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One of the main goals of modern cosmology remains to summon up a self-consistent policy, able to

explain, in the framework of Einstein’s theory, the cosmic speedup and the presence of dark matter in the

Universe. According to the holographic principle, which postulates the existence of a minimal size of a

physical region, we argue, in this paper, that if this size exists for the Universe and it is accrued from the

independent geometrical second order invariants, it would be possible to ensure a surprising source for

dark matter and a viable candidate for explaining the late acceleration of the Universe. We develop low

redshift tests, such as supernovae Ia and kinematical analysis, compiled by the use of cosmography, and

we compare the outcomes with higher redshift tests, such as the CMB peak and anisotropy of the cosmic

power spectrum. All the results indicate that the models presented here can be interpreted as unified

models that are capable of describing both dark matter and dark energy.
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I. INTRODUCTION

General relativity (GR) has been deemed as one of the
cornerstones of modern theoretical physics. All its predic-
tions, especially in the Solar System regime, found much
experimental evidence [1]. Even though the theory prom-
ises to completely clear up the dynamical properties of the
whole Universe, many attempts to explain those properties,
at cosmological scales, failed to be predictive. The main
flaw arose when in 1998 it was first discovered [2,3] that a
late positive acceleration dominates the dynamics of the
Universe.

This key feature was directly observed by the use of
supernovae Ia as distance indicators, and later confirmed
by various experimental evidence [4]; however, it was also
clear that if one takes into account only the baryonic and
(cold) dark matter (DM), as gravitational sources, GR does
not predict an accelerated scenario, as expected according
to observations.

Thus, it has been argued that a new ingredient should be
enclosed within the cosmological puzzle [5]. Its physical
nature remains undiscovered and so, due to the lack of a
self-consistent explanation, we refer to this missing coun-
terpart as dark energy (DE), which might counterbalance
the gravitational effects. Moreover, quite surprisingly, ob-
servations spilled out definitively that about 70% of the
Universe is filled by this unknown ingredient and, in
addition, that about 25% is composed of DM. Therefore,
numerous approaches have been put forward in order to
elucidate the nature of these unknown components.

At a first glance, the simplest explanation of the
acceleration is likely a cosmological constant term �
that characterizes the form of DE [6]. Unfortunately, its

consequent model, namely, �CDM, undergoes several
theoretical issues, leading to the well-known fine-tuning
and coincidence problems [7]. For overcoming these issues
many alternatives to DE have been proposed [8].
Without going into detail on the various frameworks

propounded in the literature, we focus on one intriguing
task, which is represented by the so-called holographic
principle (HP) [9]. The basic idea lies in postulating that
the maximum entropy inside a physical region is not ex-
tensive, since it grows as the area of the surface.
By extending this postulate to cosmology, it would be

feasible to infer that the density of DE, namely, �X, should
be proportional to an infrared cutoff scale, namely, L, and
it can be written as

�X / 1

L2
: (1)

The idea behind the cutoff scale is that a minimal
amount of information should exist, and the consistent
density associated with this minimal counterpart should
be employed as an energy density. The latter may therefore
be included within the Einstein’s equations, in order to
provide positive acceleration. Thereby, the problem of
understanding the nature of DE is shifted to the crucial
issue of determining L. An amusing loophole leads to the
choice that a viable L is the one able to account for both
DM and DE effects.
Many different cutoff scales have been examined re-

cently [10–12]. In particular, it would be possible to pos-
tulate that Lmay be proportional to geometrical invariants.
In this work, we focus on the root mean square of second
order geometrical invariants for L. The choice of a
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geometrical IR cutoff has been demanded in order to work
out the problem of causality, portrayed in [13], by allowing
one to solve it naturally, only considering the form of
space-time in the framework of GR. The physical purport
of a geometrical choice of L deals with the possibility that
the geometry can be considered as a self-accelerated
source, endowing a DE term.

The main intent of this paper is to testify that the HP,
with the scale length proportional to curvature invariants,
works well, providing encouraging results for attesting that
it should be possible to regard geometry as a source of DE
and predictable DM. At a first glance, then, our model can
be considered as a unified paradigm for describing either
the dynamical properties at cosmological scales or the
presence of DM in the Universe.

