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We explore the effects of heavy degrees of freedom on the evolution and perturbations of light modes in

multifield inflation. We use a simple two-field model as an example to illustrate the subtleties of

integrating out massive fields in a time-dependent background. We show that when adiabaticity is

violated due to a sharp turn in field space, the roles of massive and massless field are interchanged,

and furthermore the fields are strongly coupled; thus the system cannot be described by an effective

single-field action. Further analysis shows that the sharp turn imparts a non-Bunch-Davis component in

each perturbation mode, leading to oscillatory features in the power spectrum, and a large resonantly

enhanced bispectrum.
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I. INTRODUCTION

Effective field theory (EFT) is a powerful tool for
exploring physics whose energy scale exceeds what is
currently accessible to us experimentally (and sometimes
also theoretically). The EFT approach, which emphasizes
symmetries, is particularly suited for understanding the
decoupling of energy scales and the relevant degrees of
freedom. Indeed, this ‘‘bottom-up’’ perspective, through
enumerating the lowest-dimension operators compatible
with the underlying symmetries, has found wide-ranging
applications, from particle physics to condensed matter
systems. One can parametrize our ignorance of short-
distance physics in a systematic and controlled way before
the underlying microscopic theory is fully understood.

In this regard, inflation is another natural arena for EFT
to find its applications. While the generic predictions of
inflation are in excellent agreement with data, its success is
highly sensitive to UV physics. In particular, a dimension-
six Planck-suppressed operator can give an order-one con-
tribution to the slow-roll parameter � (which measures the
curvature of the potential) and stop inflation, unless there
exists a symmetry (such as shift symmetry) preserved by
Planck-scale physics to forbid such operator. The EFT
approach thus gives us a recipe to select, among the vast
number of inflationary models, those whose UV physics is
compatible with observations. It would therefore be of
interest, both observationally and theoretically, to formu-
late a general effective action of inflation, and indeed some
initial forays into the subject can be found in [1–3]. In this
work, we follow up on these threads. After laying out our
general results which complement the aforementioned ear-
lier works, we present a worked example which hopefully
serves to illustrate some of the subtleties involved.

The procedure of integrating out heavy degrees of free-
dom in flat space EFT is standard. At energies below the
heavy scale M, the effects of short-distance physics can
be summarized by a set of higher-dimensional operators,

suppressed by powers of M, that are consistent with
Lorentz invariance and other underlying symmetries.
This standard procedure, however, becomes more subtle
for time-dependent backgrounds. First of all, time trans-
lation as well as 4D Lorentz symmetries are broken, and
many additional operators can arise. For example, ‘‘bound-
ary operators’’ can be introduced as a way to set the initial
conditions for inflation [4–7]. Furthermore, even if one can
always integrate out the heavy field and describe the
classical field dynamics effectively as one single field,
one cannot always do so for the quantum perturbations.
We will see that nonadiabaticity of a time-dependent back-
ground can sometimes cause heavy fields (which naively
can be integrated out) to become momentarily light, as well
as strong couplings between the light and heavy modes.
Therefore, it is worthwhile to revisit some of the standard
lores in EFT. Having some solvable examples, especially
those that illustrate the subtleties involved, would certainly
be welcoming in this regard.
In this work, we illustrate some issues involved in for-

mulating an EFT for inflation with a two-field model. The
physics and signatures of such model depend as usual on
the masses of the fields but also on the classical trajectory
(e.g., its turn rate defined more precisely below) in field
space. When both fields are light and the turn rate is slow
(i.e., slow-roll, slow-turn), their quantum fluctuations do
not freeze after horizon exit but are sourced by each other.
Such superhorizon evolutions and their effects on the
power spectrum and non-Gaussianities have been well
studied [8–17]. When one of the fields is much heavier1

than the Hubble scale during inflation, one would naively

1When the mass of the heavy field is comparable to Hubble,
we have the quasisingle field scenario [18]. It is important that
the mass of the heavy field is comparable to but not much bigger
than Hubble so that its decay is slow enough for the interaction
to play a role. The turn rate in this scenario is assumed to be
slow.
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expect that this heavy field can be integrated out, resulting
in an effective single-field model.2 In fact, it was recently
argued that the result of integrating out the heavy mode can
be summarized by an effective sound speed [20,21]. While
this is true for a slowly-turning trajectory, our results show
that this effective single-field description breaks down
when the turn rate is sharp. We consider a two-field model
which is illustrative but at the same time simple enough to
be solved exactly. We further computed the power spec-
trum as well as the bispectrum for this solvable model, and
found that these observables display interesting features
that are not captured by a naive effective single-field
model. Our work is thus consistent with the recent obser-
vation that in inflationary models with a small sound speed
(which, as we shall see, is momentarily the case during the
sharp turn), there exists a strong coupling scale below
Hubble [22] which signals the incompleteness of a naive
single-field description.

This paper is organized as follows. In Sec. II, we discuss
the classical dynamics for general multifield inflation, and
present the most general effective action for N canonical
scalar field with kinetic mixing to quadratic order of the
quantum fluctuations. We then compare our quadratic ac-
tion to that recently obtained in [3] using a Goldstone mode
approach. In Sec. III, we revisit the criteria for the validity
of EFT based on the classical dynamics of inflaton [2]. We
found that while the mass scale of new physics associated
with the tangent direction of the trajectory is similarly

bounded Mk �
ffiffiffiffiffiffi
2�

p
MP, the mass scale associated with

the transverse directions is not subject to this constraint.
In Sec. IV, we worked out the EFT for perturbations based
on a two-field model in detail. We computed the power
spectrum and the bispectrum to illustrate that these observ-
ables are distinct from what naively expected from an
effective single-field model, even though the mass of the
heavier field is above Hubble. We end with some discus-
sions and a summary in Sec. V.

