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Projection tends to skew the mass-observable relation of galaxy clusters by creating a small fraction of

severely blended systems, those for which the measured observable property of a cluster is strongly

boosted relative to the value of its primary host halo. We examine the bias in cosmological parameter

estimates caused by incorrectly assuming a Gaussian (projection-free) mass-observable relation when the

true relation is non-Gaussian due to projection. We introduce a mixture model for projection and explore

Fisher forecasts for a survey of 5000 deg2 to z ¼ 1:1 and an equivalent mass threshold of 1013:7h�1M�.
Using a blended fraction motivated by optical cluster finding applied to the millennium simulation, and

applying Planck and otherwise weak priors, we find that the biases in �DE and w are significant, being

factors of 2.8 and 2.4, respectively, times previous forecast uncertainties. Incorporating 8 new degrees of

freedom to describe cluster selection with projection increases the forecast uncertainty in �DE and w by

similar factors. Knowledge of these additional parameters at the 5% level limits degradation in dark

energy constraints to & 10% relative to projection-free forecasts. We discuss strategies for using

simulations and complementary observations to characterize the fraction of blended clusters and their

mass-selection properties.
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I. INTRODUCTION

Galaxy clusters offer tests of large-scale gravity and
cosmology, as their space density is exponentially sensitive
to the time-dependent amplitude of the matter power spec-
trum and the cosmic expansion history (see Allen et al.[1]
and Voit [2] for recent reviews). Because their counts and
clustering probe the gravitational growth of structure, clus-
ters provide information beyond that provided by cosmic
microwave background and cosmic distance measurements
such as supernovae and baryon acoustic oscillations.
Joining cluster data with such measurements significantly
improves cosmological parameter constraints [3].

While the potential for clusters to constrain parameters
such as the dark energy equation of state, the energy
densities of cosmic components, and the amplitude of
matter density fluctuations has long been known [4–8],
early work also emphasized the importance of understand-
ing systematic errors associated with survey modeling
[e.g., [9,10]]. The agreement in cosmological parameters
derived recently from independent samples selected at
optical [11] and x-ray [12–14] wavelengths indicates
progress in addressing systematic errors. However, early
Planck analysis of the thermal Sunyaev-Zel’dovich (SZ)
effect in the optically-selected MAXBCG sample [15] sug-
gests more work to be done; the mean gas thermal energies
inferred from Planck measurements lie a factor of 2 below
simple model expectations [16]. While the origins of this
disagreement are not yet fully known, the effective offset in
total mass of �40% is in �2:5� conflict with the mass
calibration errors quoted in the above cosmological

studies. The tension may be partly relieved by introducing
a �20% offset in x-ray and weak lensing masses [17], but
other effects need to conspire and amplify this.
The Planck optical results highlight the importance of a

key functional element of cluster cosmology from counts,
namely, the likelihood, pðMobsjM; zÞ, that a halo of massM
at redshift z has an observed property Mobs. For SZ obser-
vations, Mobs is the total thermal energy of the hot gas
inferred from the spectral distortion in the cosmic micro-
wave background. For the case of optical studies, we
consider Mobs to be the optical richness, defined by the
number of red galaxies in the cluster above a given magni-
tude limit. Sky counts expected within a particular model
are calculated by a convolution of this mass-observable
function with the space density of halos. The latter has
been calibrated to high precision by N-body simulations
[10,18–21].
Since the scaling of most observables with mass are

power-laws, and therefore linear in the logarithm, the
convolution kernel is typically assumed to be log-normally
distributed about a power-law mean. The log-normal as-
sumption for deviations in hot gas properties about the
mean is supported by x-ray observations of core-excised
luminosity and temperature in clusters [22] and from a
range of hot gas properties in simulated halo samples
[23,24]. However, some degree of departure from log-
normality should be expected intrinsically, potentially
driven by different formation histories [25] and by major
merging events [26].
A given intrinsic likelihood for halo observables will be

modified when Mobs is projected onto the sky [27–29].
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Halos projected along the line-of-sight of a given target
boost its signal in a stochastic manner, resulting in a
PðMobsjM; zÞ that grows a tail to high values. Optical
richness, an attractive property to measure because it
only requires broadband photometry, is sensitive to line-
of-sight projections. Richness scales roughly linearly with
mass [30–32] while x-ray and SZ signals scale more
steeply, �M1:6 [33–36], making these observables less
susceptible to contamination from (spatially more abun-
dant) lower mass halos. Indeed, the Abell catalog [37,38]
contains cautionary notes about projected confusion.
Spectroscopic studies of optically-selected clusters occa-
sionally reveal multiple peaks and complex structures in
velocity space (A1689 [39], CL1604 [40], A85 [41], and
EIS clusters [42]), and simulation studies are beginning to
explore these issues in detail [43,44]. Joint x-ray and
optical studies of three nearby clusters show thermal sig-
natures anticipated by gas dynamic simulations for actively
merging systems [45].

The statistical ingredients (the space density, spatial
clustering, and galactic content of halos) needed to cal-
culate projected confusion are coming into focus, and a
generic expectation is that most massive halos suffer
little contamination while a modest percentage are
strongly affected by projection [28,46]. These studies
motivate a Gaussian mixture model for projection that
we explore in this paper. The mixture represents a domi-
nant component of clusters whose sightlines are largely
clean along with a minority of clusters whose signal is
strongly boosted. The latter category we refer to as
blended systems, or blends, and in these objects the
Mobs signal is not dominated by a single halo. Our treat-
ment here is intended to be illustrative, but model pa-
rameters could be tuned using sky simulations tailored to
specific surveys [47].