The paper is organized as follows. In Sec. II we describe
the theoretical features of our picture. In Sec. III we
study the consequences of cosmological tests on the model.
Section IV deals with the use of the so-called cosmogra-
phy, as a tool for discriminating the kinematics of
the Universe, in our approach. Finally, Sec. V develops
the comparison of our proposal with the anisotropies of the
cosmic power spectrum. Section VI is devoted to conclu-
sions and perspectives.

II. THE THEORETICAL FRAMEWORK

In this section, we investigate the consequences follow-
ing from the assumption that an infrared cutoff exists that is
proportional to the independent second order invariants.

Actually, we invoke the HP as a way to solve the DE
paradigm, by relating the second order curvature (indepen-
dent) invariants to the DE density in the following way:

�X ¼ 3�

8�G

ffiffiffiffiffiffiffi
jIij

q
; (2)

where with Ii we express the generic invariant, while � is a
dimensionless constant. The above equation is written in
this form, since second order invariants are proportional to
the inverse fourth power of the IR cutoff; then, for dimen-
sional requirements, we need the root mean square in the
above form.

As pointed out in Ref. [14], among the 14 curvature
scalar invariants, the most interesting ones are the
Kretschmann, Chern-Pontryagin, and Euler invariants.
Their forms are summarized as follows:

I1 ¼ R����R
����;

I2 ¼ ½�R�����R����;

I3 ¼ ½�R������R����;

(3)

where the stars indicate the corresponding dual counter-
parts. From the first Matté decomposition of the Weyl
tensor, it is easy to get [15]

R���� ¼ C���� þ 1
2ðg��R�� ��g��R�� � g��R��

þ g��R��Þ � 1
6ðg��g�� � g��g��ÞR: (4)

Therefore, I1, I2, and I3 can be expressed as follows
[16–20]:

I1 ¼ C����C
���� þ 2R��R

�� � 1
3R

2;

I2 ¼ ½�C�����C����;

I3 ¼ �C����C
���� þ 2R��R

�� � 2
3R

2

¼ �I1 þ 2R��R
�� � 2

3R
2:

From the above relations among invariants and tensors,
one can get the explicit expressions of the second order
invariants, once the space-time metric is known. We use,
hereafter, a flat Friedmann-Robertson-Walker (FRW)
cosmology,

ds2 ¼ dt2 � aðtÞ2½dr2 þ r2ðsin2�d�2 þ d�2Þ�; (5)

and for later use, we write down the first Friedmann
equation

H2

H2
0

�
�
_a

a

�
2 1

H2
0

¼ 8�G

3H2
0

½�X þ�mð1þ zÞ3 þ�rð1þ zÞ4�: (6)

Actually, the Hubble factor H has been parametrized by
h as H0 ¼ 100h km=s=Mpc. The dimensionless density
parameters of matter and the relativistic components are

defined as �m ¼ 8�G�ð0Þ
m =3H2

0 and �r ¼ 8�G�ð0Þ
r =3H2

0 ,

respectively, where an index (0) denotes that the quantity
under examination is evaluated at z ¼ 0, with the scale
factor aðtÞ normalized to unity today, aðz ¼ 0Þ ¼ 1.
We obtain, for the invariants, the following expressions:

I1 ¼ 60fð _H þ 2H2Þ2 þH4g;
I2 ¼ 0;

I3 ¼ �12f5ð _H þ 2H2Þ2 þ 5H4 þ 2ð _H þ 2H2ÞH2g:
(7)

By inserting the expressions for I1 and I3 (the only two
nontrivial invariants) into Eq. (2) and by using the
Friedmann equation, we gain two differential equations,
each one providing the temporal evolution of the Hubble
parameter. We will conventionally refer to the cosmologi-
cal models arising from the invariants I1 and I3 as mod1
and mod3, respectively. So, by keeping all these key fea-
tures, it will be possible in the next sections to perform
various experimental bounds on our two models.
Particularly, the following analysis deals with the limits
over their expansion history.
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III. THE EXPANSION HISTORY

In this section, we strengthen the robustness of the
theoretical assumptions developed in Sec. II, by investigat-
ing the expansion history of the Universe for our models.