II. COMPARING EFFECTIVE ACTION WITH
FULL ACTION

In this section, we compare the full quadratic-level
action for N minimally coupled scalar fields in an infla-
tionary background with the effective action based on the
Goldstone method by Senatore and Zaldarriaga in
Refs. [1,3]. We show that imposing shift symmetry on all
the scalar fields and decoupling gravity, while it greatly
simplifies the analysis for the effective action in Ref. [3],
also forbids many contributions that are crucial to account
for some interesting multifield dynamics.

A. Classical background

We consider a class of multifield inflation models
described by the following action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
�ab@��

a@��
b � Vð�aÞ

�
: (1)

Here we have N scalar fields �a (a ¼ 1; 2; . . . ; N). This
type of action has been carefully studied in Ref. [23], and
we will follow the formalism therein.
The homogeneous classical field �aðtÞ follows the

equation of motion

€�a þ �a
bc

_�b _�c þ 3H _�a þ �abrbV ¼ 0: (2)

Introducing the covariant derivative

Dt
_�a � d _�a

dt
þ �a

bc
_�b _�c;

�a
bc ¼

1

2
�adð�db;c þ �dc;b � �bc;dÞ;

(3)

we can rewrite Eq. (2) in a more concise form

D t
_�a þ 3H _�a þ �abrbV ¼ 0: (4)

We can define a composite scalar field �0ðtÞ through
_� 2
0 � �ab

_�a _�b: (5)

One can show that the equation of motion for�0 resembles
that of a single scalar field

€� 0 þ 3H _�0 þrkV ¼ 0; (6)

with rkV the covariant derivative along the tangent direc-

tion of the classical inflaton path

rkV �
_�a

_�0

raV:

The inflationary parameters � and � are defined as usual

� � � _H

H2
¼

_�0
2

2H2M2
pl

; � � _�

H�
: (7)

B. Kinematic basis

The metric �ab can be locally diagonalized by a set of
vielbeins eaI ,

eaI e
b
J�

IJ ¼ �ab; eaI e
b
J�ab ¼ �IJ:

In particular, it will be convenient to choose two of the
vielbeins pointing along the tangent and normal directions
with respect to the classical trajectory, which we denote by

ea� �
_�a

_�0

; ea	 � Dte
a
�

jDte
a
� j
: (8)

2It is also worth pointing out that a heavy field can influence
the power spectrum if it happens to be excited at the beginning of
inflation, and if inflation does not last too long. [19]
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Given eaI e
b
I �ab ¼ 1, taking covariant time derivative on

both sides shows that ea and Dte
b are orthogonal by

construction, i.e.,

ðDte
b
I ÞeaI �ab ¼ 0: (9)

Therefore e� and e	 are orthogonal by definition.

The set of vielbeins feaI g define a set of complete ortho-
normal vectors in the field space spanned by �a. We have
denoted two of them by ea� and e

a
	. The rest are collectively

denoted by eam. Namely, we have eaI � fea� ; ea	; eamg with
(m ¼ 1; 2; . . . ; N � 2). The fa; b; . . .g indices will be low-
ered and raised by �ab, and fI; J; . . .g indices will be
contracted by �IJ.

Another useful parameter is the turn rate _
 of the clas-
sical trajectory. We define

_
 ¼ e	aðDte
a
� Þ: (10)

Using the classical equation of motion Eq. (4) and (6), we
can relate _
 to the potential gradient along the e	 direction,
i.e.,

_
 ¼ � ea	raV
_�0

¼ �r	V
_�0

: (11)

ea	raV can therefore be understood as the centripetal force
to bend the classical trajectory.

C. The quadratic action

The quadratic action in the spatially flat gauge is given
by

Sð2Þ ¼ 1

2

Z
d4xa3

�
~DtQ

I ~DtQ
J�IJ

� 1

a2
@iQ

I@iQJ�IJ �mIJQ
IQJ

�
: (12)

HereQI is the scalar field perturbation along the kinematic
basis QI � eIa��

a.

Note that the covariant derivative ~Dt on QI is different

from the covariant derivative Dt on the classical field _�a.

Following Ref. [21], ~Dt is constructed from the spin
connection YI

J, i.e.,

~D tQ
I � _QI þ YI

JQ
J; (13)

YI
J � eIaDte

a
J: (14)

The mass matrix mIJ ¼ eaI e
b
Jmab with mab is given by

mab ¼ Mab � 1

a3
Dt

�
a3 _�2

0

H
e�ae

�
b

�
: (15)

Here Mab includes contributions from both the potential
and the curvature of field space

Mab � rarbV þ 2 _HRacdbe
c
�e

d
� :

Switching to conformal time d� � dt=a and changing to
canonical variables vI � aQI, we can write the action (12)
in terms of v� , v	 and vm’s.

