
Gravity waves from quantum stress tensor fluctuations in inflation

Chun-Hsien Wu,1,* Jen-Tsung Hsiang,2,† L. H. Ford,3,‡ and Kin-Wang Ng4,§

1Department of Physics, Soochow University, 70 Linhsi Road, Shihlin, Taipei 111, Taiwan
2Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan

3Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
4Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

(Received 8 May 2011; published 11 November 2011)

We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating

gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which

depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of

gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum

field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be

sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and

in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not

yet been observed might be used to constrain the duration and energy scale of inflation. However, this

conclusion is contingent upon including the contribution of modes which were trans-Planckian at the

beginning of inflation.
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I. INTRODUCTION

Inflationary models predict a nearly scale invariant spec-
trum of both scalar and tensor perturbations, both of which
arise from the quantum fluctuations of nearly free fields
and are Gaussian in character. The scalar perturbations
arise from the quantum fluctuations of an inflaton field
[1–5], and have apparently been observed in the tempera-
ture fluctuations of the cosmic microwave background [6].
The tensor perturbations arise from the fluctuations of
quantized linear perturbations of de Sitter spacetime
[7–9], but have not yet been observed. In both cases, the
Gaussian nature of the fluctuations and the approximate
scale invariance arise from the properties of free quantum
fields.

Coupling of the inflaton or graviton fields to other fields
can modify these conclusions. For example, the coupling
of graviton modes to the expectation value of the quantum
stress tensor of a conformal field was recently treated in
Ref. [10]. It was shown that graviton modes can acquire a
one-loop correction which increases their amplitude in a
way which depends upon the duration of inflation and upon
the wave number of the mode. This effect will tend to lead
to a blue tilt to the spectrum of tensor perturbations, but
will not change their Gaussian character at the one-loop
level.

However, an additional source of perturbations is quan-
tum fluctuations of the stress tensor. The effects of stress
tensor fluctuations in generating density perturbations have
recently been studied in Refs. [11,12], where a non-

Gaussian, nonscale invariant contribution was found.
Furthermore, this contribution can also depend upon the
duration of inflation and potentially be used to place limits
on this duration. The effect studied in Refs. [11,12] arises
from the quantum fluctuations of the comoving energy
density of a conformal field in its vacuum state. The
resulting density perturbations are a non-Gaussian, non-
scale invariant component to be added to the effect of
inflaton field fluctuations [1–5].
Fluctuations of other components of the stress tensor are

capable of creating tensor perturbations. The purpose of
the present paper is to address the creation of gravity wave
fluctuations by stress tensor fluctuations of a conformal
field in its vacuum state. These can be called passive
fluctuations of gravity, as opposed to the active fluctuations
discussed in Refs. [7–9]. The radiation of gravity waves by
stress tensor fluctuations of matter fields in thermal states
in flat spacetimewas discussed in Ref. [13]. Matter fields in
the vacuum state in flat spacetime cannot radiate due to
energy conservation, but in a time-dependent spacetime,
such radiation is possible.
Unless otherwise noted, units in which G ¼ c ¼ ℏ ¼ 1

will be used, where G is Newton’s constant.

II. GRAVITATIONAL RADIATION IN AN
EXPANDING UNIVERSE

Here, we review the formalism needed to compute
gravitational radiation by a time-dependent source. We
consider a spatially flat Robertson-Walker universe, for
which the metric may be written as

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ
¼ a2ð�Þð�d�2 þ dx2 þ dy2 þ dz2Þ: (1)
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Here, t is the comoving time, and � the conformal time.
Let ��� be this background metric, and h�� be a linear

perturbation,

g�� ¼ ��� þ h��: (2)

Here we are concerned with tensor perturbations, and
impose the transverse, tracefree gauge in which

h��
;� ¼ 0; h

�
� ¼ h ¼ 0; and h��u� ¼ 0; (3)

where u� ¼ ��
t is the four velocity of the comoving ob-

servers, and the semicolon denotes the covariant derivative
on the background spacetime. These conditions remove all
of the gauge freedom, and leave the two degrees of free-
dom associated with the polarizations of a gravity wave.

Lifshitz [14] showed that, in the absence of a source, the
mixed components h�� satisfy the scalar wave equation,

hh�
� ¼ 0; (4)

where

h ¼ 1ffiffiffiffiffiffiffiffi��
p @�ð ffiffiffiffiffiffiffiffi��

p
���@�Þ (5)

is the scalar wave operator for the metric of Eq. (1). A
consequence of this result is that gravitons in the spatially
flat Robertson-Walker spacetime behave as a pair of mass-
less, minimally coupled quantum scalar fields [15].

