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We revisit the cosmological evolution of domain wall networks, taking advantage of recent improve-

ments in computing power. We carry out high-resolution field theory simulations in two, three and four

spatial dimensions to study the effects of dimensionality and damping on the evolution of the network.

Our results are consistent with the expected scale-invariant evolution of the network, which suggests that

previous hints of deviations from this behavior may have been due to the limited dynamical range of those

simulations. We also use the results of very large (10243) simulations in three cosmological epochs to

provide a calibration for the velocity-dependent one-scale model for domain walls: we numerically

determine the two free model parameters to have the values cw ¼ 0:5� 0:2 and kw ¼ 1:1� 0:3.
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I. INTRODUCTION

Phase transitions that are thought to have happened in
the early Universe have a number of inevitable consequen-
ces, the most interesting of which is the formation of
topological defects [1,2]. The literature on the subject
has (for good reasons) focused on cosmic strings, but other
defects can be of interest too. Domain walls, being the
simplest defect (they can be described by a single scalar
field) provide a simple test bed where one can study how
several physical mechanisms influence defect evolution,
and this knowledge can then be applied to other defects.
This is despite the fact that the observational roles of
domain walls are very tightly constrained: the Zel’dovich
bound [3] rules them out if their symmetry breaking scale
is � � 1 MeV, and the bound is even tighter for wall
networks with junctions [4].

Here, we take advantage of the continuous improve-
ments in computing power to carry out a large set of
high-resolution simulations of domain walls in two, three
and four spatial dimensions, using the standard Press-
Ryden-Spergel (PRS) algorithm [5]. While the 3D simula-
tions are of obvious cosmological relevance, the 2D ones
have the advantage of allowing for a much larger dynami-
cal range, and the 4D ones may be relevant to some brane
world scenarios [6–9]. We will only consider the simplest
domain wall model, thus neglecting scenarios where
domain walls have junctions.

One can also describe the broad macroscopic properties
of these networks by an analytic model, in the same spirit
of the model of Martins and Shellard for cosmic strings
[10–12]. The large-scale features of the network are de-
scribed by a length scale (or correlation length) L and a

microscopically averaged (root-mean-squared) velocity v.
Although this has the advantages of tractability and con-
ceptual simplicity, these come with a price: in going from
the microphysics to the averaged evolution equations, one
is forced to introduce phenomenological parameters which
parametrize our ignorance about certain dynamical mecha-
nisms, and the only way to determine the correct values of
these parameters is by referring to numerical simulations to
calibrate them.
The evolution of domain walls networks has been pre-

viously studied, numerically, by a number of different
authors [5,13–19], who usually found some hints for devi-
ations to the scale-invariant evolution. Since there are good
reasons to expect this scale-invariant attractor [18,20], one
may ask whether these deviations point to the presence of
physical mechanisms not accounted for in analytic descrip-
tions or if they are simply a consequence of the limited
dynamical range of numerical simulations. While the
present work cannot completely resolve this issue, we
believe that it provides support for the second alternative.
In what follows, we briefly describe the PRS algorithm

used in numerical simulations, as well as the analytic
model we will use to describe the domain wall networks.
We then proceed to present the main results of our simu-
lations, and finally bring the two approaches together by
comparing the simulation results to the analytic model
predictions, thereby providing a calibration of the free
parameters of the latter. We will conclude with brief com-
ments on the cosmological implications of our results and
on possible follow-up work. Throughout the paper, we
shall use fundamental units, in which c ¼ ℏ ¼ 1.