L ð2Þ
ð�Þ ¼

1

2

�
v02
� � ð@v� Þ2 þ z00

z
v2
�

�
; z � a _�0=H

(16)

Lð2Þ
ð	Þ ¼

1

2

�
v02
	 � ð@v	Þ2

þ
�
a00

a
� a2M		 þ 
02 � a2Y	

mYm	

�
v2
	

�
(17)

Lð2Þ
ðmÞ¼

1

2

�
v02
m�ð@vmÞ2þ

�
a00

a
�mn�a2Mmnþa2YI

mYIn

�
vmvn

þ2aYmnðvnv
0
m�vmv

0
nÞ
�

(18)

L ð2Þ
ð�;	Þ ¼

�
�2
0v	v

0
� þ 2

z0

z

0v	v�

�
(19)

Lð2Þ
ð	;mÞ ¼

1

2
ð�a2M	m þ a2YI

	YImÞv	vm

þ aY	mðvmv
0
	 � v	v

0
mÞ: (20)

D. The effective action for the goldstone modes

Using the Stückelberg trick, Refs. [1,3] derived the
effective action for the Goldstone mode associated with
broken time-diffeomorphism in an inflationary back-
ground. To quadratic order, the effective action takes this
form:

Sð2Þð�;	Þ ¼
Z

d4xa3
�
ð2M4

2 �M2
pl

_HÞ _�2 þM2
pl

_H
ð@i�Þ2
a2

þ 2 ~M2I
1 _� _	I þ ð1þ ~eI2Þ _	I _	I þ ð@	IÞ2

a2

�
: (21)

Here, the � field is the Goldstone mode corresponding to
the broken time-diff symmetry, and 	I’s are perturbations
from the extra light fields. We can establish the following
relations

v� ¼ aQ� ¼ a _�0�; v	 ¼ a	I: (22)

For the classical background, we also have

M2
pl

_H ¼ � _�2
0=2; M2 ¼ 0; ~eI2 ¼ 0: (23)

We therefore notice that v� is exactly the canonical �
field (denoted by �c) whose action is

�02
c � ð@�cÞ2 þ ða _�0Þ00

a _�0

�2
c:

In the limit � ! 0, H � const,
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z00

z
¼ ða _�0Þ00

a _�0

;

so the actions for v� and �c agree.

Similarly, v	 is the canonical 	 field 	c whose action is

	02
c � ð@	cÞ2 þ a00

a
	2

c:

Comparing with the action (17), the effective action
misses terms such as 	I	J, which can be generated either
by a turning trajectory 
0 � 0, or mass terms in the clas-
sical Lagrangian. Comparing with action (18) and (19), the
effective action misses terms like 	I _	J, _�	, �	. All such
terms are not in the effective action because of the shift
symmetry imposed on the 	 fields to keep them light.
However, if we make no such a priori assumption, there
will be a lot more terms mixing the � field and other fields.
As wewill see, these mixing terms will generate interesting
features when the background inflaton path makes a sharp
turn.

In summary, the Goldstone method does not provide the
most general action for multifield perturbations. It is lim-
ited in the regime with � ! 0, _
 ! 0 and all extra fields
massless, which does not capture many interesting dynam-
ics of multifield inflation especially those associated with a
turning trajectory.

III. SHORT-DISTANCE SCALES

In Ref. [2], Weinberg argued that in any effective field
theory of single-field inflation, the characteristic mass

scale M must be much larger than
ffiffiffiffiffiffi
2�

p
Mpl. This argument

is based on the observation that during inflation, the clas-

sical field travels �� ¼ _�H�1 within one e-fold. Using

� ¼ _�2=ð2M2
plH

2Þ, we immediately get �� ¼ ffiffiffiffiffiffi
2�

p
Mpl.

Therefore, if M &
ffiffiffiffiffiffi
2�

p
Mpl, we expect that the effective

action which can be expressed in terms of an infinite series
expansion of �=M to receive large, uncontrollable
corrections.

The same argument can be applied to multifield infla-
tion, for the mass scales tangent to the classical trajectory.
As we have seen in Eq. (6), the composite scalar field �0

behaves just like a single field, and the effective one-field
potential is Vð�0Þ � Vð�að�0ÞÞ. Let us denote the mass
scale of Vð�0Þ by Mk, then Weinberg’s argument applies.

Only if Mk *
ffiffiffiffiffiffi
2�

p
Mpl, we can truncate the potential to

finite powers of �0=Mk.
However, the mass scale associated with the transverse

direction easily evades Weinberg’s argument, as there is
no classical field velocity along transverse directions.
However, if the classical trajectory is turning in field space,
the classical field will not sit at the minimum of the
transverse directions. From Eq. (11), we know that when-
ever _
 � 0, r	V � 0, the field will shift away from the

minimum along the transverse directions due to a centrifu-
gal force.
Assuming that the transverse direction has a potential

V? ¼ 1

2
M2

		
2

we can estimate the shift �	 to be

�	�r	V

M2
	

�
_�0

_


M2
	

: (24)

We require �	 to cause little backreaction on the back-
ground. The potential energy lift due to �	 is

�V ¼ 1

2
M2

	ð�	Þ2 �
_�2
0
_
2

2M2
	

: (25)

These energy comes from changes in the kinetic energy of

the inflaton field �ð _�2
0Þ. Because of energy conservation,

3H2M2
pl ¼

1

2
_�2
0 þ V;

we conclude that H is not affected by �	.
However, there could potentially be large backreaction

on the � parameter due to the turn. Since �� _�2
0=H

2 is
directly related to the kinetic energy in the inflaton field. If
we require that the � parameter is not changed much during
the turn, we need

�V � 1

2
_�2
0 )

M	

H
�

_


H
: (26)

This bound on M	 is trivially satisfied if the turn rate is
small _
=H � 1 and M	 � H, and can be saturated when
the turn is sharp.
It is interesting to note that the bound on Mk can be

written as

Mk �
_�0

H
:

We see that the linear field velocity _�0=H set the bound for
Mk while the angular velocity _
=H set the bound for M	.

