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We study asymptotically safe gravity with Einstein-Hilbert truncation taking into account the renor-

malization group running of both gravitational and cosmological constants. We show that the classical

behavior of the theory is equivalent to a specific class of Jordan-Brans-Dicke theories with a vanishing

Brans-Dicke parameter, and a potential determined by the renormalization group equation. The theory

may be reformulated as an fðRÞ theory. In the simplest cosmological scenario, we find large-field

inflationary solutions near the Planck scale where the effective field theory description breaks down.

Finally, we discuss the implications of a running gravitational constant to background dynamics via

cosmological perturbation theory. We show that compatibility with general relativity requires that

contributions from the running gravitational constant to the stress energy tensor are taken into account

in the perturbation analysis.
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I. INTRODUCTION

One of the most challenging tasks facing theoretical
physicists today is the construction of a consistent
UV complete theory of gravity. Weinberg has made the
intriguing proposal that the effective description of the
quantum nature of a gravitational theory may be nonper-
turbatively renormalizable via the notion of asymptotic
safety (AS) [1,2]. In this scenario the renormalization
group (RG) flows approach a fixed point in the UV limit,
and a finite dimensional critical surface of trajectories
evolves to this point at short distance scales [3–5]. This
picture suggests a nonperturbative UV completion for
gravity, where the metric fields remain the fundamental
degrees of freedom. Moreover, the low energy regime of
classical general relativity is linked with the high energy
regime by a well-defined, finite, RG trajectory.

The scenario of AS gravity has been studied extensively
in the literature [6–15]. There is evidence that black hole
solutions in an AS gravity with Einstein-Hilbert truncation
may be nonsingular [16–18]; however, the study of black
hole physics in an AS gravity theory including higher
derivative terms [19] showed that, while the metric factor
may be everywhere finite, curvature invariants may still
diverge at the origin. The implications of AS gravity with
Einstein truncation and Friedmann-Robertson-Walker
(FRW) cosmologies were analyzed with respect to late
time cosmological acceleration in Refs. [20–25]. The rela-
tion between Brans-Dicke theory and AS gravity was
discussed in [26]. It is also possible that AS gravity might
drive inflation at early times [5,27–29].

The majority of work on the subject assumes that
the additional contribution to the stress energy tensor due
to the running of the gravitational constant G is negligible.

It was observed that this additional contribution may play
an important role in the background evolution of the early
Universe [22,24,25]. In this paper, we study the classical
dynamics, taking into account the effective stress energy
tenor induced by a running G. We show that the classical
(on-shell) behavior of AS gravity is equivalent to a specific
class of Jordan-Brans-Dicke (JBD) [30,31] theories, or an
fðRÞ theory. Through the well-known procedure of making
a conformal transformation on the metric, we demonstrate
that the theory of AS gravity can be classically reformu-
lated as pure Einstein gravity minimally coupled to a scalar
field. Naturally, it is easier to study the cosmological
implication of AS gravity in this more familiar Einstein
frame. As an application, we consider a toy model with
explicit forms for the running gravitational and cosmologi-
cal constants. In this case, we find that the potential for the
scalar is sufficiently flat at large field values to produce
slow-roll inflationary solutions. Following the analysis of
cosmological perturbations in a generalized JBD model
[32–34], a nearly scale-invariant primordial power spec-
trum can be obtained. However, in this model, the typical
energy scale for AS inflation is too high to be compatible
with observation. Furthermore, in the classical Einstein
frame of the JBD theory, the inflaton potential is not
bounded from below and thus the inflaton could fall
down to infinity in the future. This pathology is not present
in the AS gravity frame due to the natural requirement that
the cutoff scale is positively defined. This inconsistency
may imply that the toy AS scenario for quantum Einstein
gravity is too simple to describe the physics of the
RG running over the entire range of scales from the UV
to the IR.
Finally, we comment on the significance of the contri-

bution of a running gravitational constant to the stress
energy tensor in AS gravity. In particular, we study the
evolution of cosmological perturbations by neglecting the
contribution of a running gravitational constant. We find
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that the sound speed parameter of the gravitational poten-
tial is equivalent to that of normal radiation, and is inca-
pable of recovering the standard cosmological perturbation
theory in the IR limit. We interpret this inconsistency as an
indication that it may be inappropriate to neglect the con-
tribution of the running gravitational constant in the study
of the perturbation dynamics.