II. DOMAIN WALLS AND THE PRS ALGORITHM

We will be interested in domain wall networks in flat
homogeneous and isotropic Friedmann-Robertson-Walker
universes. A scalar field � with Lagrangian density
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where we will take Vð�Þ to be a �4 potential with two
degenerate minima, such as
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will have domain wall solutions. By the standard varia-
tional methods we obtain the field equation of motion
(written in terms of physical time t)

@2�

@t2
þ 3H

@�

@t
�r2� ¼ � @V

@�
; (3)

where r2 is the Laplacian in physical coordinates, H ¼
a�1ðda=dtÞ is the Hubble parameter and a is the scale
factor, which we assume to vary as a / t�. In what follows,
wewill be interested in comparing the network evolution in
several different cosmological epochs, in particular the
radiation era (� ¼ 1=2), the matter era (� ¼ 2=3) and a
fast expansion era (� ¼ 4=5).

We then apply the procedure of Press, Ryden and
Spergel [5], modifying the equations of motion in such a
way that the thickness of the domain walls is fixed in
comoving coordinates. One expects that this will have a
small impact on the large scale dynamics of the domain
walls, since a wall’s integrated surface density (and surface
tension) are independent of its thickness. In particular, this
assumption should not affect the presence or absence of a
scaling solution [5], provided one uses a minimum thick-
ness [17]—we will briefly revisit this issue below. (For a
detailed discussion of analogous issues in the context of
cosmic strings, see [21].)

In the PRS method, Eq. (3) becomes

@2�

@�2
þ �

�
d lna

d ln�

�
@�

@�
�r2� ¼ �a�

@V

@�
; (4)

where � is the conformal time and � and � are constants:
� ¼ 0 is used in order to have constant comoving thick-
ness and � ¼ 3 is chosen (in 3D, see [22] for an argument
in other dimensions) to require that the momentum
conservation law of the wall evolution in an expanding
universe is maintained [5]. In fact, we have simulated
networks with various values of the damping coefficient �.

Equation (4) is then integrated using a standard finite-
difference scheme. We assume the initial value of� to be a
random variable between ��0 and þ�0 and the initial
value of @�=@� to be zero. This will lead to large energy
gradients in the early time steps of the simulation, and
therefore the network will need some time (which is pro-
portional to the wall thickness) to wash away these initial
conditions. The conformal time evolution of the comoving
correlation length of the network �c (specifically A=V /
��1
c , A being the comoving area of the walls) and the wall

velocities (specifically �v, where � is the Lorentz factor)

are directly measured from the simulations, using tech-
niques previously described in [18]. However, we now use
a newly parallelized version of the code, optimized for the
Altix UV1000 architecture of the COSMOS Consortium’s
Universe supercomputer.

III. THE ONE-SCALE MODEL

The way to analytically model defect networks is to start
from their microscopic equations of motion (the Nambu-
Goto equations, in the case of strings) and carry out a
statistical average, under the assumption that the defects
are randomly distributed at large enough scales. This leads
to a macroscopic energy evolution equation (which one can
equivalently write as an equation for the network’s corre-
lation length or for another suitable characteristic length
scale) and an equation for the network’s root-mean squared
velocity.
These evolution equations provide a ‘‘thermodynami-

cal’’ description of the network, in the same sense that the
microscopic equations provide a statistical physics one.
The more subtle part of this procedure is that of the
addition of terms in these equations to account for defect
interactions and energy losses. Such terms must be added
in a phenomenological way, and for their calibration one
must resort to numerical simulations.
For cosmic strings, this procedure leads to the so-called

velocity-dependent one-scale (VOS) model [10–12],
which has been well tested against simulations and is
used for predicting CMB signals of string networks. One
can follow an analogous procedure both for the case of
monopoles [23] and for domain walls. This latter case has
been described in [18], which also provided a simple
(qualitative) calibration; later in this article we will revisit
this issue and provide a more quantitative one.
The evolution equation for the characteristic wall length

scale L (which is related to the wall density �w via L ¼
	=�w, where 	 is the domain wall energy per unit area)
and their root-mean squared velocity v, are as follows

dL

dt
¼ ð1þ 3v2ÞHLþ cwv (5)

dv

dt
¼ ð1� v2Þ

�
kw
L

� 3Hv

�
; (6)