For later convenience, we introduce the energy transfer
fraction 



 � 2�V
_�2
0

¼
_
2

M2
	

: (27)

The bound Eq. (26) is equivalent to
 � 1. Apparently, the
energy transfer from the inflaton field to the massive field
directly measures how much backreaction the turn imparts
on the classical inflaton trajectory.

IV. A TWO-FIELD EXAMPLE

In the previous section, we have seen that the mass scale
along the tangent and orthogonal directions are subject
to different bounds. In this section, we will examine the
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validity of effective single-field theory in describing the
perturbations of the inflation field.

In the case of two-field model, the quadratic action can
be simplified into two parts: the free field action and the
quadratic interaction terms. Specifically, we get

Lð2Þ
0 ¼ 1

2

�
v02
� � ð@iv� Þ2 þ z00

z
v2
�

�
þ 1

2

�
v02
	 � ð@iv	Þ2

þ
�
a00

a
� a2M2

	 þ 
02
�
v2
	

�
(28)

L ð2Þ
int ¼ �2
0v	v

0
� þ 2

z0

z

0v	v� (29)

withM2
	 ¼ V		 þ �H2R, whereR is the Ricci scalar for

the field manifold.
Introducing the parameters

�k �
V��

H2
; �? � M2

	

H2
; % �

_


H
; (30)

we can expand z00=z as

z00

z
¼ a2H2ð2� �k þ %2 þ 5�þ 2��� 2�2Þ; (31)

and similarly we have

a00

a
� a2M2

	 þ 
02 ¼ a2H2ð2� �� �? þ %2Þ: (32)

Comparing Lð2Þ
0 with the action of a free massive scalar

field u in de Sitter space,

L ¼ 1

2

�
u02 � ð@uÞ2 þ a2H2

�
2� �� m2

H2

�
u2
�
;

we can read off the effective masses for v� and v	 as

m2
� ¼ H2ð�k � %2 � 6�� 2��þ 2�2Þ; (33)

m2
	 ¼ H2ð�? � %2Þ (34)

The physics of the two-field system given byLð2Þ
0 þLð2Þ

int

depends on how the parameters �k, �? and % compare

to 1. Generally speaking, we have the following scenarios:
(a) �k � 1, �? � 1 and % � 1: This is two-field in-

flation in the slow-roll slow-turn regime, which can

be solved by treatingLð2Þ
int as perturbations. The field

v� and v	 will evolve according to the equation of

motion derived fromLð2Þ
0 . Because of the interaction

between v� and v	, the field v� does not freeze after

horizon exit. Whenever % � 1, v	 will source the
superhorizon evolution of v� . Such superhorizon

evolution can be treated by solving for the transfer
functions between v� and v	 [8–10] or by using the

semiclassical �N formalism [11–13], and it has been
shown that the two approaches are equivalent [14].

One can also study the perturbations using the so
called nonlinear long-wavelength approach [15–17].

(b) �k � 1, �? � 1 and % � 1: This is the quasisingle
field scenario studied in Ref. [18]. Unlike scenario
(a), one has a massive field v	 with m	 �H which
is critically damped and will decay after horizon
exit. Since v	 is not the inflaton field, it can have
large self-interactions, which can mediate interac-

tions among v� through Lð2Þ
int . Since % � 1, we can

still treat Lð2Þ
int perturbatively by introducing transfer

vertexes between v� and v	. It is also important that

�? � 1 but not � 1, so that v	 does not decay too
quickly outside the horizon and interaction of v	

can be transferred to v� .

(c) �k � 1, �? � 1, % � 0: By conventional wisdom,

this scenario should be well described as single-field
inflation. Even if % � 0, the massive field v	

quickly decays and settles at the minimum of its
potential, so the coupling between v	 and v� does

not seem to play an important role. The light field v�

will undergo the usual horizon exit process as in
single-field inflation.

However, Refs. [20,21] showed that by integrating out
the massive mode v	, the resulting effective single-field
action acquires an effective sound speed cs, which in our
notation3 reads,

c�2
s � 1þ 4%2

�? � %2 � 2þ k2=ða2H2Þ : (35)

Assuming �? � 1 and k � aH, we get

c�2
s � 1þ 4%2

�? � %2
¼ 1þ 4


�1 � 1
;

where 
 is the energy transfer fraction previously defined
in Eq. (27).
We see that cs ! 0 when 
 ! 1. In this limit, the turn

strongly backreacts on the inflaton dynamics, with all the
inflaton kinetic energy used up to excite the massive field.
In the opposite limit 
 � 1, backreaction is negligible and
c�1
s � 1þ 4
 � 1. The behavior of cs as a function of
 is
shown in Fig. 1.
We see that when the turn rate % starts to saturate the

bound %2 � �?. Two effects happen at the same time.
First, m2

�=H
2 � %2 � 1 and m2

	=H
2 � �? � %2 ! 0, the

original massive and massless modes interchange their
role. Physically, this is because a sharp turn causes a quick
rotation in the field space, interchanging the original mas-
sive and massless directions. The mass hierarchy momen-
tarily vanished during the sharp turn, so we should not
integrate out either field. Second, when %� �? � 1, the
two modes v� and v	 become strongly coupled, and one