An earlier study of projection used an Edgeworth ex-
pansion to model cluster counts including nonzero skew-
ness and kurtosis in pðMobsjM; zÞ. Shaw et al. [48] find that
the detailed shape becomes important when the product of
the scatter in the mass-observable relation and the loga-
rithmic slope of the mass function at the limiting mass is
greater than one. Our study differs from that work in two
ways: our Gaussian mixture approach, which includes 8
new degrees of freedom, is more general than their expan-
sion, and we use a Fisher matrix approach to explicitly
calculate both the bias that projection induces in a
projection-free (single component Gaussian) analysis and
the additional variance that is incurred when the extra
degrees of freedom are included. We explore the latter
under a variety of prior constraints.

The paper is organized as follows. In Sec. II D we briefly
recount the procedure for how to extract dark energy con-
straints by computing cluster counts and variance in
counts, and present our parameterization of the mass-
observable relation including the line-of-sight projection.

In Sec. III, we present our results and, in Sec. IV, a
discussion of the results.

II. CLUSTER SELECTION
MODELWITH PROJECTION

When Abell published the first homogeneous cluster
catalog from photographic plate imaging, he employed
the count of galaxies within a fixed metric aperture and a
scaled magnitude range as a measure of galactic richness,
a proxy for cluster mass [37]. The development of multi-
band imaging cameras in the late 1990s [49,50] enabled
cluster samples to be selected using color selection tech-
niques, whereby counts within a joint magnitude and color
(or photometric redshift) range are employed as a mass
proxy [15,51–55]. These samples contain up to 69 000
clusters extending to z� 1 across nearly 8000 deg2 of
sky. The next generation of optical and near-infrared
surveys-the Dark Energy Survey1 (DES), the VISTA sur-
veys,2 Pan-STARRS,3 with Large Synoptic Survey
Telescope4 (LSST) and Euclid5 to follow-will identify
hundreds of thousands of clusters.
Modern, color-based cluster finders rely on the 4000 Å

break feature of old stellar populations [56]. Observations
show, and stellar population models expect, that the mean
color in a fixed observed band straddling 4000 Å will vary
with redshift. A single color can therefore be used as a
simple photometric redshift estimator [57]. The redshift
accuracy is limited by the finite color width of the red
galaxy population at a given epoch. The finite width of the
color filter employed for cluster finding in turn corresponds
to a comoving length scale of order hundreds of megapar-
secs [28]. Red galaxies in spatially distinct halos that fall
within a cylinder of this length aligned toward an observer
will be catalogued as a single cluster [58]. We generically
refer to this process as blending. While all clusters suffer
some degree of projected blending, we are particularly
interested in extreme cases, and so adopt a specific defini-
tion for classifying clusters. A cluster of observed richness
Mobs will be referred to as a blended cluster if no single
halo contributes Mobs=2 or more to the richness.
Conversely, a cluster for which a single halo does contrib-
ute � Mobs=2 of the richness is referred to as clean. (We
assume here that the radial scale for observed and intrinsic
measures are aligned.)
The massive halos that host clusters tend to be embedded

in filaments and/or supercluster regions. Viewpaths that
traverse such structures will have a locally boosted back-
ground in the color-magnitude subspace used for cluster
detection. Empirical studies of a new red sequence matched

1http://www.darkenergysurvey.org/
2http://www.eso.org/sci/observing/policies/PublicSurveys
3http://pan-starrs.ifa.hawaii.edu/public/
4http://www.lsst.org/lsst
5http://sci.esa.int/euclid
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filter method applied to Sloan digital sky survey MAXBCG

data [46,59] indicate that such boosts generate a blended
fraction of �10% in the cluster population.

Existing Fisher matrix forecasts for the cosmological
parameter yield from upcoming surveys [6–8,60] have
assumed a log-normal distribution for the observable like-
lihood, pðMobsjM; zÞ. While the log-normal form may
reflect the intrinsic (e.g., spherically averaged) dispersion
in the halo ensemble, blended clusters will have
pðMobsjM; zÞ strongly boosted at high Mobs. We use a
Gaussian mixture model in log-mass, described in
Sec. II B, to model a bimodal cluster population consisting
of clean and blended systems.

While our model is general, we tune default parameters
using the results of Cohn et al. [28]. That study applies a
red sequence-based algorithm to projected galaxy maps
from the millennium simulation[61,62]. They use a single
R� z color applied in narrow redshifts sliced centered at
z ¼ 0:4, 0.7, and 1.0. Matching halos to clusters by galactic
membership, they identify a blended subset of clusters
whose mass-observable relation is shifted to higher Mobs

values and whose variance is larger than that of clean
clusters. At higher redshifts, the mean color in the old
stellar population varies more weakly with z, and the color
width of the red sequence traces out an increasingly longer
comoving cylinder, reaching �500h�1 Mpc at z ¼ 1. The
longer search cylinder drives an increase in the blended
fraction of clusters, from 11% at z ¼ 0:4 to 22% at z ¼ 1.
Note that the fraction of halos at fixed true mass that are
blended will be lower than this, as convolution with a
steeply falling mass function increases the fraction of
blended clusters at fixed Mobs [46].