the latter equation was first obtained, using a different
approximation, in [24]. Here cw and kw are the free pa-
rameters, to be calibrated using simulations: the former
quantifies energy losses, while the latter quantifies the
(curvature-related) forces acting on the walls. At least to
a first approximation, these parameters are expected to be
constant. Moreover, in the context of the VOS model the
characteristic length scale L can be further identified with
the physical correlation length �phys. The comoving ver-

sion of this was defined in the previous section; the two are
related through
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�phys ¼ a�c; (7)

and we are therefore assuming that �phys � L. We will use

the two terms interchangeably for the rest of this paper.
Note that the scaling exponents of the two correlation
lengths, relative to their respective times, are different: if

�c / �1�
; (8)

then

�phys / t1�
ð1��Þ; (9)

for an expansion rate � defined as before.
If one neglects the effect of the energy density in the

domain walls on the background (specifically, on the
Friedmann equations)—which is the relevant context for
our numerical simulations—it is easy to see that, just as
for cosmic string networks, the attractor solution to the
evolution Eqs. (5) and (6) corresponds to a linear scaling
solution

L ¼ �t; v ¼ const: (10)

Assuming that the scale factor behaves as a / t�, the de-
tailed form of the above linear scaling constants is

�2 ¼ kwðkw þ cwÞ
3�ð1� �Þ (11)

v2 ¼ 1� �

3�

kw
kw þ cw

: (12)

As in the case of cosmic strings [25], an energy loss
mechanism (that is, a nonzero cw) may not be needed in
order to have linear scaling. In the cw ! 0 limit one finds
that for �> 1=4 a linear scaling solution is always pos-
sible. Therefore, a linear scaling solution for domain walls
can always exist in both the matter and the radiation eras,
which shows that having nonstandard (that is nonintercom-
muting) domain walls is by no means sufficient to ensure a
frustrated wall network.

In passing, we note that the cosmological linear scaling
solutions for walls imply that the wall density grows rela-
tive to the background density, and will eventually become
dominant (unless some mechanism like a subsequent phase
transition were to make it decay and disappear). This is
ultimately the reason for the Zel’dovich bound [3].
Moreover, since the wall density grows relative to the
background, it must be included in the Einstein equations.
In this case, (further discussed in [3,18]) the domain wall
network will become frozen in comoving coordinates with
L / a and the scale factor growing as a / t2. Notice that
this solution does not depend on cw—domain wall inter-
actions play no role here since the walls are effectively
frozen.

IV. BOX SIZE, DAMPING AND
WALL THICKNESS EFFECTS

We have started by running several sets of simulations in
two, three and four spatial dimensions, varying the box
size, the damping parameter � and the wall thickness (the
typical number of points describing each wall, denoted
W0), as further detailed below. These—and indeed all the
simulations described in this paper—were started at a
conformal time �0 ¼ 1 and evolved in time steps �� ¼
0:25�0 until a conformal time equal to half the box size,
and each set of simulations contains 25 runs with different
(random) initial conditions. Unless otherwise stated, the
quoted errors are statistical errors in the ensemble of 25
runs.
Our main concern here is with a diagnostic for scaling.

We looked for the best fit to the power laws

A

V
/ �w / 1

�c

/ ��; (13)

�v / �; (14)

for a scale-invariant behavior, we should have� ¼ �1 and
 ¼ 0. The behavior of the scaling exponent for the
network’s kinetic energy (or velocity), , has not been
explored in detail in previous work. For the scaling of the
correlation length, it has been suggested that this can be
slightly larger than � ¼ �1, which would imply that the
network is not evolving as fast as is allowed by causality.
This would presumably suggest the presence of physical
mechanisms influencing the network that were not being
accounted for.
One must be careful to fit only the reliable dynamical