First of all, let us focus on the vacuum solutions of these
models; they refer to the settlement with �r ¼ 0 and
�m ¼ 0. This limiting case is important in order to inves-
tigate the asymptotic behavior of our models.1

For this limiting case we can analytically solve Eq. (6),
and it turns out that the holographic fluid behaves as a
perfect fluid with constant barotropic factors

weff ¼ 1

3
� 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 1=ð60�2

1Þ
q

;

weff ¼ 7

15
� 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�24=25þ 1=ð60�2

3Þ
q

;

(8)

for mod1 and mod3, respectively. We can then choose the
constant � as

�1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60� 5

p ; �3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29� 12

p ;

so that weff ¼ �1 for both models. Clearly, these choices
lead to a de Sitter space-time as vacuum solutions and, as
we will show below, they will be in excellent agreement
with observations.

In order to analyze the behavior of our models in the
presence of standard matter and radiation fields, we plot in
Fig. 1 the corresponding equation of state (EoS) for differ-
ent values of h and arbitrarily chosen values for�m ¼ 0:15
and �r ¼ 4:9� 10�5.

However, to obtain the results reported in Fig. 1, it was
necessary to choose for �m a value which is clearly lower
than the value obtained by Wilkinson Microwave
Anisotropy Probe (WMAP) 7. This is due to the fact that
the HP also appears as a source of the DM.

We can perceive that, until the epoch of matter-radiation
equality (approximately at z� 3000), the holographic fluid
behaves as a relativistic component with weff ¼ 1=3; after-
wards, it behaves as a dustlike component, with weff ¼ 0,
until it passes a redshift threshold (z� 10) and begins to
follow the asymptotic value weff ! �1. Moreover, in
Fig. 1 we plotted the EoS parameter of the joint matter
and radiation fluids, defined as

wrþm ¼
P
i
�iwiP
i
�i

¼ �r=3

�r þ�mð1þ zÞ�1
: (9)

We can see that at high redshifts the behavior of the
holographic fluid resembles that of the source fields.

However, it is interesting to note that the effective EoS
parameter departs from w ¼ 1=3 before that of the matter-
radiation fluid. As we shall see in Sec. V, this happens
because the holographic fluids we consider are more likely
to mimic matter fluids than relativistic ones.
As first pointed out in the Introduction, we suggest that

both the DE and DM counterparts may be explained by the
choice of the IR cutoff scale; so, to obtain a precise value
for �m, we must perform a chi-squared fit with the super-
novae Union2 data set [21] and with the CMB shift pa-
rameter [22]. The combined test is sufficient to predict a
specific value which will be tested further in Sec. V, where
we will compare the predictions of our models with those
of �CDM, by using CMB anisotropies. All the remaining
parameters, such as the Hubble constant, will be fixed by
using the WMAP 7 maximum likelihood [23].
The application of the standard definition of the CMB

shift [22],

R ¼ H0

ffiffiffiffiffiffiffiffi
�m

p Z zrec

0

dz

HðzÞ ; (10)

presents some difficulties which can be overcome by using
the alternative definition [24]

R � 2
l1
l01
; (11)

where l1 is the position of the first peak on the CMB TT
power spectrum of the model under consideration, and l01 is
the first peak in a flat FRW universe with �m ¼ 1. In
particular, for approaches providing a unified description
of both DE and DM, the latter expression must be used.
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FIG. 1 (color online). weff for mod3 with �m ¼ 0:15, �r ¼
4:9� 10�5. The thick (red) line is for h ¼ 1; the dotted (blue)
line is for h ¼ 0:75; the dashed-dotted (orange) line is for
h ¼ 0:5. The double-dashed (black) line is the effective fluid
of joint matter and radiation, wrþm. The horizontal lines show
the asymptotic behaviors weff ! 1=3 and weff ! �1.

1Moreover, one expects that the vacuum solutions correspond
to the manifolds with the maximum number of symmetries;
these manifolds can then be interpreted as the background spaces
on which the matter fields evolve.
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For any arbitrary model, l1 is defined as

l1 ¼ DAðzrecÞ
sðzrecÞ ; (12)

where DAðzrecÞ is the comoving angular distance at recom-
bination, i.e.,

DAðzrecÞ ¼
Z zrec

0
ð1þ zÞdz; (13)

and sðzrecÞ denotes the sound horizon at recombination,

sðzrecÞ ¼
Z 1

zrec

csðzÞ
HðzÞ dz: (14)

Here csðzÞ is the sound speed of the photon-to-baryon fluid,
csðzÞ ¼ 3�1=2ð1þ 4�b=3��Þ�1=2.