A. Reference model survey

Our reference model survey, based on DESþ VISTA,6

is assumed to cover 5000 square degrees and extend to a
limiting redshift of zmax ¼ 1:1. Our choice of maximum
redshift is somewhat conservative since with the addition
of the IR filters from VISTA, the combined surveys should
have accurate redshifts for field galaxies up to z� 1:5. We
assume that DESþ VISTA� VHS will detect clusters
above an observed threshold, Mobs � Mth, with Mth ¼
1013:7h�1M�, comparable to what is achieved by low
redshift surveys [15,30]). Based on the MAXBCG Ngal rich-

ness measure, the zero-redshift variance in the mass-
observable relation is taken to be �2

0 ¼ 0:25 [63].

We subdivide the sky into 500 bins of 10 square degrees
each, and calculate the counts and sample variance using
richness bins of width �lnMobs

¼ 0:2 with the exception of

the highest mass bin, which we extend to infinity. We set
the width of our redshift bins to �z ¼ 0:1. These bin sizes
imply 11 redshift bins and 10 mass bins. We assume
fiducial cosmological parameters based on the fifth year

data release of the Wilkinson microwave anisotropy probe
(WMAP5, [64]). Thus, we set the baryon density, �bh

2 ¼
0:0227, the dark matter density, �mh

2 ¼ 0:1326, the nor-
malization of the power spectrum at k ¼ 0:05 Mpc�1,
�� ¼ 4:625� 10�5, the tilt, n ¼ 0:963, the optical depth

to reionization, � ¼ 0:087, the dark energy density,�DE ¼
0:742, and the dark energy equation of state, w ¼ �1. In
this cosmology, �8 ¼ 0:796. With the exception of w, the
cosmological parameters we use have been determined to
an accuracy of a few percent. We apply Planck priors7 to
all cosmological parameters. We use CMBFAST [65], ver-
sion 4.5.1, to calculate the transfer functions.

B. The mass-observable relation for clean clusters

We assume that the majority of clusters are clean sys-
tems whose selection properties are described by a single
log-normal form. Following the notation of [66], we write
the probability of observing a cluster with observable mass
proxy, Mobs given a true mass M, as

pðMobsjM; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

lnMðM; zÞ
q exp½�x2� (1)

with

x � lnMobs � lnM� lnMbiasðM; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

lnMðM; zÞ
q : (2)

The model allows for systematic error in the observable
by allowing redshift-dependent bias and variance

lnMbiasðM; zÞ ¼ B0 þ B1 lnð1þ zÞ; (3)

�2
lnMðM; zÞ ¼ �2

0 þ
X3
i¼1

siz
i: (4)

We set the fiducial values of B0, B1, and the si to zero
throughout this paper. The baseline mass scatter, �0, is
taken to be 0.5, a value consistent with MAXBCG findings
for that survey’s original Ngal richness estimator [63].

Recently, Rykoff et al. [59] proposed an improved mass-
estimator for MAXBCG, with scatter expected to be 0.2 to
0.3, making our assumption about the scatter conservative.
Below, we apply this single-Gaussian model to fit a set

of data that are described by our extended, two-Gaussian
case. For that fit, �0 has a slightly different value, and B0,
B1, and the si elements will be nonzero, as described in
Sec. III A.

C. Selection with projection: Blended clusters

To model selection with projection, we use a Gaussian
mixture form for Mobs that combines clean and blended
subpopulatons,

6http://www.vista.ac.uk/, http://www.darkenergysurvey.org/ 7Planck Fisher matrix courtesy of Wayne Hu.
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pðMobsjM; zÞ ¼ ð1� �ðzÞÞGclean þ �ðzÞGblend; (5)

where Gclean and Gblend are log-normal distributions of the
form given by Eq. (1), and the blend factor, �ðzÞ, controls
the fraction of blended clusters.

For the component representing blends, we introduce a
set of parameters for the bias and scatter different than that
of the clean component,

lnMbias;bðzÞ ¼ �0 þ � lnð1þ zÞ þ 	ðlnM� lnMthÞ; (6)

�2
lnM;bðM; zÞ ¼ �2

0;b þ szzþ sMðlnM� lnMthÞ: (7)

We highlight below the role of the mass bias terms, espe-
cially the constant offset, �0, and its logarithmic redshift
gradient, �. The parameter 	 allows for a mass-dependent
bias. For the scatter of the blended component, we focus on
a pessimistic scenario where�2

0;b ¼ 2�2
0. This is consistent

with results derived from millennium simulation analysis
[28]. The more optimistic case of �2

0;b ¼ �2
0 yields quali-

tatively similar results. The variance is allowed to evolve
linearly with redshift and log-mass.

Default parameter values for the blended component
model are	 ¼ sz ¼ sm ¼ 0, and�2

0;b ¼ 2�2
0. We consider

three specific combinations of �0 and � that reflect differ-
ent scenarios of redshift evolution in the bias of the blended
component: none (� ¼ 0, �0 ¼ 0:75); weak (� ¼ 0:5,
�0 ¼ 0:5); and strong (� ¼ 1, �0 ¼ 0:25). In all cases,
the log-mean halo mass of blended clusters is biased
low, by �0 þ � lnð1þ zÞ relative to that of the clean
component.

The blend factor controls the overall fraction of blended
clusters, and we write its evolution as

�ðzÞ ¼ �0 þ �1 lnð1þ zÞe�z; (8)

where the exponential damping is added only to regularize
� at high redshift. The blend factor grows with redshift to
z ¼ 0:77, then flattens and decreases weakly toward the
z ¼ 1:1 redshift limit.