range of each simulation. As previously pointed out, the
dynamics at the beginning of the simulation will be domi-
nated by our choice of initial conditions, which will influ-
ence the evolution. Moreover, for the walls to be
sufficiently well defined (which is certainly helpful in
accurately measuring walls areas and velocities) the co-
moving correlation length should be significantly larger
than the wall thickness. Since we end all the simulations
when the horizon becomes half the box size, the periodic
boundary conditions should have no influence on our re-
sults. Our choice of the reliable period for the fit was
done by inspection of each set of simulations, using these
criteria [5].
Table I shows the compared results of matter-era simu-

lations where we varied the box size and the amount of
damping (parametrized by �) while keeping a constant
wall thickness as in the PRS prescription. The key result
here is that all the scaling exponents are consistent with the
presence of a scale-invariant evolution of the network,
corresponding to � ¼ �1 and  ¼ 0. The constancy
of the wall velocities (which had not been studied in
quantitative detail by previous authors) is particularly
noteworthy.
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We see no hints of the deviations from this scaling
behavior that have been discussed by previous authors,
particularly [5,17]. (On the other hand, [16] finds a possible
deviation in the largest of their simulations, while the
smaller ones are consistent with scaling.) We therefore
suggest that such hints may have been due to the limited
dynamical range of simulations. Interestingly, one can
observe (particularly in the 3D case) that doubling the
box size tends to bring the scaling exponent � closer to
�1, although it has to be said that this may in part be due to
the (somewhat arbitrary) choice of the dynamical range
that is used for the fit. We will comment on this point again
in the next section.

In addition to showing the calculated scaling expo-
nents � and , the table also shows the directly mea-
sured asymptotic values of �c=� and �v, which can be
related to the macroscopic parameters of the analytic
model. These are calculated from the last few time steps
of each simulation, on the assumption that by then the
network has reached scaling—note that our measured
scaling exponents are consistent with this assumption.
Given the simplicity of this method, we have chosen not
to present the (statistical) error bars on these numbers,
which should therefore be seen as qualitative indicators
of the properties of the network. (The errors we find are
typically at the 10 to 20 percent level, with some de-
pendence on the box size.) A more detailed analysis of

the scaling properties will be discussed in the next
section.
These results also confirm the expectation that increas-

ing the amount of damping leads to slower walls. One of
the consequences of this is that it reduces the rate of wall
intercommutings and formation of closed walls. Since this
is a key energy loss mechanism for the wall network, it
follows that a larger damping also leads to a higher wall
density, corresponding to a smaller wall separation or
correlation length.
Figures 1 and 2 show two examples for 2D and 3D

simulations. The fact that the 2D plots show much larger
fluctuations is due to the fact that the precision of our
algorithm for measuring domain wall areas and velocities
is somewhat dependent on dimensionality and box size. We
have chosen to always use the same algorithm, described in
[18], rather than individually optimizing it for different
boxes.
Table II and Figs. 3 and 4 show the compared results of

radiation-era (� ¼ 1=2) and fast expansion (� ¼ 4=5)
simulations, applying the PRS procedure to 5123 boxes
and varying the thickness of the domain walls. As ex-
pected, the relaxation time of the network is directly pro-
portional to the wall thickness, being approximately given
by the light crossing time of the walls.
Mindful of the fact that in the case of the thicker walls,

the network is just reaching the scaling solution at the end

TABLE I. The measured scaling exponents � and  (with one-sigma statistical uncertainties) for 2D, 3D and 4D numerical
simulations of domain wall networks with different box sizes and damping terms (�). The third column shows the range of the part of
the simulation that was actually used in order to fit for the scaling exponent. The last two columns show the directly measured
asymptotic values of �c=� and �v, which can be related to the macroscopic parameters of the analytic model. All simulations were
done in a matter-dominated era (� ¼ 2=3), with � ¼ 0 and a constant wall thickness W0 ¼ 10. Each value of the scaling exponent is
obtained by averaging over 25 simulations with different random initial conditions.