In the special case of �CDM, the shift parameter is
simplified to (10) due to the fact that the cosmological
constant’s contribution to the Hubble flow is negligible for
z > zrec, so that it can be neglected in Eq. (14). In general,
this approximation is not valid. This is the case for the
models that are the subject of this work. For these models,
indeed, at early times the holographic fluid mimics the
whole background’s fluids. Therefore, we will deal, here-
after, with the definition (11).

The best value for the CMB shift parameter inferred
from the WMAP 7 yr analysis is given by

R ¼ 1:726� 0:018: (15)

On the other hand, for the supernovae (SNe) fit we compare
the distance modulus

	ðzÞ ¼ 25þ 5log10

�
dL
Mpc

�
(16)

with the observational data of the Union2 data set which
encompasses 557 supernovae up to the redshift z� 1:7,
which represents the highest value. Moreover, dL is the
luminosity distance defined as

dL ¼ cð1þ zÞ
Z z

0

dz

HðzÞ ; (17)

and then via WMAP data we set the Hubble parameter
today as h ¼ 0:704.

The results are summarized in Table I. Figures 2 and 3
show the likelihood functions of this analysis.

TABLE I. Summary of the numerical results for �m. The
quoted errors shows the 68% confidence levels.

Union2 CMB shift Shiftþ Union 2

�m (
2) �m �m

Model 1 0:147þ0:007
�0:007 0:145þ0:020

�0:017 0:147þ0:004
�0:004

(543.5)

Model 3 0:141þ0:007
�0:007 0:143þ0:019

�0:017 0:142þ0:006
�0:004

(543.6)
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FIG. 3 (color online). The same as in Fig. 2, but for mod3.
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FIG. 2 (color online). Mod1 likelihood functions for the ex-
pansion history analysis. The dot-dashed (orange) line is for the
CMB shift analysis, the dashed (blue) line, for Union2, and the
thick (red) line, for the joint Union2 and CMB shift.
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Figure 4 shows, instead, the expansion history of the
Universe for the best fits previously discussed, and the
scale factor for the �CDM model with the best fit parame-
ter values given by WMAP 7 results [23]. We note that
there are slight differences that are more evident at early
times. In other words, according to the above results, our
models are able to describe the dynamics of the Universe
by using a geometrical source for DM and DE, with small
differences with respect to the �CDM model at late times.

IV. LOW REDSHIFT REGIME: THE
COSMOGRAPHY WAY

Cosmography is an additional tool to test a given model.
Particularly, cosmography represents a branch of cosmol-
ogy which promises insight into the cosmological picture,
for exploring the kinematics of the Universe, without
regards towards any a priori specific model, postulated in
the Friedmann equations.

The kinematics is very useful to understand the expan-
sion history of the Universe. First, as quoted, the kinemat-
ics does not depend on the choice of the model; second, the
kinematics can be directly fitted with the observable
Universe; third it relies on the assumption that the cosmo-
logical quantities should be expanded in series around our
time, z ¼ 0, giving rise to easygoing relations. In this
sense, naively, cosmography ingenuously builds on
the simplest expediency to investigate the Universe’s
dynamics.

To apply cosmography one needs only the metric (5) that
defines the geometry of the Universe. In other words, it
does not take into account any special modification of the
Friedmann equations, independent of the choice of the
model.