We choose this parameterization because it allows suf-
ficient freedom to roughly match the blending fraction as a
function of redshift found in Cohn et al. [28]. We calculate
the blended fraction of clusters as a function of their
observable mass proxy, Mobs, via convolution with the
mass function, as described below. In Fig. 1 we show the
resulting fraction of blended clusters above the survey
threshold,

fblend ¼
�Nblend

�Nblend þ �Nclean

: (9)

as a function of redshift bin for �0 ¼ 0 and �1 ¼ 0:05,
0.15, and 0.25. The mean counts, �N, are given by Eq. (11)
below, where the clean and blended components are calcu-
lated using the associated components of Eq. (5). For each
�1, the three lines show results for the three choices of

f�0; �g pairs discussed above. The results of Cohn et al.
[28], shown as the three dots in the figure, are roughly
matched by the choice of �1 ¼ 0:15.

D. Cluster counts and clustering

The subject of deriving cosmological constraints from
cluster number counts and clustering of clusters has been
treated extensively in the literature (see, e.g., [8,60,67,68]).
We give a brief summary in this section, following the
approach described in [60], and leave other details to the
appendix.
The number density of clusters at a given redshift z with

observable in the range Ma � Mobs � Maþ1 is given by

�n aðzÞ �
Z Maþ1

Ma

dMobs

Mobs

Z dM

M

dn

d lnM
pðMobsjM; zÞ; (10)

where dn
d lnM is the mean halo’s space density, also called the

mass function. We use the Tinker parameterization for the
mass function, and ignore errors in redshift estimates. The
mean cluster number counts, and sample covariance, in
bins labeled by i ¼ fa; b; cg, where a denotes mass proxy,
b redshift, and c angular coordinate, are given by

�N i ¼
Z zbþ1

zb

dz
dV

dz
�naW

th
c ð�Þ (11)

Sij ¼ hðNi � �NiÞðNj � �NjÞi; (12)

where W th
c ð�Þ is an angular top-hat window function.

Define the covariance matrix of halo counts

Cij ¼ Sij þ �Ni�ij; (13)

FIG. 1 (color online). The fraction of blended clusters above
the survey Mobs threshold is plotted for �0 ¼ 0 and �1 ¼ 0:05,
0.15, 0.25 (bottom to top). The three dots are the values found
from the millennium simulation study of Cohn et al. [28]. Color-
styles correspond to three different redshift dependence forms
(none, weak, strong) for the bias of the blending amplitude:
�0 ¼ 0:75, � ¼ 0:0 (dotted); �0 ¼ 0:5, � ¼ 0:5 (dashed);
�0 ¼ 0:25, � ¼ 1 (solid). The models are tuned to coincide
near the median cluster sample redshift of z ¼ 0:65.
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where �Ni is the vector of mean counts defined in Eq. (11)
and Sij is the sample covariance defined in Eq. (12). The

indices i and j refer to observable, redshift and angular
coordinate bins. Assuming Poisson noise and sample vari-
ance are the only sources of noise, the Fisher matrix is,
[8,69,70]

F�	 ¼ �Nt
;�C

�1 �N;	 þ 1

2
TrfC�1S;�C

�1S;	g; (14)

where commas denote derivatives with respect to the
model parameters. The first term on the right-hand side
contains the information from the mean counts, �N. The Sij
matrix can be thought of as contributing noise to this term,
and hence only reduces the information content from
counts alone. The second term contains the information
from the sample covariance.

The marginalized error in a parameter is given by

�ð
�Þ ¼ ½ðF�1Þ���1=2. Priors are easily included in the
Fisher matrix. If parameter 
i has a priori uncertainty of
�ð
iÞ, we add ��2ð
iÞ to the Fii entry of the Fisher matrix
before inverting.

III. RESULTS

Our model with projection differs from previous models
that assume an entirely clean (single log-normal) popula-
tion. Applying a clean-only model to a sky with projection
will generally introduce a bias into derived cosmological
parameters. We first address the magnitude of this bias,
then turn to the impact that introducing extra degrees of
freedom to represent blends has on marginalized con-
straints of dark energy parameters.

A. Parameter bias

To estimate the bias in cosmological constraints that
would result if cluster samples with projection are ana-
lyzed using a model with no projection, we follow a
linearized approach used in previous studies [71,72]. Our
‘‘true’’ sky counts are based on the bimodal mass-
observable relation, Eq. (5), applied using the three redshift
evolution cases for the mass bias of the blended component
(none, weak, strong) discussed above. The redshift growth
rate of the blending factor, �1, is a controlling degree of
freedom.