In the presence of a source, the metric perturbation
satisfies an inhomogeneous equation

hh�
� ¼ �16�S�

�; (6)

where S�
�ðxÞ is the transverse, tracefree part of the stress

tensor of the source. It satisfies the conditions in Eq. (3),
and is most conveniently defined in momentum space. The
solutions of Eq. (4) in the spatially flat Robertson-Walker
spacetime may be taken to be plane waves of the form

h�
�ðxÞ ¼ e�

�fkð�Þeik�x; (7)

where fkð�Þ is a solution of

d

d�

�
a2

df

d�

�
þ k2a2f ¼ 0; (8)

and e�� ¼ e��ðk; �Þ is a polarization tensor which satisfies

e�
� ¼ e�

�u� ¼ e�
�k� ¼ 0: (9)

If we take vector k to be in the z-direction, then the
independent linear polarization tensors can be taken to
have the nonzero components

ex
x ¼ �ey

y ¼ 1ffiffiffi
2

p ; (10)

for the þ polarization, or

ex
y ¼ ey

x ¼ 1ffiffiffi
2

p ; (11)

for the � polarization.
Denote the spatial Fourier transform of any field Að�;xÞ

by

Âð�;kÞ � 1

ð2�Þ3
Z

d3xeik�xAð�;xÞ: (12)

In momentum space, the transverse, tracefree part of a
stress tensor is defined by the projection

Ŝ �
�ð�;kÞ ¼ X

�

e�
�ðk; �Þe	�ðk; �ÞT̂	

�ð�;kÞ: (13)

Thus given a stress tensor T	
�ð�;xÞ in coordinate space,

we first take a Fourier transform to find T̂	
�ð�;kÞ, then

find Ŝ�
�ð�;kÞ using Eq. (13), and finally take an inverse

Fourier transform to find S�
�ð�;xÞ.

Let GRðx; x0Þ be the retarded Green’s function for the
scalar wave operator, which satisfies

hGRðx; x0Þ ¼ ��ðx� x0Þffiffiffiffiffiffiffiffi��
p ; (14)

and GRðx; x0Þ ¼ 0 if t < t0. Here, h is understood to act at
the point x. The gravity wave radiated by the source S�� can

bewritten as an integral over the past light cone of the point
x as

h�
�ðxÞ ¼ 16�

Z
d4x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðx0Þ

q
GRðx; x0ÞS��ðx0Þ: (15)

The source here could represent either classical matter or
quantum fields. In the latter case, the average effect of a
quantum stress tensor can be described by the semiclassi-
cal theory, in which the renormalized expectation value
hT��i is used as a source in the Einstein equation.

The effects of a conformal quantum field upon graviton
modes in de Sitter spacetime has recently been treated in
the context of the semiclassical theory [10]. It was found
that there is a correction to the graviton modes which
grows with increasing duration of inflation, analogous to
the effects found in Refs. [11,12] and to be discussed in this
paper. However, the effect found in Ref. [10] comes only
from the expectation value of the stress tensor, not from
stress tensor fluctuations. If h�

� is a classical solution of

Eq. (4), then there is a correction term h0��. In the case that

the conformal field is the electromagnetic field, the frac-
tional correction is

� ¼
��������
h0��

h�
�

��������¼
1

5�
‘2pHSk; (16)

where ‘p is the Planck length, H is the Hubble parameter

during inflation, and S is the expansion factor during
inflation. This effect grows with increasing S and k, but
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its total magnitude is limited by the requirement that � & 1
for the one-loop approximation to hold.

III. A FLUCTUATING SOURCE

Now we consider the case where the source S�
�ðxÞ is

undergoing fluctuations, leading to a fluctuating tensor
perturbation, h�

�ðxÞ. The correlation function for the per-

turbation is

K�
�


�ðx;x0Þ¼ hh��ðxÞh
�ðx0Þi�hh��ðxÞihh
�ðx0Þi; (17)

and that for the source is

C�
�


�ðx;x0Þ¼ hS��ðxÞS
�ðx0Þi�hS��ðxÞihS
�ðx0Þi: (18)

Their relation follows from Eq. (15):

K�
�


�ðx; x0Þ ¼ ð16�Þ2

Z
d4x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðx1Þ

q
d4x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðx2Þ

q

�GRðx; x1ÞGRðx0; x2ÞC�
�


�ðx1; x2Þ: (19)

The spatial Fourier transform of this equation may be
expressed as

K̂�
�


�ð�;�0; kÞ ¼ 64ð2�Þ8

Z
d�1d�2a

4ð�1Þa4ð�2Þ
� Ĝð�;�1; kÞĜð�0; �2; kÞĈ�

�


�ð�1; �2; kÞ; (20)

where Ĉ�
�


�ð�1; �2; kÞ and Ĝð�;�0; kÞ are the Fourier

transforms of C�
�


�ðx1; x2Þ and of the retarded Green’s

function GRðx; x0Þ, respectively.
If k is in the z-direction, then the nonzero components of