3Note that our �? is M2=H2 in Ref. [21] and our % is �? in
Ref. [21]
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should solve the full quadratic actionLð2Þ
0 þLð2Þ

int to obtain

the mode functions [24].
The fact that an extremely small effective sound speed

cs corresponds to strong coupling and backreaction on the
inflaton field is consistent with the study in Ref. [25],
where it was shown that the single-field inflaton action is
not under perturbative control when cs becomes extremely
small. To deal with the strongly coupled inflaton field,
Ref. [22] suggested a weakly coupled UV completion by
introducing a second massive field into the single-field
effective action. Their perspective was to start from the
low-energy effective theory and analyze when the effective
theory breaks down. Here using the UV complete two-field
action, we have clarified from a top-down point of view,
how the effective single-field description breaks down
when the classical field trajectory makes a sharp turn.

In fact, the UV completed action in Ref. [22] can be
casted into the two-field action presented here. By going
to the low-energy limit k=aH � %2, one can neglect

the usual kinetic terms in Lð2Þ
0 and the term v0

�v	 in Lð2Þ
int

becomes the nonrelativistic kinetic term of the system.
This is equivalent to studying the superhorizon evolution
of the two-field model.

Following Ref. [22], the relevant terms in the action are
now

~Lð2Þ ¼ �2
0v	v
0
� �

1

2
ð@iv� Þ2 � 1

2
ð@iv	Þ2

þ a2H2

�
2� ��m2

�

H2
Þv2

� þ a2H2

�
2� ��m2

	

H2

�

þ 2
z0

z

0v	v� : (36)

Note that Ref. [22] followed the Goldstone approach in
Ref. [3] so that in the effective multifield action, the m�

term and the v�v	 term were not allowed by shift symme-

try. They also took the decoupling limit � ! 0. Here we are

not constrained by shift symmetry and we do not decouple
gravity, so all those terms are allowed.

A. Sharp turning and the two-point function

In this section, we will solve for the mode functions of
the strongly coupled two-field system under the sharp-turn
approximation. By sharp turn, we mean that the turn rate %
is momentarily large. The time scale of changes in % is
much shorter than the oscillation time scale of v� and v	,

and also much less than one e-fold.
A momentarily large % can be caused either by a sharp

feature in the scalar potential or by momentarily large
kinetic mixing. When % � 1, the adiabatic and isocur-
vature modes are strongly coupled and solving for the

mode equations requires the full Lagrangian Lð2Þ
0 þLð2Þ

int .

However, a large % may spoil the scale invariance of the
power spectrum, as we have seen that %2 contributes to
the effective mass of v� . In fact, from the background

Eq. (6), we get

%2 � �k ¼ �
:::
0

H2 _�0

þ 3

2
�� 6�: (37)

If we require slow-roll dynamics along the tangent direc-
tion of the trajectory, %2 � �k has to remain small, and v�

remains a massless field. However, just as in single-field
inflation models, one can momentarily violate slow-roll

conditions. Here, we could have �
:::
0=ðH2 _�0Þ momentarily

large due to an sudden acceleration along the tangent
direction, which will allow %2 � �k momentarily.

When % is momentarily much greater than 1, two effects
happen at the same time. First, there will be sudden
changes in the mass parameters m� and m	. From

Eq. (33) and (34), we have

m2
� � ��

:::
0

_�0

(38)

m2
	 � H2ð�? � %2Þ; (39)

where we have ignored subleading terms Oð�; �; �2Þ, and
keep only the terms that dominate at the time of the sharp
turn. The momentarily large m� is analogous to that in-

duced by sharp features in single-field inflation. It will
generated sinosodial running features in the power spec-
trum and bispectrum as studied by Ref. [26]. In this sense,
as far as the v� alone is concerned, a momentarily large %
can be mimicked by sharp features in the single-field
potential. A second effect of large % is the strong coupling
between v� and v	. Physically, the perturbations along the

massive direction get projected into the inflaton direction
due to the sharp turn. This effect is multifield in nature.
In reality, the background dynamics due to a sharp turn

can be very complicated. Generically, one expects that a
fraction 
 of the inflaton kinetic energy gets transferred

0.2 0.4 0.6 0.8 1.0

10

20

30

40

cs
2

FIG. 1 (color online). The effective sound speed as a function
of the energy transfer fraction 
. When 
 ! 1, c�2

s � 1;
however, backreaction and coupling are strong in this limit. If

 � 1, backreaction is negligible, but cs cannot deviate much
below 1.
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into the potential energy of the massive field, driving the
massive field away from the bottom of its potential, there-
fore providing the centripetal force for the sharp turn. After
the sharp turn, the potential energy in the massive field
will be converted back into the kinetic energy, which will
cause classical oscillations in the heavy field, as illustrated
in Fig. 2. As studied in Ref. [27], such oscillation can
trigger resonant enhancement [28] of non-Gaussianity for
the massless v� field.