If the true sky is analyzed assuming no projection,
meaning using a unimodal mass-observable relation
equivalent to a �ðzÞ ¼ 0 assumption in Eq. (5), then the
resultant projection-free counts, �N1, and sample covari-
ance S1 may differ from the true values of �N and S,
respectively. The set of model (cosmologicalþmass�
observable) parameters, �, recovered will generally differ
from that of the true model. The bias in the model parame-
ters is given by [72],

�
� ¼ X
	

ðF�1
1 Þ�	

�
ð �N � �N1ÞtC1

�1 �N1;	

þ 1

2
TrfC1

�1S1;	C1
�1ðS� S1Þg

�
: (15)

The covariance and Fisher matrix in the above expres-
sion are evaluated for the projection-free model using
parameter values determined by fitting the redshift behav-
ior of the first two moments of the mass-observable rela-
tion with projection. In our optical type survey described in
Sec. II A, and for a specific choice of true model parame-
ters �0, �, �1, (and fixing �0, 	, sz, sM ¼ 0, and �2

0;b ¼
2�2

0), we compute the mean mass and variance in redshift

bins of width 0.1 and fit these to determine the terms B0,
B1, s1, s2, s3 of the unimodal model, Eqs. (6) and (7).
Values for the case of �1 ¼ 0:15 are given in Table I.
For �1 ¼ 0:15, the shifts in the mean mass are below 1%

at z ¼ 0 but grow to 3.8% at z ¼ 1 for the strong blending
evolution case (� ¼ 1). The mass bias fit, constrained by
the form of Eq. (3) with only two free parameters, can
differ from the true bias in the projection model by up to
0.007 at z ¼ 1 when the fit is the worst (in the � ¼ 0) case,
but only by 0.002 for the best-fit (� ¼ 1) case. The redshift
behavior of the variance, with four free parameters of
Eq. (4), matches the values of the projection case quite
well, with deviations less than 3� 10�4 in the worst case.
The variance at z ¼ 1 is larger for larger values of �, with
�2 ¼ 0:293 for the � ¼ 1 case.
For smaller � values, the fits deviate less from the true

bias in projection. For comparison, the bias at z ¼ 1 for a
�1 ¼ 0:05fit, differs by 0.002 in theworst case and themass
bias is about 0.03. Thevariance also growsmore slowlywith
z, with �2 ¼ 0:264 at z ¼ 1 for the � ¼ 1 case.
We compute survey expectations for counts ( �N) in mass,

angle, and redshift bins and their covariance (S) for the
range 0 � �1 � 0:3. We then calculate the counts ( �N1),
sample covariance (S1), full covariance (C1

�1), and Fisher

matrix (F1) for the respective projection-free case using the
best-fit parameters described above. As mentioned in
Sec. II A, we add unbiased Planck priors to the Fisher
matrix, so that F1 ! F1 þ FPlanck. The resultant values
are used to compute bias in model parameters according
to Eq. (15).
Figure 2 shows the resulting biases in w and �DE. For

the cases shown, we assume a Planck prior on the cosmo-
logical parameters, but all other model parameters are free.

TABLE I. Projection-free mass-observable parameters fit to
the case with projection for �1 ¼ 0:15.

�0 � B0 B1 �2
0 s1 s2 s3

0.75 0.00 0.0076 0.0389 0.2503 0.1110 �0:1299 0.0491

0.50 0.50 0.0040 0.0470 0.2500 0.0760 �0:0497 0.0097

0.25 1.00 0.0004 0.0551 0.2499 0.0475 0.0111 �0:0163
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When �1 ¼ 0, there is no blended component and there-
fore no parameter bias (note we assume �0 ¼ 0). The bias
in cosmological parameter estimates grows approximately
linearly with �1, with slopes that are weakly dependent on
the assumed redshift evolution of the mass bias in the
blended component. For the strong redshift evolution
case (�0 ¼ 0:25, � ¼ 1:0) with �1 ¼ 0:17, which pro-
vides a close match to the simulation results of Cohn
et al. [28], we find a significant biases in the dark energy
equation of state, �w ¼ 0:12, and in the dark energy
density, ��DE ¼ �0:04.

These shifts may be considered pessimistic, in the sense
that we have assumed a large scatter in the blended com-
ponent. For the case of �2

blend ¼ �2
0, the slopes of the

equivalent lines in Fig. 2 are reduced by �50%, so that
the strong redshift evolution case with �1 ¼ 0:17 produces
�w ¼ 0:08 and ��DE ¼ �0:03. Reducing the assumed
�0 ¼ 0:5 scatter in the clean component would also lead
to smaller biases in cosmological parameters.

Table II shows the bias in all cosmological parameters
for strong redshift evolution for �1 ¼ 0:17, the case that
best matches Cohn et al. [28]. The bias for parameters
other than�DE and w is less than 1% of the fiducial value.
However, comparing to the fiducial uncertainties from the

Fisher matrix with unbiased Planck priors show that the
shifts can approach a 1� � level for �mh

2 and �� .

Figure 3 offers insight into the magnitude of the change
in cluster counts arising from projection. As a fiducial
measure, we use counts, �Nfid, for the projection-free (uni-
modal) case with default parameters (zero bias and
redshift-independent variance). The solid lines in Fig. 3
show the fractional shifts in counts, relative to the fiducial,
as a function of redshift for the projected (bimodal) cases
with �0 ¼ 0:25, � ¼ 1:0. For �1 * 0:1, projection boosts
count on the order of a few tens of percent at high redshift.
The dotted lines show projection-free expectations when
the mass-observable parameters are shifted to the values
given in Table I, but the cosmology is held fixed. The
dashed lines give projection-free expectations when both
cosmological and mass-observable parameters are adjusted
according to Eq. (15).
The counts of the projection-free model with fully

shifted parameters provide a good match to the counts
with projection. The adjustment of the mass-observable
parameters alone offers a good match at low redshifts,
but at high redshift, a unimodal fit to the bimodal form of
the projected pðMobsjM; zÞ becomes increasingly less ac-
curate. Adjustments in cosmological parameters shift the
amplitude and shape of the mass function as a function of
redshift, providing a degree of compensation for deficien-
cies introduced by a unimodal pðMobsjM; zÞ assumption.
While the quality decreases for higher values of �1, the fits
are still acceptable in a �2 sense.
Note that as �1 grows and the associated shifts in

parameters grow, the linear approximation for the bias
given by Eq. (15) begins to break down. For �1 ¼ 0:05,
agreement between the shifted single-Gaussian case and

FIG. 2 (color online). Shifts in the cosmological parameters w
(upper lines) and ��DE (lower lines) as a function of the
blending evolution rate, �1. Line-styles correspond to three
different redshift dependence forms (none, weak, strong) shown
in Fig. 1.