Ĉ�
�


�ð�1; �2; kÞ for the þ polarization are

Ĉþ ¼ Ĉx
x
x
x ¼ Ĉy

y
y
y ¼ �Ĉx

x
y
y ¼ �Ĉy

y
x
x: (21)

Similarly, the nonzero components for the � polarization
are

Ĉ� ¼ Ĉx
y
x
y ¼ Ĉy

x
y
x ¼ Ĉy

x
x
y ¼ Ĉx

y
y
x: (22)

In fact, the stress tensor correlation functions for both
polarizations are equal in our case, so we may drop the
polarization label and write

Ĉð�1; �2; kÞ ¼ Ĉþð�1; �2; kÞ ¼ Ĉ�ð�1; �2; kÞ: (23)

Furthermore, the correlation function Ĉð�1; �2; kÞ for
the conformal field in Robertson-Walker spacetime may
be related to the corresponding correlation function for the
conformal field in flat spacetime by a conformal trans-
formation. First consider a classical stress tensor T�

� in

Robertson-Walker spacetime which is conformally related
to T �

� in Minkowski spacetime. The spatial components

of these tensors are related by Ti
j ¼ a�4T i

j. The same
conformal transformation applies to the quantum stress
tensor correlation function. Although the conformal anom-
aly in the expectation value of a quantum stress tensor
operator breaks the conformal symmetry, the conformal

anomaly for free fields is a c-number which cancels in the
correlation function. Consequently, we can write

Ĉð�1; �2; kÞ ¼ a�4ð�1Þa�4ð�2ÞĈMð�1 � �2; kÞ; (24)

where ĈMð�1 � �2; kÞ is the Fourier transform of the
Minkowski spacetime correlation function for a fixed com-
ponent of T i

j. As is shown in Appendix A, it may be
expressed as

ĈMð�1��2;kÞ¼� k5

512�5

Z 1

0
duð1�u2Þ2cos½kuð�1��2Þ�:

(25)

This result applies for either polarization.

IV. THE POWER SPECTRUM
IN INFLATIONARY COSMOLOGY

The well-known Wiener-Khinchin [16,17] theorem
states that the Fourier transform of a correlation function
is a power spectrum. A corollary of this theorem is that the
power spectrum can normally be written as the expectation
value of a squared quantity, and hence must be positive.
However, the latter result can fail in quantum field theory,
and negative power spectra are possible. This has recently
been discussed in Ref. [18]. Let Cðt� t0;x� x0Þ be a flat
spacetime correlation function. We define the associated
power spectrum by a spatial Fourier transform at t ¼ t0:

PðkÞ ¼ 1

ð2�Þ3
Z

d3ueik�uCð0;uÞ: (26)

Given a power spectrum, we can find the correlation func-
tion in space at equal times as an inverse Fourier transform:

Cð0;uÞ ¼
Z

d3ke�ik�uPðkÞ: (27)

(Here, we will use C to denote either a generic or a stress
tensor correlation function, and K to denote metric corre-
lation functions.)
The power spectrum for the gravity wave fluctuations is

just a spatial component of K̂�
�


�ð�;�0; kÞ in the limit that

�0 ¼ �, and is the same for both polarizations. Thus we
may combine Eqs. (20) and (24) to write the power spec-
trum at conformal time � ¼ �r as

PðkÞ ¼ 64ð2�Þ8
Z �r

d�1d�2Ĝð�r; �1; kÞ
� Ĝð�r; �2; kÞĈMð�1 � �2; kÞ: (28)

The possible treatments of the lower limits of integration
will be discussed below. We should note that the quantity
which is usually called the power spectrum in cosmology is
not PðkÞ, but rather

P ðkÞ ¼ 4�k3PðkÞ: (29)

It is P ðkÞ which is approximately independent of k for
the active gravity wave fluctuations. The probability
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distribution for quantum stress tensor fluctuations is a
skewed, hence non-Gaussian distribution with nonzero
odd moments, although the explicit form has only been
found in two-dimensional spacetime [19]. Consequently,
the gravity wave fluctuations produced by stress tensor
fluctuations will also be non-Gaussian.