In this paper, we will focus on the scenario when the
coupling between v� and v	 provides the dominant effect

at the time of the turn, while the sudden change in m� is

subleading. We now identify the parameter region of this
scenario. As we have seen, during the turn, a fraction of the
inflaton kinetic energy becomes the potential energy in the
massive field, this can be modeled as a step function in �,

� ! �0ð1þ 
�ð�� �0ÞÞ:
The corresponding change in z ¼ a

ffiffiffiffiffiffi
2�

p
is given by

z ! z0

�
1þ 


2
�ð�� �0Þ

�
:

Therefore,

z00

z
¼ 


2

d

d�
�ð�� �0Þ þ aH
�ð�� �0Þ þ . . . : (40)

We see that the singular terms in z00=z or m� are of

magnitude 
.
On the other hand, energy conservation gives

1

2

 _�2

0 ¼ �V ¼ 1

2
ð1� 
Þ _�2

0

_
2

M2
	

(41)

_
2

H2
¼ 


1� 


M2
	

H2
� 


M2
	

H2
: (42)

For our purpose, we choose


 � 1; M	 � H; 

M2

	

H2
� 1; (43)

so that the features in z00=z is subleading, and the leading
effects is generated by the strong coupling between v� and

v	. The effect we discuss here precedes the resonant effect
discussed in Ref. [27].
In Ref. [21], the authors studied the effect of sharp turn

due to kinetic mixing. However, the effective single-field
theory approach in their work requires that the heavy field
lies in the adiabatic minimum of its potential. We have seen
that this assumption generically does not hold when a sharp
turn happens, especially when it excites massive field
oscillations. Therefore we will perform a full two-field
analysis in dealing with the sharp turn.
In Ref. [24], the strongly coupled two-field system was

studied numerically. Here we show that if the coupling %
is momentary large, i.e., the time scale of change in % is
much shorter than the oscillation time scale of v� and v	,

we can obtain the mode functions analytically.
Let us start by writing down the mode equations

for v� and v	 derived from the full quadratic Lagrangian

Lð2Þ
0 þLð2Þ

int . Introducing a new variable x � k�, the equa-
tions can be written as

d2v�

dx2
þ

�
1� 2

x2

�
v� � 2%

x2
v	 þ d

dx

�
2%

x
v	

�
¼ 0 (44)

d2v	

dx2
þ

�
1� 2��? þ%2

x2

�
v	 � 4%

x2
v� � d

dx

�
2%

x
v�

�
¼ 0:

(45)

We approximate the momentarily large turn rate as a
delta function,4

% ¼
_


H
¼ �


H
�ðt� t0Þ ¼ �
x0�ðx� x0Þ: (46)

Matching the mode functions before and after the sharp
turn, we require

v� jx0þx0� ¼ �2�
v	jx0�; (47)

FIG. 2 (color online). Illustration of a sharp turn in field space.
The green dashed line represents the massless field (inflaton)
direction, and the massive field is orthogonal to the green dashed
line. Along the blue part of the trajectory, the kinetic energy of
the inflaton is gradually transformed into the potential energy of
the massive field. At the end of the blue line, the potential energy
starts to convert back to the kinetic energy, and causes subse-
quent oscillations of the massive field along the transverse
direction (red curve). The perturbations in the massive field
are projected into the inflaton direction at the interface between
the blue and red curve, and this is the effect we focus on in
this paper. The turning angle shown in this figure is made very
large to illustrate the excitation of massive modes. In reality, a
much smaller turning angle is sufficient, and we will show that
�
 & 0:1 from constraints on the power spectrum.

4A delta function energy transfer between two fields with
exponential potentials has been studied numerically in Ref. [29].
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dv�

dx

��������
x0þ

x0�
¼ 2�


x0
v	jx0�: (48)

v� is a massless scalar field in de Sitter space before and

after the turn, so we have

v� ðx < x0Þ ¼ vþðk; �Þ; (49)

v� ðx > x0Þ ¼ C1v
þðk; �Þ þ C2v

�ðk; �Þ; (50)

v	ðk; �Þ ¼ �1ffiffiffiffiffi
2k

p e
ix

�
1

x
	 i

�
: (51)

C1 and C2 can be solved by matching the boundary
conditions at x0.

C1 ¼ 1þ i�
eix0
ffiffiffiffiffi
2k

p
v	ðx0Þ; (52)

C2 ¼ �i�
e�ix0
ffiffiffiffiffi
2k

p
v	ðx0Þ: (53)

The power spectrum is given by

P� ¼ k3

2�2

�������� v�

a
ffiffiffiffiffiffi
2�

p
��������

2

x!0
¼ H2

8�2�
jC1 þ C2j2 (54)

The factor jC1 þ C2j2 encodes all the features in the two-
point function generated by the sharp turn. The full ex-
pression of jC1 þ C2j2 involves the value of the massive
mode function at the time of the sharp turn v	ðx0Þ.