Box Size � Fit range (�) �  �c=� �v

40962 2.0 41–2048 �0:95� 0:04 �0:00003� 0:00002 0.61 0.37

40962 3.0 23.5–2048 �0:97� 0:05 �0:00002� 0:00002 0.58 0.34

40962 4.0 21–2048 �0:96� 0:04 �0:00001� 0:00002 0.55 0.33

81922 2.0 12.25–4096 �0:98� 0:03 �0:000011� 0:000008 0.94 0.40

81922 3.0 21–4096 �0:97� 0:05 �0:000011� 0:000006 0.85 0.32

81922 4.0 21–4096 �0:96� 0:04 �0:000007� 0:000005 0.76 0.29

2563 2.0 38.5–128 �0:94� 0:09 �0:0000� 0:0005 0.56 0.44

2563 3.0 26–128 �0:92� 0:05 �0:0000� 0:0003 0.52 0.37

2563 4.0 26–128 �0:94� 0:04 �0:0000� 0:0002 0.49 0.33

5123 2.0 38.5–256 �0:96� 0:05 �0:0001� 0:0001 0.57 0.43

5123 3.0 26–256 �0:97� 0:04 �0:0000� 0:0001 0.54 0.37

5123 4.0 26–256 �0:96� 0:03 0:0000� 0:0001 0.50 0.34

644 2.0 21–32 �1:0� 0:1 0:001� 0:002 0.53 0.47

644 3.0 21–32 �1:0� 0:1 0:000� 0:002 0.49 0.35

644 4.0 21–32 �1:0� 0:1 0:001� 0:001 0.49 0.35

1284 2.0 38.5–64 �1:0� 0:2 0:0000� 0:0009 0.60 0.47

1284 3.0 21–64 �0:9� 0:1 0:0002� 0:0005 0.54 0.42

1284 4.0 23.5–64 �0:9� 0:1 0:0003� 0:0001 0.54 0.40
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of the simulation, the late-time values of wall densities and
velocities are consistent with each other within the numeri-
cal uncertainties. Note, in particular, that the velocities are
remarkably similar; the differences in the wall densities
may, at least in part, be due to the algorithm being used to
identify the walls.

Bearing all this in mind, we believe that these results are
consistent with the notion that the networks should even-
tually reach the same attractor solution regardless of the
wall thickness. An example can be seen in Fig. 3, which
shows the results of simulations withW0 ¼ 10, 50, 100 and
all other parameters kept unchanged.

In practical terms, one is therefore justified in using the
smallest wall thickness compatible with an accurate iden-
tification of the walls. Previous results suggest [5] that this
is around W0 ¼ 10, which is therefore the thickness used
elsewhere in this paper. Nevertheless, similar results could

have been obtained with a larger thickness, albeit with
some additional computational cost (compare Fig. 4 with
Figs. 1, 2, and 5).

V. CALIBRATING THE VOS MODEL

Table III and Figs. 5 and 6 show the compared results of
very large 3D PRS simulations for three different cosmo-
logical expansion rates (parametrized by �): the usual
radiation and matter eras plus and additional fast expansion
era (with � ¼ 4=5). As was the case with the simulations
described in the previous section, we find no deviation
from the scaling behavior.
Moreover, comparing the scaling exponents for the cor-

relation length in the 5123 and 10243, and also for the � ¼
3, 2563 case in Table I one can observe that the exponents
tend to become closer to � ¼ �1 as we increase the box
size. This further supports our suggestion, in the previous
section, that deviations from scaling are likely to be due to
the limited range of the simulations. A further contributing
factor may be the fact that the initial conditions that are

FIG. 2 (color online). Same as Fig. 1, for the 2D 81922

simulations.
FIG. 1 (color online). The evolution of the domain wall den-
sity (�w ¼ A=V) and velocity (ð�vÞ2) as a function of conformal
time, for the 3D 5123 boxes of Table I, corresponding to different
amounts of damping, � ¼ 2, 3, 4. The plotted curves are the
average of 25 different simulations with different (random)
initial conditions.
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TABLE II. The measured scaling exponents � and  (with one-sigma statistical uncertainties)
for 3D numerical simulations of domain wall networks with different expansion rates (�) and
wall thicknesses (W0). The third column shows the range of the part of the simulation that was
actually used in order to fit for the scaling exponent. The last two columns show the directly
measured asymptotic values of �c=� and �v, which can be related to the macroscopic
parameters of the analytic model. All simulations were done in 5123 boxes with � ¼ 3 and
� ¼ 0. Each value of the scaling exponent is obtained by averaging over 25 simulations with
different random initial conditions.