The Green’s function Ĝð�;�0; kÞ satisfies
�
@2� þ 2

a0

a
@� þ k2

�
Ĝð�;�0; kÞ ¼ �ð�� �0Þ

ð2�Þ3a2ð�0Þ ; (30)

as may be verified by taking a spatial Fourier transform of
Eq. (14). Here, a0 ¼ da=d�. Now we wish to specialize to
the case of de Sitter spacetime, for which the scale factor is

að�Þ ¼ � 1

H�
(31)

with �< 0. We may set the scale factor to be unity at the
end of inflation, � ¼ �r, in which case �r ¼ �1=H. Now
Eq. (30) becomes

ð@2� þ 2Ha@� þ k2ÞĜð�;�0; kÞ ¼ �ð�� �0Þ
ð2�Þ3a2ð�0Þ : (32)

Comparison of this result with Eq. (71) of Ref. [11] reveals

that Ĝð�;�0; kÞ differs from the Green’s function defined in
the latter reference by a factor of 1=½ð2�Þ3a2ð�0Þ�.
Consequently, we may use the result of Ref. [11] to write

Ĝð�;�0; kÞ ¼ H2

ð2�kÞ3 f�kð�� �0Þ cos½kð�� �0Þ�
þ ð1þ k2��0Þ sin½kð�� �0Þ�g: (33)

Next, we turn to a discussion of some the possible initial
conditions which can be imposed on solutions of Eq. (28).

A. Sudden switching

Here, we impose the initial condition that the metric
fluctuations vanish at � ¼ �0. The power spectrum of
tensor fluctuations at the end of inflation, � ¼ �r ¼
�1=H, is then given by

PðkÞ ¼ PsðkÞ ¼ 64ð2�Þ8
Z �1=H

�0

d�1

Z �1=H

�0

d�2

� Ĝð�;�1; kÞĜð�;�2; kÞĈMð�1 � �2; kÞ: (34)

The integrals in Eq. (34) may be evaluated, using, for
example, the algebraic computer program MATHEMATICA.
In the limit that kj�0j � 1, the result is approximately

PsðkÞ � �H4�2
0

3�3k
ð1þ k2H�2Þ: (35)

There are several remarkable features of this result: its
negative sign, its blue tilt, and the fact that it grows with
increasing j�0j. The possibility of negative power spectra
was discussed in Ref. [18], where it was shown that such
spectra arise naturally in quantum field theory for the

fluctuations of quadratic operators, such as quantum stress
tensors. Indeed, the power spectrum associated with the
fluctuations of the transverse, tracefree part of the electro-
magnetic stress tensor is given by the �1 ¼ �2 limit
of Eq. (25),

Ĉ Mð0; kÞ ¼ � k5

960�5
; (36)

which is negative. Negative power spectra are always
associated with coordinate space correlation functions
which are singular in the coincidence limit. This is the
case for stress tensor correlation functions. They are also
associated with the opposite correlation versus anticorre-
lation behavior as compared with a positive power spec-
trum with the same functional form. This means that CðrÞ
changes sign as the sign of PðkÞ changes, so events that
were correlated become anticorrelated and vice versa. The
spectrum is also not scale invariant, and tilted toward the
blue end of the spectrum because jP sðkÞj grows with
increasing k.
Another feature of Eq. (35) is that the power spectrum

for the gravity waves grows as �2
0, which means that it is

proportional to the square of the scale factor change be-
tween the initial time and the end of inflation. This is
analogous to the results found in Refs. [11,12] for the
power spectrum of density fluctuations produced by quan-
tum stress tensor fluctuations. In both cases, the growth of
fluctuations can potentially be used to place upper limits on
the duration of inflation, as will be discussed in Sec. V. The
net expansion factor during inflation is

S ¼ Hj�0j; (37)

so we may write Eq. (35) as

PsðkÞ ¼ �H2S2

3�3k
ð1þ k2H�2Þ: (38)

The coordinate space correlation function associated with
this power spectrum is given by Eq. (27) to be

KsðrÞ ¼ � 4H2S2

3�2r2

�
1� 2

H2r2

�
: (39)

This gives the correlation of points at spatial separation r at
equal times. Note that it may be either positive or negative.
Although the power spectrum and the associated corre-

lation function growwith increasing S or energy scale k, the
perturbative approach used here requires that jKðrÞj � 1,
which places a limit on the magnitude of the effect.
It is informative to compare the results of this subsection

with the flat spacetime limit. If we set a ¼ 1 in Eq. (30)
and solve for the flat space Green’s function, the result is

Ĝ Mð�� �0; kÞ ¼ 1

ð2�Þ3k sin½kð�� �0Þ�: (40)

If we use this Green’s function in Eq. (28), the resulting
power spectrum becomes
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PMðkÞ ¼ � 5k

6�3
; (41)

where a rapidly oscillating term which depends upon the
integration interval has been dropped. The associated co-
ordinate space metric correlation function at equal times is

KMðrÞ ¼
20‘4p

3�2r4
: (42)

This function simply describes Planck-scale fluctuations,
which are presumably unobservable. The main point is that
the fluctuations do not accumulate in flat spacetime due to
anticorrelations. In a curved spacetime, such as de Sitter
space, this is no longer the case, and the anticorrelated
fluctuations need not cancel. In the calculations, the crucial
difference is between the flat space Green’s function,
Eq. (40), and that in de Sitter space, Eq. (33).