In the asymptotic limit x0 � �1, i.e., for modes inside
the horizon at the time of the sharp turn, we haveffiffiffiffiffi

2k
p

v	ðx0Þ � e�ix0 :

Therefore,

jC1þC2j2 � 1þ 2�
 sin

�
2k

k0

�
; k0 ��1

�0
; k=k0 � 1;

(55)

In limit x0 ! 0, i.e., for modes outside the horizon at the
time of the turn, we have

ffiffiffiffiffi
2k

p
v	ðx0Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffi��x0

p
exp

�
��

2

m

H

�
1

�ði~�þ 1Þ
�
� x0

2

�
i~�
;

~� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�? � 9

4

s
:

The massive field decays outside the horizon due to the
factor

ffiffiffiffiffiffiffiffiffi�x0
p

, so as expected

jC1 þ C2j ! 1; x0 ! 0: (56)

The projection of massive field perturbations into the in-
flaton direction generates sinusodial ripples on the power
spectrum. The level of such oscillations depends on the
turning angle�
. It is interesting that even if the sharp turn
happens before 60 e-folds from the end of inflation, it may

still leave some features in the power spectrum. The chan-
ces of detecting such small oscillations in the power
spectrum may be small, so we will have to look at the
bispectrum to search for correlated signatures.

B. The three-point function

We have seen that when the energy transfer is small

 � 1, cs � 1. So from the effective single-field point of
view, the level of equilateral non-Gaussianity is very small.
When
 ! 1, cs � 1 superficially, but the strong coupling
and backreaction renders the effective single-field descrip-
tion invalid. In this section, we will identify the features in
three-point function associated with the sharp turn.
We perform the computation using the standard in-in

formalism [30]

h�3i ¼ �i
Z

dth½�3; HIðtÞ�i

with

�ðk; �Þ � v� ðk; �Þ
a

ffiffiffiffiffiffi
2�

p ¼ uðk; �Þak þ u�ð�k; �Þay�k:

uðk; �Þ ¼ iHffiffiffiffiffiffiffiffiffiffi
4�k3

p ð1þ ik�Þe�ik�

½ak; ayk0 � ¼ ð2�Þ3�ð3Þðkþ k0Þ
For example, we can consider the three-point vertex

HI ¼ �
Z

dx3a3�2�� 02;

which gives

h�3i ¼
�
iðuk1

uk2
uk3

Þj�¼0

Z 0

�1
d�a2�2u�k1

ð�Þ u
�
k2
ð�Þ

d�


 u�k3
ð�Þ

d�
ð2�Þ3�ð3Þ

�X
ki

�
þ perm

�
þ c:c: (57)

Using the ansatz for the three-point function

h�3i ¼ fNLðk1; k2; k3Þ
P2
�

k21k
2
2k

2
3

ð2�Þ7�ð3Þ
�X

ki

�
; (58)

we find that

h�3i �H4

�
; fNL �Oð�Þ: (59)

This is the standard result for slow-roll inflation.
Here we will focus on the effect of the non-Bunch-Davis

component in the mode function. The major difference in
the computation is that starting at some time �0, we will
have a non-Bunch-Davis component, namely, the C2 com-
ponent in Eq. (53). The corrections to the three-point
function can be obtained by first flipping the sign of one
of the ki in Eq. (57) and then adding an overall factor jC2j2
in front of the integral. The integral will start from a finite
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�0 instead of �1, but this will not affect an order of
magnitude estimation on fNL. In the end, we get

h�3i �H4

�
jC2

2j; fnon BDNL �Oð�ÞjC2
2j: (60)

This effect of non-Bunch-Davis component on fNL was
previously studied in Refs. [31–33]. Here we have pro-
vided one microscopic origin of such a non-Bunch-Davis
component—a sharp turn in multifield inflation.

However, observationally, fNL � �jC2j2 is very hard
to detect, since the oscillation in the power spectrum is
controlled by jC2j. Based on current observational data,
assume that the amount of oscillation in the unbinned data
is about & 10% [34] and take �� 0:01, we get negligibly
small fNL on the order of 10�4.

When the scalar field makes a sharp turn, it is very likely
that the massive field will oscillate after the turn, as we
have discussed in Sec. IVA. We ignored such effects in
computing the two-point function, however, such oscilla-
tions will be important in amplifying the three-point
function, through the resonant mechanism discussed in
Refs. [27,28]. The vertex responsible for resonant non-
Gaussianity is

HI ¼ �
Z

d�dx3
1

2
a2� _��2� 0: (61)

In usual slow-roll limit, such term is subleading as
� _��Oð�3Þ. However, in a time-dependent oscillating
background with

_� ¼ ð _�Þ0 þ ð _�ÞA sin!t; ! � H; (62)

we will have resonance enhanced non-Gaussianity

fresNL ¼ ð _�ÞA
H

�
!

H

�
1=2

ffiffiffiffi
�

p
8

ffiffiffi
2

p sin

�
!

H
lnK þ�

�
;

K ¼ k1 þ k2 þ k3:
(63)

Here � is a phase independent of k. Note that the enhance-
ment of fNL comes from ! � H. The positive power of
!=H appears counterintuitive, as one would expect the
effect suppressed by powers ofH=M. However, one should
note that the resonance effect is purely due to the time
dependence in the coupling constant. There is no suppres-

sion of H=M in the interaction term (61). In fact,
ffiffiffiffiffiffiffiffiffiffiffi
!=H

p
counts the number of resonance periods from which the
contribution to fNL is dominant.