The remainder of this paper is organized as follows. In
Sec. II, we review the idea of AS gravity and describe the
basic features of dimensionless coupling parameters in
the theory. In Sec. III, we study the equations of motion
in the AS gravity frame and the corresponding JBD gravity
frame. At the classical level, we show that the two theories
are equivalent for a specific choice of parameter and po-
tential for the JBD gravity. Section IV is devoted to cos-
mological implications of this correspondence. We show
how the JBD theory maps to an fðRÞ theory. We demon-
strate the occurrence of inflation in a toy model of AS
gravity. In Sec. V, we study the cosmological perturbation
theory of the AS model, ignoring the contribution of the
running gravitational constant to the background dynam-
ics. We show that ignoring the contribution is inconsistent
with general relativity in the IR limit. Section VI presents a
summary and discussion.

We will work with the reduced Planck mass, Mpl ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p
, where GN is the gravitational constant in the

IR limit, and adopt the mostly plus metric sign convention
ð�;þ;þ;þÞ.

II. ASYMPTOTICALLY SAFE GRAVITY

A generally covariant gravitational theory with effective
action involving a momentum cutoff p can be expressed as

Sp½g���¼
Z
d4x

ffiffiffiffiffiffiffi�g
p ½p4g0ðpÞþp2g1ðpÞRþOðR2Þþ����;

(1)

where g is the determinant of the metric tensor g�� andR is

the Ricci scalar. The coefficients gi (i ¼ 0; 1; . . . ) are
dimensionless coupling parameters and are functions of
the dimension-full UV cutoff. In particular, we have

g0ðpÞ ¼ � �ðpÞ
8�GðpÞp

�4; g1ðpÞ ¼ 1

8�GðpÞp
�2; (2)

where GðpÞ and �ðpÞ are the quantum corrected gravita-
tional and cosmological constants. The couplings satisfy
the following RG equation,

d

d lnp
giðpÞ ¼ �i½gðpÞ�: (3)

According to Ref. [3], all beta functions vanish when the
coupling parameters gi approach a fixed point g�i in the
scenario of asymptotical safety. If g�i ¼ 0, the fixed point is
Gaussian; if g�i � 0, the fixed point is non-Gaussian (NG).
For the NG fixed point, all the coupling parameters are

fixed, the cutoff p becomes irrelevant as p ! 1, and the
theory is adequately described by a finite number of higher
order counterterms included in the effective action. Near
the fixed point we may Taylor expand the beta functions in
a matrix form,

�i½g� ¼
X
j

Bijðgj � g�j Þ; (4)

where the elements of the matrix are defined by Bij �
@�i½g��
@gj

at the fixed point. Solving the RG equations (3) in the

neighborhood of the fixed point, we find

giðpÞ ¼ g�i þ
X
m

eni

�
p

M�

�
vn

; (5)

where en and vn are the suitably normalized eigenvectors
and corresponding eigenvalues of the matrix Bij. Since B
is a general real matrix with symmetry determined by a
particular gravity model, its eigenvalues can be either real
or in pairs of complex conjugates. As a consequence, the
dimensionality of the UV critical surface is equal to the
number of eigenvalues of the matrix B, of which the real
parts take negative values. The above solution involves an
arbitrary mass scaleM�. By requiring the largest eigenvec-
tor of order unity,M� is typically identified with the energy
scale at which the coupling parameters are just beginning
to approach the fixed point.

III. DYNAMICS OFAS GRAVITYAND ITS
CLASSICAL CORRESPONDENCE

In this section we analyze the dynamics of AS gravity
and show its classical correspondence with scalar-tensor
JBD theory.