B. Exponential switching

In the previous subsection, the interaction between the
quantum stress tensor and the gravitational field was taken
to be switched on suddenly at � ¼ �0. One might be
concerned that either the sign of PðkÞ, or its growth with
increasing j�0j, are artifacts of this sudden switching.
Here, we investigate a model in which the interaction
is switched on gradually. We replace the step function
�ð�� �0Þ by an exponential function, ep�, with p > 0.
This function vanishes as � ! �1, and in the limit of
small p, is close to unity by the end of inflation. The effect
of this switching function is effectively to switch on the
interaction on a conformal time scale of order j�0j, where
�0 ¼ �1=p. Equation (34) is replaced by

PeðkÞ ¼ 64ð2�Þ8
Z �1=H

�1
d�1seð�1Þ

Z �1=H

�1
d�2seð�2Þ

� Ĝð�;�1; kÞĜð�;�2; kÞĈflatð�1 � �2; kÞ; (43)

where the switching function is

seð�Þ ¼ ep�: (44)

In the limit of small p, Eq. (43) leads to

PeðkÞ � �H4ð1þ k2=H2Þ
8�2k2p

þOðlnpÞ

¼ �H3ð1þ k2=H2ÞS
8�2k2

; (45)

where S, given by Eq. (37), is the expansion between � ¼
�0 ¼ �1=p and the end of inflation.

Again the power spectrum is negative, blue tilted, and
grows with increasing S although now linearly. In this case,
the equal time spatial correlation function is an inverse
Fourier transform of PeðkÞ given by

KeðrÞ ¼ �H3S

4r
: (46)

Here, we have dropped a delta-function term proportional
to �ðxÞ, which will not contribute to measurements made at
distinct spatial locations. Note that because að�Þ ¼
1=ðHj�jÞ, if the switching time �� is of order j�0j, then
the scale factor approximately doubles during the switch-
on. For example, að�=2Þ ¼ 2að�Þ. In terms of comoving
time t, where aðtÞ ¼ eHt, this corresponding to a time
interval of �t � 1=H, or one horizon crossing time. Thus
the switch-on time in this model is of order of the horizon
crossing time.

C. Adjustable width switching

The switching function seð�Þ used in the previous sub-
section contains only one parameter, p, which regulates
both the effective duration of inflation and the period over
which the switching occurs. It is instructive to consider a
more general function with two parameters:

sawð�Þ ¼ 1

1þ eð�0��Þ=	 : (47)

This function, analogous to the Fermi-Dirac distribution
function, changes from zero to unity when � � �0 over a
time scale of �� � 	. The resulting power spectrum,
PawðkÞ, is given by Eq. (43), with seð�Þ replaced by
sawð�Þ, and may be expressed as

PawðkÞ ¼ � H4

2�3k3

Z 1

0
duð1� u2Þ2ðI2C þ I2SÞ: (48)

Here,

IC ¼
Z 1

xr

dxgðx; xrÞsðxÞ cosðuxÞ; (49)

and

IS ¼
Z 1

xr

dxgðx; xrÞsðxÞ sinðuxÞ; (50)

with

gðx; xrÞ ¼ ðx� xrÞ cosðx� xrÞ � ð1þ xxrÞ sinðx� xrÞ:
(51)

We use the notation x ¼ �k�, xr ¼ �k�r and sðxÞ ¼
sawð�Þ. The dominant contributions to the integrals in IC
and IS come from values of x of order x0 ¼ �k�0 � xr, so
we may write

gðx; xrÞ � xðcosx� xr sinxÞ: (52)

The resulting integrals may be evaluated using Eqs. (B8)
and (B9), which are derived in Appendix B. The final
result, when 	 * 1=k, is

PawðkÞ � � H4�2
0

2�k2	
ð1þ k2H�2Þ: (53)

Apart from numerical factors, this result contains both
Eqs. (35) and (45) as special cases. If 	 � 1=k, then we
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return to the sudden switching case of Eq. (35). On the
other hand, if 	 � j�0j, we find Eq. (45), up to numerical
constants. The fact that the constants do not match exactly
may be due to the approximation used in deriving
Eqs. (B8) and (B9) (q � 1) not being very good near
u ¼ 0. In summary, if �� & 1=k, we obtain the sudden
result, Eq. (38), proportional to S2, and if �� � j�0j, we
obtain Eq. (45), proportional to S. Intermediate switching
times lead to Eq. (53).

Note that in this section, we have been discussing the
effects of different rates at which the coupling between the
conformal field and gravity is switched on. This issue is
distinct from the choice of the initial quantum state for
either the conformal field or the gravitons. If the conformal
field is not in its vacuum state, then its particle content
should rapidly redshift. Soon, it will be indistinguishable
from the vacuum, and we may regard our analysis as
beginning at that time. Variation of the state of the grav-
itons essentially adds an additional term to the power
spectrum of the tensor perturbations. Here, we are con-
cerned with the tensor perturbations generated by the
quantum stress tensor fluctuations, and do not explicitly
treat other sources of tensor perturbations.