� W0 Fit range (�) �  �c=� �v

1=2 10 38.5–256 �0:99� 0:05 �0:0001� 0:0002 0.60 0.46

1=2 50 188.5–256 �1:0� 0:5 0:0001� 0:0008 1.00 0.53

1=2 100 188.5–256 �1:0� 0:4 0:0003� 0:0007 0.90 0.52

4=5 10 21–256 �0:96� 0:03 0:00001� 0:00005 0.44 0.28

4=5 100 176–256 �0:9� 0:3 0:0005� 0:0003 0.67 0.28

FIG. 3 (color online). The evolution of the domain wall den-
sity (�w ¼ A=V) and velocity (ð�vÞ2) as a function of conformal
time, for the radiation era (� ¼ 1=2) boxes of Table II, corre-
sponding to different values of the (constant) wall thickness,
W0 ¼ 10, 50, 100. The plotted curves are the average of 25
different simulations with different (random) initial conditions.

FIG. 4 (color online). The evolution of the domain wall den-
sity (�w ¼ A=V) and velocity (ð�vÞ2) as a function of conformal
time, for the W0 ¼ 100 boxes of Table II, corresponding to
different values of the expansion rate, � ¼ 1=2, 4=5. The plotted
curves are the average of 25 different simulations with different
(random) initial conditions.
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normally used in these simulations produce networks that
are quite far from scaling, and therefore the numerical
evolution of these networks will require a considerable
dynamic range before scaling can be reached.
Given the large size and dynamic range of these simu-

lations, in this table we now show the values of �c=� and

FIG. 6 (color online). Same as Fig. 5, for the 10243 simula-
tions.

FIG. 5 (color online). The evolution of the domain wall den-
sity (�w ¼ A=V) and velocity (ð�vÞ2) as a function of conformal
time, for the 5123 boxes of Table II, corresponding to different
cosmological epochs: radiation era (� ¼ 1=2), matter era (� ¼
2=3) and a faster expansion epoch with � ¼ 4=5. The plotted
curves are the average of 25 different simulations with different
(random) initial conditions.

TABLE III. The measured scaling properties of 3D PRS (� ¼ 3, � ¼ 0) numerical simulations of domain wall networks with
different box sizes and expansion rates (�). The third column shows the range of the part of the simulation that was actually used in
order to fit for the scaling exponents � and . The last two columns show the directly measured asymptotic values of �c=� and �v,
which can be related to the macroscopic parameters of the analytic model. All simulations have a constant wall thicknessW0 ¼ 10 and
all error bars are one-sigma statistical uncertainties obtained by averaging over 25 simulations with different random initial conditions.

Box Size � Fit range (�) �  �c=� �v

5123 1=2 38.5–256 �0:99� 0:05 �0:0001� 0:0002 0:60� 0:05 0:46� 0:04
10243 1=2 21–512 �0:99� 0:05 �0:0001� 0:0001 0:64� 0:03 0:48� 0:07

5123 2=3 26–256 �0:97� 0:04 �0:0000� 0:0001 0:54� 0:01 0:37� 0:02
10243 2=3 21–512 �0:98� 0:02 �0:00001� 0:00005 0:62� 0:03 0:37� 0:03