A. Equations of motion for AS gravity

Our starting point is a system described by AS gravity
with Einstein-Hilbert truncation, minimally coupled to
matter fields,

SASG ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R� 2�

16�G
þLm

�
; (6)

where G and � are related to the dimensionless coupling
parameters through Eq. (2). The Lagrangian Lm describes
all matter components in this gravitational system.
Varying the action with respect to the metric, one can

obtain the following Einstein equation with quantum cor-
rections taken into account,

R���R

2
g��þ�g��¼8�GTðmÞ

�� þGðr�r��g��hÞG�1;

(7)

where we have introduced the covariant derivative r� and

the operator h � g��r�r�. TðmÞ
�� is the stress energy
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tensor for all matter components. In the above, the first
term on the right-hand side of Eq. (7) is the same as the
Einstein equation in classical general relativity, and the
second term denotes a quantum correction due to the RG
running of the gravitational constant.

Since both G and � are no longer constants but func-
tions of the cutoff scale p as reviewed in the previous
section, it is important to identify the distribution of p in
the quantum corrected manifold. This can be achieved by
writing down the generalized Bianchi identity of AS grav-
ity. Assuming the conservation of the stress energy tensor
of matter fields r�T

�
� ¼ 0, we can derive the following

useful equation,

� ðR� 2�ÞG;p

G
r�p ¼ 2�;pr�p; (8)

where the subscript ‘‘; p’’ denotes the derivative with re-
spect to p. This equation can be further simplified as

� ðR� 2�ÞG;p

G
¼ 2�;p (9)

when r�p � 0.

B. Classical equivalence to the JBD theory

The JBD theory is an example of a scalar-tensor theory
in which the gravitational interaction is mediated by a
scalar field as well as the tensor field of general relativity.
The gravitational constant is not presumed to be constant
but instead is replaced by a scalar field which can vary from
place to place and with time. Compared to classical general
relativity, this theory contains an extra dimensionless con-
stant, !, which is the so-called Brans-Dicke parameter.
The JBD theory with a scalar degree of freedom ’ and
potential Uð’Þ is described by the action

SJBD ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
’2R�!r�’r�’

16�’
�Uð’Þ þLm

�
:

(10)

Depending on the choices of ! and Uð’Þ, this theory
includes a variety of classical gravitational theories. For
example, classical general relativity is recovered when
! ¼ 0, U ¼ 0, and ’ ¼ 1=GN .

Varying with respect to the metric yields the generalized
Einstein equation for the JBD theory,

R���R

2
g��¼8�

’
ðTðmÞ

�� �Ug��Þþ 1

’
ðr�r��g��hÞ’

þ !

’2

�
r�’r�’�1

2
g��r�’r�’

�
: (11)

Varying the action with respect to ’ gives

R� 16�U;’ þ 2!

’
h’� !

’2
r�’r�’ ¼ 0; (12)

where the subscript ‘‘;’’’ represents differentiation with
respect to ’. Combining this equation with the trace of the
generalized Einstein equation, one gets the equation of
motion for the scalar field ’,

ð2!þ 3Þh’� 8�TðmÞ þ 32�U� 16�’U;’ ¼ 0; (13)

where TðmÞ is the trace of the stress energy tensor of matter
components.
We now find the specific class of JBD theories which are

classically equivalent to AS gravity. Comparing the sets of
Einstein equations (7) and (11), we find that the two
correspond when we identify

’ ¼ G�1; ! ¼ 0; Uð’Þ ¼ �ðpÞ
8�GðpÞ : (14)

We then verify that the equation of motion for the cutoff p
and that for the scalar ’ are consistent with each other.
Making use of Eq. (9) and the trace of Eq. (7), we find

hG�1 ¼ 8�

3
TðmÞ � 2�

3G
� 2�;p

3G;p

: (15)

Making use of the correspondence (14), we see that
Eq. (15) is exactly consistent with the equation of motion
for the scalar in the JBD theory (13).