V. IMPLICATIONS OF THE POWER SPECTRUM

A. Initial conditions and the trans-Planckian issue

Although the results in the previous section depend
somewhat on the rate at which the coupling between the
quantum stress tensor fluctuations and the gravitational
field is switched on, in all cases the power spectrum grows
as a power of S, the expansion from the initial time to the
end of inflation. Thus we need an interpretation which
suggests a reasonable value for this time, j�0j. One possi-
bility is to take this time to be the onset of inflation. This
imposes the initial condition that the gravity wave pertur-
bations vanish at the beginning of inflation. In this case, S
becomes the total expansion factor during inflation. A
possible objection to this interpretation is that it can lead
to contributions from trans-Planckian modes. This raises
the question of whether our perturbative treatment can be
trusted, as relations such as Eq. (15) are lowest order
approximations in the dimensionless coupling constant
ð‘pkÞ2. The trans-Planckian issue has been extensively

discussed in the contexts of the Hawking effect and of
cosmology. Hawking’s original derivation [20] of black
hole radiance relies upon modes which begin far above
the Planck energy. The fact that the Hawking effect gives a
beautiful unification of gravity, thermodynamics, and
quantum theory can be considered to be a powerful argu-
ment to take trans-Planckian modes seriously. It is true that
it is possible to derive the Hawking effect without
trans-Planckian modes [21,22], but only at the price of
introducing modified dispersion relations which break
local Lorentz symmetry and hence postulate new physics.
There has been an extensive discussion of the possible role

of trans-Planckian modes in inflationary cosmology. (See
Ref. [12] for a lengthy list of references.) The effect dis-
cussed in this paper has the potential to serve as an
observational probe of trans-Planckian physics.
There is an alternative possibility [12], which is to take

the initial time at which the perturbation vanishes to de-
pend upon the mode, and to be the time at which a given
mode redshifts below the Planck-scale in the comoving
frame. This avoids the trans-Planckian issue, but at the
price of introducing a nonlocal and frame dependent pre-
scription, which is analogous to introducing non-Lorentz
invariant modified dispersion relations. In the remainder of
this paper, we will explore the consequences of adopting
the former prescription whereby S is the total expansion
factor during inflation. However, all of our conclusions
depend upon this assumption.
The dependence of the gravity wave spectrum upon a

positive power of S might seems to contradict a theorem
due to Weinberg [23], which was generalized by
Chaicherdsakul [24]. This theorem states that radiative
corrections during inflation should not grow faster than a
logarithm of the scale factor. However, as was discussed in
more detail in Ref. [12], density perturbations which are
proportional to a power of S are really due to high fre-
quency modes at the initial time, and are hence always
large rather than growing. This comment also applies to the
effects found in Ref. [10] and in the present paper.
The fact that the effect which we calculate comes from

high frequency modes does not mean that it can be re-
moved by a renormalization. Our key coordinate space
result, Eq. (19), involves an integral of the full stress tensor
correlation function, with no renormalizations. Our view is
that the finiteness of this integral implies that no renormal-
ization is needed.

B. Numerical estimates

We may use the coordinate space correlation functions,
KsðrÞ and KeðrÞ, to estimate the physical effects of the
gravity wave fluctuations on various scales. However, these
functions describe the primordial fluctuations at the end of
inflation. After the end of inflation, modes which are out-
side the horizon remain approximately constant until they
reenter the horizon. (For a more detailed discussion, see for
example Ref. [25].) After that point, they redshift with their
amplitude proportional to 1=a. Let aHc be the value of the
scale factor at which a mode associated with coordinate
length r reenters the horizon, and anow be the present value
of the scale factor. The present value of the correlation
function is then

KnowðrÞ ¼ KðrÞ
�
aHc

anow

�
2
: (54)

For the sudden switch model, this becomes

Know�SðrÞ ¼ � 4H2S2‘4p

3�2r2

�
1� 2

H2r2

��
aHc

anow

�
2
; (55)
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and for the exponential switch model it is

Know�EðrÞ ¼ �H3S‘4p
4r

�
aHc

anow

�
2
: (56)

Here, the factors of the Planck length ‘p are written

explicitly.
Let ER be the reheating energy at the end of inflation.