This policy was first mooted from Weinberg’s pioneer-
ing ideas. He suggested expanding the scale factor in series
of powers, giving the possibility to relate it2 in terms of a
Taylor series

aðtÞ ¼ 1þH0�t� q0
2
H2

0�t
2 þ j0

6
H3

0�t
3

þ s0
24

H4
0�t

4 þ . . . ; (18)

where

q ¼ � 1

H2

€a

a
; j ¼ 1

H3

að3Þ

a
; s ¼ 1

H4

að4Þ

a
; (19)

which are known in the literature as the deceleration pa-
rameter, the jerk parameter, and the snap parameter, re-
spectively. It is standard convention to assume that
Eqs. (19) represent the cosmographic set (CS), once each
value has been evaluated at z ¼ 0. Therefore, we com-
monly refer to the CS as the numerical values assumed by

the above coefficients of the Taylor expansion at late times.
Physically, this had to be argued since the series of aðtÞ has
been evaluated around our time. Therefore, the luminosity
distance dl can be rewritten as

dL ¼ 1

H0

�
zþ z2

�
1

2
� q0

2

�
þ z3

�
� 1

6
� j0

6
þ q0

6
þ q20

2

�

þ z4
�
1

12
þ 5j0

24
� q0

12
þ 5j0q0

12
� 5q20

8
� 5q30

8
þ s0

24

��
:

(20)

After these expansions, we have all the instruments
needed to perform a direct analysis. In fact, let us fit the
Union2 data compilation by Eq. (20) in order to obtain
experimental limits over q0, j0, and s0. Once the CS is
known, it appears easy to invert it and to relate the free
parameters of our models in terms of the CS. This guaran-
tees experimental bounds on the previous models, giving
us the possibility to establish whether our approaches work
well or not in the low redshift regime.

Experimental results

In order to perform a more stringent check on the
reliability of the models, we test their predictions at low
values of the redshift z, by using the above results and those
of Table I. In particular, we interrelate the theoretical
features of our models with the CS by rewriting q, j, s in
terms of the Hubble rate, i.e.,

qðtÞ ¼ � _H

H2
� 1;

jðtÞ ¼ €H

H3
� 3q� 2;

sðtÞ ¼ H
:::

H4
þ 4jþ 3qðqþ 4Þ þ 6:

(21)

For consistency, we fix, for both models, the values of �
as in the previous section, and we develop the results
shown in Figs. 5–7, where we plot the values of q, j, and
s, respectively, at z ¼ 0 as functions of �m for mod1;3. In
each plot, the dashed lines delimit the experimental range
within the error bars and the corresponding interval of�m,
while the dotted lines delimit the 1� interval of confidence
inferred from the expansion history analysis and the
corresponding range of values of the cosmological
parameters.
Notice that the values of q and j obtained for�m within

the 1� confidence interval are in agreement with the ob-
servations; only the parameter s lies slightly outside the
experimental range. The experimental ranges of the cos-
mological parameters and the values computed for �m

within the 1� confidence interval are written in Tables II
and III for the mod1 and mod3, respectively. However, we
refer to the experimental ranges as the numerical results
that we obtained by fitting directly Eq. (20) through the use

2Or the Hubble parameter, or the luminosity distances, and
so on.
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of Union2, while the theoretical results are the values
obtained by inverting the CS in terms of �m, using the
values found in Table I for each model.
It follows from the two tables that both models are

compatible with the experimental limits offered by cos-
mography. Indeed, while mod1 excellently reproduces the
experimental results, for mod3 the values of the cosmo-
logical parameters q, j, s at z ¼ 0, obtained for�m within
the 1� confidence interval, are not at the same agreement
level as mod1. An accurate look at the results shows that
the goodness of mod3 remains disadvantaged, since it
behaves worse than mod1, which seems to appear more
predictive, but it should not be ruled out definitively since
the signs remain in the range of compatibility. Notice that
the goodness offered by the cosmographic test actually
reflects the intriguing physical aspect relying on the fact
that in a low redshift regime we should expect that mod1
behaves like the �CDM. In other words, we can expect
that mod1 formerly reduces to a cosmological constant at
small redshift more quickly than mod3.

V. INHOMOGENEITIES AND ANISOTROPIES OF
THE CMB POWER SPECTRUM

In this section, we describe the imprint of anisotropies
into the CMB power spectrum, by adopting our models,
and we develop the growth of inhomogeneities for the
matter sector as well.
Since our models do not provide any analytical expres-

sions for the anisotropic equations, we are trying to map
bothmod1 andmod3 by finding a suitable approximation to
the expansion history for them. The basic idea is to map
both the models, by using the results obtained in Sec. II, in
order to check if they work at higher redshifts as well.
What we will immediately infer is that their behaviors

suggest that the EoS can be approximated by three sepa-
rated pieces: a dark matter fluid, a relativistic fluid, and a
cosmological constant term.
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FIG. 6. Cosmological parameter j as a function of �m for the
modelmod1. The experimental interval of q lies between the two
dashed lines, while the dotted lines delimit the 1� confidence
interval of�m obtained from the analysis of the expansion history.