C. Einstein-frame description

In the previous subsection, we have derived a JBD
description of AS gravity at the classical level.
Consequently, one can reformulate the action of AS gravity
in the Jordan frame as

SJ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
’R

16�
�Uð’Þ þLm

�
; (16)

where ’ and Uð’Þ are determined by the condition
Eq. (14). In this subsection, we present an equivalent
description of the theory in the Einstein frame. First, we
make the following conformal transformation,

~g �� ¼ �2g��; �2 ¼ GN’; (17)

where GN is the value of the gravitational constant at the
IR limit as defined at the end of the introductory section.
As a consequence, the action of AS gravity in the Einstein
frame is

SE¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p � ~R

16�GN

�1

2
ð~r�Þ2� ~Uð�Þþ ~Lm

�
; (18)

where we have introduced a canonical scalar field �
defined as

� � �
ffiffiffi
3

2

s
Mp ln

’

8�M2
p

: (19)

In the above action, the potential for the new scalar field is
determined by
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~Uð�Þ ¼ Uð’Þ
G2

N’
2
¼ �ðpÞGðpÞ

8�G2
N

; (20)

where the second equality is obtained from Eq. (14).

Moreover, ~Lm ¼ Lm=G
2
N’

2 corresponds to the
Lagrangian of other matter fields in the Einstein frame.

IV. COSMOLOGICAL IMPLICATION
AND THE AS EARLY UNIVERSE

The classical JBD correspondence provides a conve-
nient framework to study any system in AS gravity. The
scenario of AS gravity gives us a new way to understand
the quantum nature of gravitational theories. However, in
order to test the validity of this scenario, it is necessary to
study whether AS gravity is capable of accurately describ-
ing the cosmological evolution of our Universe. Because
the quantum corrections to gravitational theories often
become significant at a high energy scale, we expect that
the theory of AS gravity may shed light on the nature of the
Universe at early times.

A. Generic analysis of an AS universe

In a flat FRW background with a scale factor in the
Einstein frame, the background equations are given by

~H 2 ¼ 8�GN

3

�
�02

2
þ ~U

�
; (21)

~H 0 ¼ �4�GN�
02; (22)

where the prime denotes the derivative with respect to the
Einstein-frame time coordinate ~t, given by

d~t2 ¼ exp

� ffiffiffi
2

3

s
�

Mp

�
dt2: (23)

Here we have neglected the contribution of normal matter
components, focusing on the background dynamics of a
pure AS cosmological system. From the two background
equations, it is well known that inflationary solutions can
be found for sufficiently small values of the slow-roll
parameters,

�� � 1

16�GN

� ~U;�

~U

�
2
; (24)

�� � 1

8�GN

~U;��

~U
: (25)

Therefore, it is critical to identify the cutoff p as a
function of the scalar field � in order to determine if
inflation is able to take place. The functional gravitational
RG equation is based on a momentum cutoff for the
propagating degrees of freedom and captures the nonper-
turbative information about the gravitational theory. The
RG equation is of the form [7]

@

@ lnp
�p ¼ 1

2
Trð	ð2Þ�p þRðpÞÞ @

@ lnp
RðpÞ; (26)

where R is an appropriately defined momentum cutoff at
the scale p and is usually determined by the so-called
optimized cutoff process [35,36]. In the above formula,
we suppose the gauge fixing terms have already been
included, although they are irrelevant for our present con-
sideration. Additionally, the trace in the RG equation
stands for a sum over space-time indices and a loop inte-
gration. Our philosophy then is to effectively integrate out
the high momentum fluctuations with momentum larger
than the cutoff p, and incorporate them via the modified
dynamics for the fluctuations having momentum less
than p.