TABLE II. Cosmological parameter shifts, �
, for strong red-
shift evolution (�0 ¼ 0, � ¼ 1:0) and �1 ¼ 0:17.

Parameter 
true �


�bh
2 0.0227 �0:0001

�mh
2 0.1326 0.0009

�DE 0.742 �0:0401

w �1:0 0.1178

�� � 105 4.625 0.0222

n 0.963 �0:0015

� 0.087 1:0� 10�7

FIG. 3 (color online). Fractional change in counts in the strong
redshift evolution case (�0 ¼ 0:25, � ¼ 1), relative to a
projection-free model, are shown for three values of the blending
evolution parameter, �1. Solid lines give the case with projection
while dotted lines show the projection-free model with parame-
ters tuned to match the mass bias and variance of the projection
model, but with cosmology fixed at the fiducial WMAP5 values.
Dashed lines show the projection-free case after shifting all
parameters (cosmological and mass-observable) according to
Eq. (15).
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the two-Gaussian case is quite good, while at �1 ¼ 0:25
the divergence is much larger.

Finally, we note that Eq. (15) calculates shifts using the
Fisher matrix of the projection-free model. We have veri-
fied that we obtain the same results if we employ the
projection model matrix with sharp priors added to the
eight parameters describing the blended component. This
is expected because, for the same free parameters in the
two models, the linearized equation should be symmetric
under their exchange.

B. Dark energy parameter constraints

While introducing additional parameters to describe
selection with projected blending may eliminate bias in
cosmological parameters, that benefit comes with the risk
of degrading cosmological parameter constraints. The
amount of degradation depends on assumptions about pri-
ors on model parameters.

Table III summarizes results using the projection model
that corresponds to our best match of Cohn et al. [28]
(�0 ¼ 0:25, � ¼ 1:00, 	, sz, sM ¼ 0, �2

0;b ¼ 2�2
0, �0 ¼

0, �1 ¼ 0:17). In all cases, Planck priors are added to the
cosmological parameters, and we consider priors on the
clean and blended cluster components separately. Given an
assumed prior error, �i, on the ith parameter, we add to the
Fisher matrix

Fii
prior ¼

�
1

�i

�
2
: (16)

We consider sharp priors as being numerically larger than
other entries in the Fisher matrix, generally Fsharp ’ 106,

and flat priors are given by Fflat ¼ 0.
Table III shows permutations of three basic cases: a flat

prior on model parameters, a priori of � ¼ 0:1 added to
model parameters as well as a 10% prior added to �2

0 or

�2
0;b, or sharp priors on model parameters. The last two

columns give the marginalized uncertainty in w and �DE.
The first three rows compare extremal cases. Sharp

knowledge of all mass-observable parameters produces
the best constraints possible, 	0:002 in �DE and 	0:011
in w. The projection-free case with no prior knowledge of
the six parameters of the clean component, shown in the
second row, produces constraints of 	0:014 in �DE and

	0:046 in w. These errors are worse by factors of 7 and 4,
respectively, than the case of perfect knowledge.
Introducing eight new degrees of freedom to represent
the blended component further degrades the errors by
somewhat more than a factor of 2, to 	0:034 in �DE and
	0:11 in w.
Targeted follow-up and complementary survey informa-

tion, from mm or x-ray observations, for example, may
enable moderate priors to be placed on the bias and vari-
ance of the mass-observable relation. These cases are ex-
plored in the lower three rows of Table III. Knowledge of
the clean component parameters at the level of 	0:1
provides substantial improvement over the flat case. Even
with no prior knowledge of the blended component, the
errors of 	0:013 in �DE and 	0:042 in w represent
improvements over the projection-free case with no prior
knowledge (second row). When 0.1 priors are brought to
bear on the projected blends, the constraints improve to
	0:010 in �DE and 	0:030 in w. Stronger priors on the
blended component do not improve these constraints.

C. Discussion

Achieving constraints on w and �DE at the few percent
level is a goal of next-generation cluster surveys. Our
analysis shows that avoiding biases at this level requires
projection to be incorporated into the likelihood modeling
of optical-IR surveys.
Prior knowledge of the blended component behavior can

limit parameter bias. In Fig. 4, we illustrate the rate at
which the forecast uncertainty in w changes with prior
uncertainty on the mass-observable parameters of the
blended component. The behavior for �DE is similar,
mainly because Planck priors effectively fix many of the
correlations between cosmological parameters. The solid
line shows the effect of applying priors to all eight parame-
ters while dashed lines show the behavior when priors are
applied only to parameters controlling the blending ampli-
tude ð�0; �1Þ, mass bias terms ð�0; �; 	Þ, and mass
variance ð�lnM;b; sz; sMÞ. In all cases, flat priors are im-

posed to the remaining mass-observable parameters.
Applying priors to only the parameter subsets, we see

that all three sets have comparable effects on w uncertain-
ties. Because of covariance, the effect of applying strong
priors to all parameters is much stronger than for any of the
isolated sets. The error in w is somewhat more sensitive to
the blending amplitude �ðzÞ than to the bias and variance,
but all parameters need to be known at the level of 0.1 in
order to avoid significant degradation.
For red sequence or photometric redshift cluster finding

methods, the fraction of blended clusters is not likely to
dominate the population, suggesting that the current level of
uncertainty is near 0.1. By testing the performance of
cluster-finding algorithms on sophisticated simulations,
and by calibrating mass selection based onmultiwavelength
follow-up campaigns of existing deep cluster catalogs, the

TABLE III. Forecasts for w and �DE constraints using Planck
priors.