TABLE III. Same as in Table II, but for mod3 (0:138<�m <
0:148).

Parameter Experimental range Theoretical range

q �0:589� 0:084 �0:179< q<�0:160
j 1:359� 0:518 0:324< j < 0:345
s 0:091� 0:468 �1:287< s <�1:212

TABLE II. Experimental ranges of the cosmological parame-
ters and their values computed for �m within the 1� confidence
interval for mod1 0:143<�m < 0:151.

Parameter Experimental range Theoretical range

q �0:589� 0:084 �0:654< q<�0:632
j 1:359� 0:518 1:033< j < 1:036
s 0:091� 0:468 �0:566< s <�0:483
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The experimental interval of q lies between the two dashed lines,
while the dotted lines delimit the 1� confidence interval of �m

obtained from the analysis of the expansion history.
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It turns out to be more accurate to perform this approxi-
mation, giving rise to an evolving EoS. Precisely, we
follow the standard Chevallier-Polarski-Linder (CPL) pa-
rametrization [25,26], which invokes as a barotropic factor
the known expression w ¼ w0 þ wa

z
1þz .

Thus, we approximate the energy density of the holo-
graphic fluids (�X) as

8�G

3H2
0

�X � �XDMð1þ zÞ3 þ�Xrð1þ zÞ4

þ�CPLð1þ zÞ3ð1þw0þwaÞ exp
�
�3wa

z

1þ z

�
:

(22)

Here, the subscript XDM stands for the holographic DM,
mimicking the piece behaving as matter in the holographic
EoS, while Xr analogously represents the relativistic part,
which mimics the relativistic term as well as the matter.

For purposes of CMB analysis we must demand a good
approximation at early times, before recombination. A
failure in the approximation at late times will be reflected
in the large scale multipole moments (low� l), which are
poorly constrained due to the cosmic variance.

For both models we adopt �rh
2 ¼ 2:469� 10�5 and

h ¼ 0:704 [23], and regarding �m, we assume the validity
of the best fits given by SNeIa and the CMB shift, found in
Sec. III for each model.

The numerical analysis shows that the compatible re-
sults are given by having, for mod1, w0 ¼ �1:04, wa ¼
�0:2, �XDM ¼ 0:139, �Xr ¼ 0:72�r, and �CPL fixed by
the flat condition, e.g. �XDM þ�Xr þ�CPL þ�m þ
�r ¼ 1. In Fig. 8 we plot the effective EoS parameter of
mod1 under our approximation. It is well emphasized that
the differences are extremely small, giving rise to good
results of the first model at higher redshifts. In particular,
they have been estimated to be less than 2%, before
recombination (z� 1100).

For mod3 analogously we have found w0 ¼ �1:05,
wa ¼ �0:09, �XDM ¼ 0:135, and �Xr ¼ 0:7�r. �CPL is
again fixed by the requirement of spatially flat geometry
like the above case. Figure 9 shows the effective EoS (weff)
and the approximation based on the CPL parametrization.
In this case, the differences are also small, being less than
3% before recombination.
It appears intriguing to note that these approximations

are not valid for future redshifts, i.e. z < 0; they cannot be
extrapolated to the future.
Figures 8 and 3 show the EoS parameters of mod1;3,

respectively.
Moreover, for both models the relativistic term behaves

in the form �Xr � 0:7�r, while for nonrelativistic matter
we found �XDM � 0:95�m. This definitively shows that
the holographic models enhance the gravitational effects
due to nonrelativistic fluids more than that of relativistic
ones; we are not surprised by this feature, since, though in
different ways, we have already anticipated it in Sec. III.
In order to perform the power spectrum analysis, we use

the publicly available code CAMB [27]; in particular, we
compare the holographic models with respect to the ob-
servational data and the �CDM model as well.
Figures 10 and 11 give the experimental results. In those

figures, we plot the CMB TT angular power spectrum and
the residual,

� � lðlþ 1ÞðC�CDM
l � Cmodel

l Þ: (23)