The oscillation in _� is sourced by the massive field
oscillations, which according to Ref. [27] give

ð _�ÞA
H

¼ 

M2

	

H2
; ! ¼ 2M	:

With a sharp turn introducing the non-Bunch-Davis
component, we replace K by ~Ki � K � 2ki and multiply
fNL by jC2j2. Therefore, for ki > k0, the asymptotic form
of fNL is

fresNLjnon BD �
ffiffiffiffi
�

p
8




�
M	

H

�
5=2ð�
Þ2 sin

�
2M	

H
ln ~K1 þ�

�

þ perm: (64)

Resonant enhancement of three-point function has been
considered in various scenarios for Bunch-Davis state
[27,28,35].5 Generically, they give signatures running in
k space according to

fresNLjBD � sin

�
2M	

H
lnK þ phase

�

For resonance in the non-Bunch-Davis components, the
running is along the ~Ki directions

fresNLjnonBD � sin

�
2M	

H
ln ~K1 þ phase

�
þ perm:

Comparing the amplitude of the signature, the effect from
non-Bunch-Davis components is suppressed by a factor
of ð�
Þ2. Suppose from the power spectrum, we estimate
that �
 & 0:1, and let us further assume that 
� 0:01,
M	=H � 100, then we get

fresNLjnon BD � 10 sin

�
2M	

H
ln ~K1 þ phase

�
þ perm: (65)

Ref. [27] also studied resonance enhancement in two-
field inflation models. The oscillations of the background
massive field provide a periodic time-dependent back-
ground that triggers the resonant effect in the three-point
function. The main difference here is that we focus on the
enhancement of the non-Bunch-Davis component.
The resonant enhancement of fNLjnon BD has also been

discussed in Ref. [37] in the context of single-field infla-
tion, where the non-Bunch-Davis component is generated
by the oscillation of inflaton field. Here we generate the
non-Bunch-Davis component through a sharp turn that
couples the massive field perturbation and the inflaton
perturbation.
Last, we comment that if the inflaton action is a general

pðXÞ where X � �ab@��
a@��

b, the effect we consider

here will further be enhanced by a small sound speed
cs � 1. The relevant interaction Hamiltonian is

HI ¼ �
Z

d�dx3
a�

Hc2s

�
1

c2s
� 1� 2�

�

�
� 03; (66)

which leads to

fresNLjnon BD �
�
1

c2s
� 1� 2�

�

��
c2s
�

�
0

�
!

H

�
5=2


ð�
Þ2: (67)

Comparing to the result in Eq. (65), we expect the signa-
ture still has a sinðln ~KiÞ running with its amplitude a factor
of c�2

s larger than Eq. (65).

5The effects of non-Bunch-Davis initial states on even the
trispectra have been studied in [36].
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V. SUMMARYAND DISCUSSIONS

In this paper, we investigated the subtleties involved in
integrating out massive degrees of freedom in the infla-
tionary background. We show that a generic multifield
inflation action has many interesting terms that are forbid-
den by imposing shift symmetry on all the fields or by
ignoring gravity. Such terms lead to interesting physics,
such as turning trajectories for multifield inflation.

Using a two-field system as illustration, we show
that the separation of degrees of freedom based on mass
scales could break down in a time-dependent background.
Especially, we show that during a sharp turn of the two-
field system, the massive field and massless field inter-
changes their role, and the effective single-field description
breaks down. If one naively integrates out the massive
field, and defines an effective sound speed for the resulting
single-field system, one would see that the effective sound
speed goes to zero when the turn rate saturates the upper
bound _
 & M	. When _
�M	, the energy transfer from
the massless field to the massive field is maximum, and
the massive field is maximally excited. This is an explicit
example showing that when the effective sound speed is
small, the system cannot be described by a single degree
of freedom. In fact, from a top-down point of view, we
have provided an example of UV completion to the
effective single-field action with small sound speed. Our
example is consistent with previous observations in
Refs. [22,25].

Furthermore, the turn rate % also serves as the coupling
between the massive and massless field. When % � 1, the
system becomes strongly coupled and one should solve the
full system to capture the dynamics of the mode function.
In particular, we investigated the limiting case of a sharp
turn modeled by a delta function turn rate. We show
that generically, the sharp turn will impart a non-Bunch-
Davis component on each mode function, which leads to

sinusoidal running in the power spectrum. Generically, we
can summarize the oscillatory feature as

�P�

P�
¼ 2�
 sinð2k=k0Þ (68)

with �
 the amplitude of non-Bunch-Davis component in
the mode function.
In most cases, the non-Bunch-Davis component has

nonobservable effects on the three-point function. How-
ever, just as a periodic background can resonantly amplify
the three-point function for the Bunch-Davis component, it
does so to the non-Bunch-Davis component as well. As a
rule of thumb, we expect

fnon-BDNL � ðfBDNLÞAj�
j2 sinðln ~Ki þ phaseÞ þ perm (69)

with ðfBDNLÞA being the amplitude of the signal for the
Bunch-Davis components. Note that even if the non-
Bunch-Davis component gives the amplitude with a factor
of �
2 smaller, the signal has a different sinusoidal run-
ning from the Bunch-Davis result, i.e., sinðln ~KiÞ instead of
sinðlnKÞ. So if ðfBDNLÞA is large enough to be detected, a
correlated signal of fnon-BDNL , together with oscillations in
the power spectrum, may give us a strong hint that adia-
baticity is violated momentarily during inflation.
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