Priors Uncertainty

Clean Blended �ð�DEÞ �ðwÞ
sharp sharp 0.002 0.011

flat sharp 0.014 0.046

flat flat 0.034 0.109

0.1 sharp 0.010 0.030

0.1 0.1 0.010 0.030

0.1 flat 0.013 0.042
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error may be reduced to �0:05 as part of next-generation
survey analysis. In the right-hand panel of Fig. 4, we show
the error in w for cases in which just the amplitude or both
the amplitude and mass bias of the blending component are
known at the�0:05 level. These cases limit the degradation
of the w constraint, to factors of 2.0 and 1.5, respectively,
compared to 2.4 for the case of all parameters free.

Our assumed value of �0 ¼ 0:5 may be pessimistic, in
that future cluster finders may achieve better mass selec-
tion. An improved matched filter method [59] applied to
the MAXBCG catalog indicates a mass scatter closer to 0.3
for low redshift clusters for a sample with mass threshold
close to the value assumed here. While achieving this level
of mass selection at z > 0:5 has not yet been demonstrated,
the variety of cluster multicolor detection algorithms under
active development [15,52,55,58,73–76] offer the potential
of future gains.

Spectroscopic observations of cluster fields provide valu-
able empirical tests of blending. For example, a follow-up
of 58 EIS cluster candidates, selected only with I-band
imaging and so without the benefit of color-based redshift
filtering, found multiple redshift-space structures in a ma-
jority of fields [42]. Studies at high redshift using infrared
color selection, which are just beginning, fare better but are
not entirely clean. Six rich clusters from the Spitzer adap-
tation of the red-sequence cluster survey sample, which
uses z0–3:6� color from ground-based and Spitzer obser-
vations, have been followed up with Keck/low resolution
imaging spectrometer spectroscopy. Two cases appear to be
strongly blended, with dynamical mass estimates derived
from velocity dispersions lower by a factor �6 than mass
estimates based on their galactic richness. Continued
follow-up of this and other IR-selected deep cluster samples
should be followed vigorously as a means to characterize
the amplitude and mass scale of projected blends.

Simulations of large-scale structure provide an effective
tool for understanding projection. Work is underway
within the DES collaboration to test a variety of cluster
finding algorithms against simulated expectations for the
multiband galaxy catalog. Using either galaxy membership
or redshift-space location as a way to match clusters and
halos, the simulations offer the means to test the sensitivity
of blending to algorithm choice and to choice of parame-
ters within a fixed algorithm [77]. Such studies should
produce improved, algorithm-specific characterizations of
blends that can be coupled to empirically-derived studies to
serve as prior information for cluster likelihood analysis.
As algorithms improve in terms of mass selection, char-

acterization of projection effects will inevitably become
apparent through the full shape of the mass-observable
relation, pðMobsjM; zÞ or its inverse, the mass-selection
function, pðMjMobs; zÞ. Ultimately, survey constraints on
dark energy parameters have the potential to achieve the
best possible constraints given by the first row of Table III.
Extracting a 1% constraint on w poses the challenge of
precisely characterizing selection. More careful analysis
may suggest an improved, possibly more compact, form
for modeling selection with projection than what we
present here.
While we focus our analysis on optical-IR studies, the

issue of blending is generic to all cluster-finding methods.
The blending factor �ðzÞ should be minimal for x-ray
selection, due to the compactness of the surface brightness
image as well as the strong scaling of luminosity with
mass. SZ-selected samples are likely to incur blending at
a level below that of optical-IR surveys [78]. However, for
x ray and SZ, angular resolution is also an important factor.
The Planck satellite has only moderate resolution of 5–100,
depending on frequency. Of the 21 new cluster candidates
identified in the Planck early Sunyaey-Zel’dovich sample,

FIG. 4 (color online). Error in w is shown as a function of priors added to the parameters describing projected blends. Planck priors
are applied to cosmological parameters throughout. The left panel shows the error in w as a function of prior �i applied to all eight
blending parameters (solid), and separately to only the parameters describing �ðzÞ (dashed), or only the parameters describing lnMbias;b

(dot-dashed), or only the parameters for �2
lnM;b (dotted). The solid line is reproduced in the right panel, which also shows the resulting

error in w when a 0.05 prior is applied to just the blending amplitude, �ðzÞ (dashed), or when 0.05 priors are applied to both �ðzÞ and
lnMbias;b (dotted). In the latter two cases, the results are shown as a function of prior �i applied to the remaining blending parameters.
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four are known to be double or triple systems from the x-
ray multi-mirror mission-Newton follow-up imaging [79].
Follow-up studies of these and other SZ-selected sources
from the South Pole telescope and the Atacama cosmology
telescope is needed to characterize the mass selection of
these methods.