5123 4=5 21–256 �0:96� 0:03 0:00001� 0:00005 0:44� 0:01 0:28� 0:02
10243 4=5 26–512 �0:99� 0:03 0:00001� 0:00003 0:50� 0:02 0:29� 0:07
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�vwith error bars. As before, we assume that the networks
are scaling exactly, and the values are calculated from the
last few time steps in each simulation. We have experi-
mented with several ways of calculating these values, for
example, first averaging the 25 simulations and then cal-
culating the scaling values from the averaged run versus
calculating the scaling values from the individual simula-
tions and then determining the average of these values, and
found that provided one has a large enough sample (typi-
cally involving the last 100 time steps of each simulation)
the results are remarkably consistent. The uncertainties
shown are purely the one-sigma statistical errors for each
set of 25 simulations.

As expected, the results show that a faster expansion rate
increases the damping on the walls, and therefore leads to
smaller wall velocities and a larger wall density (which
corresponds to a smaller correlation length). The agree-
ment between the scaling values obtained from the 5123

and 10243 is also quite encouraging, and suggests that we
are indeed seeing the network’s attractor scaling solution.
Nevertheless, it should be pointed out that the measure-
ments of the velocities are in closer agreement than those
of the correlation length. This is likely to be due to the fact
that our algorithm for identifying the walls and adding their
areas is not completely accurate.

These results can now be used to calibrate the VOS walls
model. Recall that in this model the scaling solution is
parametrized by the expansion rate � (such that a / t�) and
the phenomenological parameters cw and kw. Given these
parameters, the predicted values for the scaling parameters
� and v are given by Eqs. (11) and (12). Using the results of
Table III, we can trivially obtain the value of v, and � is
also easily obtained from

� ¼ L

t
¼ �c

ð1� �Þ� ; (15)

from these, one finally obtains the numerically measured
values of cw and kw. The results of this analysis, using the
data from the 10243 runs, are shown in Table IV. We first
calculated these values separately for each of the three
cosmological epochs that we simulated, and we finally
combined the three into a final, weighted mean set of
results. Since these purely statistical errors may be

underestimates, we rescaled the variance in the standard
way, by multiplying it by the chi-squared per degree of
freedom. Our final calibrated model parameters are

cw ¼ 0:5� 0:2 (16)

and

kw ¼ 1:1� 0:3; (17)

these results are remarkably consistent with the previous,
more qualitative analysis in [18], which had found
cw � 0:5 and km � 0:9.

VI. CONCLUSIONS

We took advantage of recent improvements in comput-
ing power to numerically study the evolution of the sim-
plest domain wall networks. Having carried out sets of
high-resolution, large dynamic range simulations with
various amounts of damping, we find strong support for
the suggestion that the attractor solution for the evolution
of these networks is a linear scaling solution, with �phys / t

(or equivalently �c / �) and v ¼ const. Our results sug-
gest that previous hints of deviations from this behavior
may have been due to the limited dynamical range of those
simulations.
Moreover, we have used the results of the largest (10243)

of our simulations to provide a calibration for the velocity-
dependent one-scale model for domain walls. As a consis-
tency check, we have used results from simulations in three
different cosmological epochs, even though the model only
has two free parameters, one of which quantifies the net-
work’s energy loss rate while the other describes the
(curvature-related) forces acting on the walls. Given the
conceptual simplicity of the analytic model, we believe
that the present numerical results support its validity, and
suggest that it can be reliably used as a tool to study the
cosmological consequences of these networks in quantita-
tive detail.
This combination of analytical and numerical tech-

niques, leading to a detailed calibration of a model (which
so far had only been carried out for cosmic strings [21,26])
can in principle be extended to networks of domain walls
with junctions. The larger number of degrees of freedom
(corresponding to additional scalar fields) makes the study
of these models numerically trickier since in most cases the
factor limiting the size of the boxes that can be simulated is
memory rather than time, but otherwise our methods are
directly applicable there. Another case of interest is that of
semilocal string networks: here, some steps toward an
accurate model calibration have been taken recently [27],
and we shall return to it in a subsequent publication.
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