This energy has since been redshifted to that of the cosmic
microwave background. We set a ¼ 1 at the end of infla-
tion so that

anow � ER

2:5� 10�4 eV
: (57)

The proper length scale today associated with coordinate
distance r is

‘ ¼ anowr: (58)

We assume that reheating is efficient, so the vacuum en-
ergy at the end of inflation is of order E4

R, and

H2 ¼ 8�

3
‘2pE

4
R: (59)

We also assume that the scale of interest was outside the
horizon at the end of inflation, so that Hr > 1. We may
combine all of these results to write

jKnow�Sj ¼ 1045
�
‘p
‘

�
2
�

ER

1016 GeV

�
6
�
aHc

anow

�
2
S2; (60)

and

jKnow�Ej ¼ 1011
�
‘p
‘

��
ER

1016 GeV

�
7
�
aHc

anow

�
2
S: (61)

Let us first consider the case of perturbations of the order
of the present horizon size, ‘ � 1061‘p. In this case, aHc �
anow. Data from the WMAP satellite [6] constrain these
perturbations to satisfy h & 10�5, so that jKnowj & 10�10.
Consequently, the sudden switch model leads to

S & 1034
�
1016 GeV

ER

�
3
; (62)

and the exponential switch model to

S & 1040
�
1016 GeV

ER

�
7
: (63)

These constraints on the total expansion during inflation
are compatible with adequate inflation to solve the horizon
and flatness problems, S * 1023. Because K < 0, quantum
stress tensor fluctuations during inflation will tend to pro-
duce anticorrelated gravity wave fluctuations. Note that in
this example, jKnowj � KðrÞ & 10�10, so the criterion for
the validity of the perturbative calculation, jKðrÞj � 1, is
satisfied.

Now we wish to consider perturbations which are well
within the present horizon. For this purpose, we need an

approximate model for the current matter content of the
Universe. Although the dominant component today is
the dark energy, this is likely to be a recent phenomenon.
If the dark energy is due to a cosmological constant term, it
does not redshift and hence does not grow as we go back-
wards in time. Here we assume that the Universe was

radiation dominated, a / t1=2, for t & teq and subsequently

matter dominated, a / t2=3. Furthermore, we assume

aeq
anow

� 10�4; (64)

so that teq=tnow � 10�6. A perturbation with proper length

‘ enters the horizon at t ¼ tHc ¼ ‘. If we assume that
‘ < teq, then we may write

�
aHc

anow

�
2 � 10�63 ‘

‘p
: (65)

If we insert this relation into Eq. (60), the result is

jKnow�Sj ¼ 10�58

�
100 km

‘

��
ER

1016 GeV

�
6
S2: (66)

In the case of the exponential switch model, the factors of ‘
cancel,

jKnow�Ej ¼ 10�52

�
ER

1016 GeV

�
7
S; (67)

leading to a scale independent correlation function on
scales ‘ & 1023 cm.
If the magnitude of these fluctuations is sufficiently

large, they should produce background noise in gravita-
tional wave detectors, which has not been observed. LIGO
has placed limits [26] of h & 10�24 on scales of the order
of 102 km, corresponding to jKnowj< 10�48, and leading
to the constraints

S < 1023
�
1010 GeV

ER

�
3

(68)

for the sudden switch model, and

S < 1025
�
1013 GeV

ER

�
7

(69)

for the exponential switch model. However, these results
are compatible with adequate inflation to solve the horizon
and flatness problems only if

ER & 1010 GeV (70)

for the sudden switch model, and

ER & 1013 GeV (71)

for the exponential switch model. In this example,
jKðrÞj � 1023Know & 10�25, so again the requirement
that jKj be small is fulfilled.
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VI. SUMMARYAND DISCUSSION

We have seen that quantum stress tensor fluctuations are
capable of creating gravity waves during inflation. The
resulting spectrum has several properties, including nega-
tive power and an amplitude which grows with increasing
duration of the inflationary period. Negative power spectra,
although forbidden by the Wiener-Khinchin theorem
[16,17], can arise in quantum field theory [18], especially
in quantum stress tensor fluctuations. A negative power
spectrum can be viewed as interchanging correlations and
anticorrelations, as compared to a positive power spectrum
of the same functional form.

We find that the amplitude of the gravity wave spectrum
is proportional to a positive power of S, the change in scale
factor during inflation. A similar dependence was also
found in Refs. [11,12], for the effects of stress tensor
fluctuations on density perturbation and in Ref. [10] for
the correction to gravity wave modes from expectation
value of the stress tensor of a conformal field. The gravity
wave power depends somewhat upon the details of the
initial conditions, being S2 if one integrates the equations
directly from a state of zero fluctuations, and being S if the
interaction between the fluctuating matter stress tensor is
supposed to be switched on over a finite interval of the
order of the horizon size in comoving time. In all cases, the
primordial power spectrum of gravity wave fluctuations is
negative and greater in magnitude at shorter wavelengths.
This nonscale invariant spectrum of fluctuations will be
highly non-Gaussian, due to the non-Gaussian character of
quantum stress tensor fluctuations.

