplladl711¢

2 a0 )
L fayee

where the integral interval for r is [r), r, + &] because we
are only interested in the contribution from a thin layer at
the vicinity near the horizon whose proper thickness is the

minimal length \/g So, the minimal length parameters A
and ¢ satisfy the following relation due to Ref. [23]:

\/7 frﬁs L

where k = ﬁ is the surface gravity at the event horizon.

[’h+8 1 d \/2:
=~ - dr = :
mo A2k(r —rp) K

(22)

Because of this relation, & can be written as a function of A,
that is, e(A) = % In order to obtain a more exact correc-

tion term, we must require a more exact function relation-
ship between & and A. For this purpose, taking the
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derivative to A in both sides of \/_)‘ = f mte \/;dr, one can

obtain a differential equation

de(M)\2 e B
= ) - e =0 @y

[y + su)](

with an initial condition £(0) = 0. By the series method, its
solution is given by

) eA  e*A\? 1133 73e* A%
s(h) = A _
8r, 1927 ' 2304055 12902401]
887652
2R 4 0(A9), 24)
1161216007

Its leading term is just as the function coming from
Eq. (22), and other terms are corrections to higher orders
of A.

Now, we calculate the integral for r in Eq. (21). At first,

rewriting it as
~ra/f g ]
dl—) (25

2 2
+ +
fm éif‘““”drz‘_jw "2
2 7€
T f T f

we noticed that r = and the integral in the right side of

= 7
the above equation is reduced to

[ )
Tn f/

=ff-'<rh+s> riut V.
(= 1)

A 6 2 1
- rh(Aw2 T1—a (-a? 3(1-a)y
2\w? Aw? Aot v’
T6(1—a? 601 - a))e
— 1 (=1/6%0° + 222w — 6Aw? + 4)e A’
X Ei(Aw?(1 — a)), (26)

1—a

where Ei(x) is the exponential integral function defined
by Ei(x) = [* %~di(x <0) [24]. The notation a is
f~!(r, + &). Considering Eq. (24), a can be expressed by

a=f_1(”h+8)=1+ﬁ
&

=i+8_r%l_ el 5¢%)\2 B 71323
3 ed  60r  3024rf 3456007
7453424
_ + 0 -9
17418240073+ O
_ 2A +ﬂ erTT 562)127T2_71€3)\37T3
med 3 15A 18942 540043
745364\ 7
2T 4 0(AT). 27
680400A% (4=) @7
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Substituting Egs. (26) and (27) into Eq. (21), the number of
quantum states less than energy w can be found that would
contain an exponential integral function Ei(x). We will
deal with it properly later.

For the Dirac field, the free energy is

[~ glw)
j;) eBe + ldw
(28)

F(B) = % f dg(w)In(1 + e~Fv) =

Then, the entropy is given by

S = ,82
_ erhB [(/3_2_ 6 . 2

377'(@ + 1)2 A2 1—a (1—a)?
202872 Ax?B?

3(1 — a)3 l1—a 6(1 —a)?

2,404

_ Ax B )e—)txzﬁ’za _ (_1/6/\3X6B_6 + 2/\2)64,3_4
6(1 —a)

— 6AX2B 2+ 4)e MBEI(A2B2(1 — a))]dx,
(29)

where we have let x = Bw. It is not difficult to prove that

the limit of Y Ax?B8 %(a — 1) at e = 0 is

2x2B72. ( (rite dr 1
1 hW——1=0.
(e R

So, the exponential integral function can be expanded to
the series at z = 0 (z = Ax?B 2(a — 1)) [24],

Ei(Ax*B872(1 —a)) = y + In(Ax*B " %(a — 1))

3 ﬁww 2(1 - @)k

2
=Ei<__x )—i—kl zz—i-O(A 3,

Dear? A

(31)

where
exm A2 &1 X2 \k-1
kl e _( ) )
127 ];k'
17€20272 &1 eAx? x2 \k-1
ky = — + - — 32
? 360 ,;[k! 60( 23772) G2

1 )\2 4 x2 k—1
+ - :
(k+ 1)k —1)! 288772< 26772) ]
Addtionally, the exponential function has the following
series expression:
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2 2.4
2872 X“A AX _
= T T O
e—/\xzﬁ‘za _ e_(xz/zeﬂ_z)l:l _ Ax2 n <e)12x2 n /\2x4)ii|
37A 60 187%) A
+ 0(A73). (33)

Substituting Eqgs. (27) and (31)—(33) into Eq. (29), after
some algebra the entropy is expressed by

s=c, (A)% LA+ 04+ C (34

where C;(A) is given by the following integrals:

© xte 2 2
Cy= — —(x*/2em?)
0 ﬁ) 1874 (e* + 1)? [e

x2
car(- 2 ) o
2eTr

o 2x2€x 2 2
c.(\) = —(x/Zew)d’
1) fo 3mA(e + 12° X
o0 xte* 46 2Ax2 s s
Cy(A) = - (= —(x*/2e7?)
2(A) ,[0 2473 (eX + 1)2<ISe 9772 >e
xte* 5x2A x2
+—— |4k, ———Eil ——— ) |dx.
2474 (e + 1)2[ Lo l( 2(3772)] *

(35

The integrals in the above equation contain a factor of
e*(e* + 1)72, and its asymptotic behavior is e, so their
value must be convergent. They have only one adjustable
parameter A. Supposing C;(Ay) = 1 and solving this equa-
tion, we can find

2x%e*

= [T 2EE —@em gy ~ 00282, (36
o [0377_3(6)(_’_1)26 X (36)
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By the numerical method, the value of Cy and C,(A) is

Cy = —0.0388, C>(Ag) = 0.0084. (37)

So, the entropy is finally given by

A
S=3+ 0.0084A~" + O(A™%) — 0.0388. (38)

III. SUMMARY

We have studied the statistical-mechanical entropy aris-
ing from the Dirac field in a Schwarzschild black hole by
carefully counting the number of quantum states in the
vicinity near the horizon based on the state density cor-
rected by a modified dispersion relation. Because the cor-
rected factor in Eq. (2) shows negative exponential decay,
the number of quantum states with energy less than w is
finite at the horizon. As a result, we have obtained the
desired convergent entropy without any artificial cutoff.

We have also given out correction terms to entropy. The
leading term of entropy for Eq. (38) is A/4 under the
condition C;(Ay) = 1, which agrees with Bekenstein-
Hawking entropy. The correction terms take the form of
A~', A2, and so on. However, it does not give a logarith-
mic correction. In solving the Dirac field equation, we
employ the WKB approximation only to the leading order.
One may obtain the logarithmic correction term through
the considerations of the higher-order WKB approxima-
tion. We will investigate this in future work.
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