We elucidate great differences concentrated at large scales,
which can be justified since the systematic errors due to the
cosmic variance are strongly dominant. In addition, there
are large discrepancies in the first three peaks, but these
have been inferred to be well inside the error bars, different
from the rest. At low scales, those differences quickly
decay; this is as expected, because in the Silk damped
tail region the anisotropies are mainly due to the micro-
physics driven by the photon-baryon plasma which the
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FIG. 8 (color online). Effective EoS parameter of the holo-
graphic fluid for model 1 and for the approximation we have
made from it using Eq. (22).
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FIG. 9 (color online). The same as Fig. 8, but for model 2.
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holographic fluid is not able to modify; indeed, the holo-
graphic fluids interact only gravitationally.

In order to obtain the plots of Figs. 10 and 11, we have
also fixed the amplitude of the primordial scalar perturba-
tion As, defined as the proportionality constant in the
equation

k3P�ðkÞ / ðk=k0Þns�1; (24)

where P� is the primordial power spectrum of the gravi-
tational potential�, while ns, defined as the spectral index,
is assumed to be ns ’ 0:967 and k0 ¼ 2� 10�3 Mpc�1,
where we, moreover, put an arbitrary pivotal scale k in
the above expression. For both holographic models and
for �CDM, which is used for calibrating our tests, we
adopted, respectively, As mod1 ¼ 2:48� 10�9, As mod3 ¼
2:42� 10�9.

On the other hand, we emphasize that Fig. 12 shows the
matter power spectrum of mod1;3; we found extremely small discrepancies between the three curves, where the

third one is represented by �CDM. The larger differences
are located about k� 0:1h Mpc�1, leaving probable im-
prints in the baryon acoustic oscillations that could be
potentially detected in near future experiments.
Nonetheless, currently these differences are not enough
to discriminate between the �CDM model and one of
our models. This confirms that there is no reason not to
use curvature invariants as a tool for explaining both DM
and DE effects.

VI. CONCLUSION

In this work, we proposed as an IR cutoff scale for the
size L, in the context of the cosmological HP, a second
order geometrical approach, dealing with the use of inde-
pendent invariants embedded in a FRW background, as a
source for both DM and DE.
In particular, the DE density is assumed to be propor-

tional to these invariants, which reduce from 14 to three in
the FRW cosmology; thus, we use only GR and the HP to
construct our models. Moreover, we overcame the problem
of causality, portrayed in [13], which represents one of the
most serious shortcomings of the choice of the IR cutoff.
One of the main benefits of our approach is basically due

to the advantage of characterizing the acceleration of the
Universe, by geometrical considerations only, by pointing
out that the geometry is capable of describing the positive
acceleration.
Particularly, we found two viable models (the third one

is trivial, corresponding to the dustlike case only), and we
developed a series of cosmological tests, able to explain
their robustness. Therefore, the expansion history defini-
tively fixed the values of �m and �, the free parameters of
our approaches, which have been described through the use
of SNeIa and CMB tests.
Moreover, as a powerful analysis, we investigated cos-

mography in the framework of our models; the predictions
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FIG. 10 (color online). CMB TT power spectrum for model 1
(thick line) and the LCDM model (dotted line). The error bars
refer to the binned results of the WMAP 7 yr [23]. The difference
between model 1 and the LCDM model (�) is also shown.
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FIG. 11 (color online). The same as Fig. 10, but for model 2.
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of cosmography certified that mod1 is favored if compared
to mod3, as it has been pointed in Sec. III. We also arrived
at analogous results in the last sections, with higher red-
shift tests. In fact, additional confirmation came from the
direct study of the anisotropy of the power spectrum.
Finally, we conclude that our models can be pondered as
possible sources of both DE and DM, becoming a viable
candidate to explain unified schemes for the Universe’s
dynamics; in particular, such a picture seems to be able to
naturally reduce the problem of the DM presence in the
Universe, in the framework of GR, being able to explain, at
the same time, the cosmic speedup.

More considerations can be carried forward using this
idea, in order to check if, through higher order invariants, it
would be possible to definitively overcome the problem of
DM and DE. This concept will be the object of future
developments.
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