Our conclusions are contingent upon the assumptions
which we have made, especially concerning the trans-
Planckian modes. We have chosen to include all modes
in the conformal field theory, including those which are
above the Planck-scale at the beginning of inflation.
Because our results depend crucially on this assumption,
one can regard the predicted power spectra as probes of
trans-Planckian physics.

The gravity wave fluctuations are potentially observable.
Longer wavelengths could alter the polarization of the
CMB, and be detected in the same way as the active
fluctuations. Shorter wavelengths could potentially be de-
tected by Earth- or space-based gravity wave detectors.
The fact that they have not yet been detected might be used
to infer constraints on the duration and energy scale of
inflation.
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APPENDIX A: FLAT SPACE STRESS TENSOR
CORRELATION FUNCTIONS

In this appendix, we derive the explicit expressions for
the flat space correlation functions utilized in Sect. III,
especially Eq. (25). All of the expressions in this appendix
refer to flat spacetime, so here we drop the subscript ‘‘M.’’
We may use the results of Ref. [27], where the electromag-
netic field stress tensor correlation functionwas shown to be

C����ðx;x0Þ¼4ð@�@�DÞð@�@�DÞþ2g��ð@�@	DÞð@�@	DÞ
þ2g��ð@�@	DÞð@�@	DÞ�2g��ð@�@	DÞð@�@	DÞ
�2g��ð@�@	DÞð@�@	DÞ�2g��ð@�@	DÞð@�@	DÞ
�2g��ð@�@	DÞð@�@	DÞþðg��g��þg��g��

�g��g��Þð@
@	DÞð@
@	DÞ: (A1)

Here,

D ¼ Dðx� x0Þ ¼ 1

4�2ðx� x0Þ2 (A2)

is the Hadamard (symmetric two-point) function for the
massless scalar field. For our purposes, it is sufficient to
compute a single component, such as Cxyxy. The result is

Cxyxyð; rÞ ¼ 3

�2½ðt� t0Þ2 � r2�4 ; (A3)

where r ¼ jx� x0j and  ¼ t� t0. The spatial Fourier
transform of this expression is

Ĉxyxyð;kÞ¼� 1

512�5

�
d4

d4
þ2k2

d2

d2
þk4

��
sink



�
; (A4)

or equivalently,

Ĉ xyxyð; kÞ ¼ � k5

512�5

Z 1

0
duð1� u2Þ2 cosðkuÞ; (A5)

which is Eq. (25). This expression may be verified by
checking that

Cxyxyð; rÞ ¼
Z

d3ke�ik�ðx�x0ÞĈxyxyð; kÞ: (A6)

APPENDIX B: EVALUATION OF
SAMPLING FUNCTION INTEGRALS

In this appendix, we will evaluate some of the integrals
needed in Sec. IVC, which involve the function saw,
defined in Eq. (47). We begin with expression 3.411.23 in
Ref. [28], which states that

Z 1

�1
xe�x

1þ ex
dx ¼ ��2 cscð��Þ cotð��Þ; (B1)

for 0< Reð�Þ< 1. This implies that
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Z 1

�1
e�x

1þ ex
dx ¼ � cscð��Þ: (B2)

This may be verified by taking a derivative of Eq. (B2) with
respect to �, and by noting that when � ¼ 1=2, this
relation becomes

Z 1

�1
ex=2

1þ ex
dx ¼ 2

Z 1

0

1

1þ y2
dy ¼ �: (B3)

This confirms that there is no additional constant in
Eq. (B2). Next, we may take the limit in which � ! iq
to write

Z 1

�1
eiqx

1þ ex
dx ¼ � 2�i

e�q � e��q : (B4)

However, we need integrals over a semi-infinite range of
the form

Z 1

xr

eiqx

1þeðx�x0Þ=bdx

¼beiqx0
�Z 1

�1
eiqbz

1þez
dz�

Z ðxr�x0Þ=b

�1
eiqbz

1þez
dz

�
: (B5)

The second integral on the right-hand side of the above
equation may be approximated by setting the denominator
of the integrand to unity:

Z ðxr�x0Þ=b

�1
eiqbz

1þ ez
dz � i

qb
eiqðxr�x0Þ þOðe�x0=bÞ: (B6)

Thus,

Z 1

xr

eiqx

1þ eðx�x0Þ=b dx � � 2�ieiqx0

e�q � e��q þ
i

q
eiqxr : (B7)

If we take a derivative with respect to q, then the real
and imaginary parts of the resulting expression become,
for qb � 1,

Z 1

xr

x sinqx

1þ eðx�x0Þ=b dx � �2�x0b cosðqx0Þe�qb (B8)

and

Z 1

xr

x cosqx

1þ eðx�x0Þ=b dx � 2�x0b sinðqx0Þe�qb: (B9)
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