IV. SUMMARY

Cluster counts used in cosmological studies have typi-
cally been modeled with log-normal deviations about
power-law forms for the mass-observable relation. While
a log-normal expectation may reasonably reflect intrinsic
scatter, projection will generically boost a minority of
systems to higher observed signal. This blending of halo
properties is particularly true for optical-IR surveys that
use color or photometric redshifts as a distance estimator.
We extend previous Fisher matrix studies by introducing a
Gaussian mixture model for the mass-observable relation.
The model employs eight new parameters to describe a
redshift-dependent amplitude and shape of the blended
component, in addition to the six parameters of the domi-
nant, nonblended cluster population.

The presence of a minority of strongly blended clusters
influences cosmological parameter estimation. For the case
of blending parameters tuned to millennium simulation
analysis [28] (Fig. 1), we find that survey analysis using
a projection-free (single-Gaussian) analysis model intro-
duces biases of 0.1 in w and �0:04 in �DE. Comparing
their Fisher forecast errors with Planck, these shifts are
comparable to uncertainties expected using flat priors on
mass-observable parameters, but are an order of magnitude
larger than the uncertainties possible under precise mass-
observable knowledge. Explicit modeling of projection is
therefore required to avoid significant bias in next-
generation cosmological studies using cluster counts and
clustering. Optical studies at low redshift, where the
blended fraction is below 10%, or studies using cleaner
detection methods, such as x-ray selection, are less sus-
ceptible to bias from projection.

Constraints onw and�DE with Planck priors degrade by
about a factor of 2.4 when new parameters to describe the
Gaussian mixture distribution are included. Our analysis
indicates that 5% prior knowledge of the blending
amplitude and mass bias limit the degradation to a factor
of 1.5.

Improved knowledge of blending will come from com-
plementary approaches employing follow-up observations,
simulations, and joint analysis of overlapping multiwave-
length surveys. Follow-up campaigns will provide mass
estimates based on hydrostatic, virial, and lensing masses.
Simulations of the galaxy distribution will grow in fidelity,
benefitting from empirical studies of the relation between
halo mass stellar content to z� 1 [80,81]. Optical cluster
finders applied to such simulated sky expectations will
inform prior constraints on projection effects. Over the

next decade, the ability to cross-match large cluster
samples from mm to x-ray wavelengths will offer a new
window into the nature of the relationship between clusters
and the massive halos that host them.
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APPENDIX: CLUSTER COUNTS AND
CLUSTERING

For the space density and clustering of halos, we follow
conventions used in previous work [66]. The mass function
is

dn

dM
¼ fð�Þ ��m

M

d ln��1

dM
; (A1)

and we adopt the Tinker parameterization of fð�Þ [20],

fð�Þ ¼ A

��
�

b

��a þ 1

�
e�c=�2

: (A2)

Following [20] we allow three parameters of fð�Þ to
vary with redshift:

AðzÞ ¼ A0ð1þ zÞAx ; (A3)

aðzÞ ¼ a0ð1þ zÞax ; (A4)

bðzÞ ¼ b0ð1þ zÞ��: (A5)

For fiducial parameters, we adopt the values of [20] at
mean density contrast � ¼ 200: A0 ¼ 0:186, Ax ¼ �0:14,
a0 ¼ 1:47, ax ¼ �0:06, b0 ¼ 2:57, log10ð�Þ ¼
ð 0:75
logð�=75ÞÞ1:2, and c ¼ 1:19. As Tinker et al. [20] describe,

A controls the overall amplitude of fð�Þ, a controls the tilt,
and b sets the mass scale at which the power law in fð�Þ
becomes significant.
The sample covariance of counts N�;i is, given by [82]

S�	ij ¼ hðN�;i � �N�;iÞðN	;j � �N	;jÞi ¼ b�;i �N�;ib	;j �N	;j

(A6)

�
Z d3k

ð2�Þ3 W


i ðkÞWjðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PiðkÞPjðkÞ

q
; (A7)

where b�;iðzÞ is the average cluster linear bias parameter,

defined as
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b�;iðzÞ ¼ 1

�n�;iðzÞ
Z M�þ1

obs

M�
obs

dMobs

Mobs

Z dM

M

� d �n�;iðzÞ
d lnM

bðM; zÞpðMobsjMÞ: (A8)

W

i ðkÞ is the Fourier transform of the top-hat window

function and PiðkÞ is the linear power spectrum at the
centroid of redshift bin i.

We adopt the bðM; zÞ fit of [83] for the halo bias

bðM; zÞ ¼ 1þ ac�
2
c=�

2 � 1

�c

þ 2pc

�c½1þ ða�2
c=�

2Þpc� ;
(A9)

and choose the fiducial values for the parameters to be
ac ¼ 0:75, �c ¼ 1:69, and pc ¼ 0:3.
Following [82], we find that the window functionW


i ðkÞ
is given by

WiðkÞ ¼ 2 exp½ikkðriÞ� sinðkk�ri=2Þkk�ri=2
J1ðk?ri
sÞ
k?ri
s

: (A10)

Here ri ¼ rðziÞ is the angular diameter distance to the ith
redshift bin, and �ri ¼ rðziþ1Þ � rðziÞ. Similarly, Hi ¼
HðziÞ ¼ HðzÞ, which we assume to be constant inside
each bin. The variables kk and k? represent parallel and

perpendicular components of the wavenumber k relative to
the line of sight.
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