B. Early Universe in the simplest AS model

In this subsection, we study the simplest scenario in AS
gravity. In general, by solving the beta functions for
dimensionless coefficients of AS gravity with Einstein-
Hilbert truncation, one finds a Gaussian fixed point in the
IR limit and a non-Gaussian fixed point in the UV limit.
The approximate results are given by

GðpÞ ’ GN

1þ 
GGNp
2
; �ðpÞ ’ �IR þ 
�p

2; (27)

where GN and �IR are the values of the gravitational
constant and cosmological constant in the IR limit. The
coefficients 
G and 
� are determined by the physics near
the UV fixed point. This group of approximate solutions to
AS gravity mainly captures the nature of AS of the gravi-
tational theory, but we have neglected many details of the
RG flows. Because of this incompleteness, we refer to this
model as the simplest AS model. Explicitly, 
G ’ 0:72 and

� ’ 0:22 in this case. In the following we will solve the
equation of motion of the cutoff scale in the early Universe
but with the energy scale safely below the Planck scale.
The requirement of being below the Planck scale guaran-
tees that the Einstein-Hilbert truncation is reliable for the
covariant gravity action.
We now show that this theory can be reformulated as an

fðRÞ model. From Eqs. (12) and (27), we find that

R ¼ 2

�
�IR � 
�


GGN

�
þ 4
�


G

’; (28)

allowing the vacuum theory of (16) to be recast as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
fðRÞ; (29)

with
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fðRÞ ¼ ½GNðR� 2�IRÞ þ 2Z�2
128�G2

NZ
; (30)

where we have introduced Z ¼ 
�=
G.
Moreover, inserting (27) into the expression (14) and

making use of (19), one gets

p2 ¼ e�
ffiffiffiffiffiffi
2=3

p
�=Mp � 1


GGN

; (31)

where we have set� ¼ 0 at the IR limit. As a consequence,
the potential for the inflaton field � is expressed as

~Uð�Þ ¼ 1

8�G2
N

�

�


G

þ
�
�IRGN � 
�


G

�
e

ffiffiffiffiffiffi
2=3

p
�=Mp

�
: (32)

From the form of the potential, we can find that, when
� ! �1, ~U approaches a positive constant. The potential
(32) is plotted in Fig. 1. As a consequence, the Universe
can experience a period of inflationary expansion for suf-
ficiently large values of �, when the slow-roll parameters
(24) and (25) are sufficiently small. However, the energy
scale of this scenario is as high as the Planck scale. In this

simplest model, the amplitude of the quantum fluctuation
could catch up with the background evolution, and thus we
cannot trust the effective field description. The portion of
the inflationary phase space for large negative� is depicted
in Fig. 2.
Moreover, in the IR limit, we find that the simplest AS

scenario fails. When � ! 0, from the equivalent JBD
model, we see the scalar field will cross 0 and then fall
down to positive infinity (see Fig. 1). Of course, this
behavior is pathological. In the original AS formulation,
the cutoff scale is positively defined and thus the scalar� is
expected to be frozen at 0. This inconsistency implies that,
if the covariant gravitational theory has the AS behavior,
the RG flows of those constants should not be as rudimen-
tary as the ansatz shown in (27) in the IR limit.
Note that, in the model we considered, both the metrics

of the Einstein frame and the Jordan frame are inflating.
One can define the Hubble parameter in the Jordan frame
as H � da

adt , and its relation to the Hubble parameter in the

Einstein frame can be expressed as

H ¼ e�=
ffiffi
6

p
Mp

�
~Hþ �0ffiffiffi

6
p

Mp

�
:

Since in the Einstein frame the universe is inflating and the
scalar field � satisfies the slow-roll condition, we can
conclude that H is also nearly constant which implies
that the metric of the Jordan frame g inflates as well.

V. COSMOLOGICAL IMPLICATIONS OF
RUNNING GRAVITATIONAL CONSTANT

In the framework of AS gravity, there is one issue which
has generated significant debate in the literature, that is,
whether running G and � should bring additional contri-
butions to the stress energy tensor as shown in the last term
of Eq. (7) [22,24,25] or not [20,21,23]. This question is
related to how we connect the AS scenario well studied in a
strong gravity system with ordinary Einstein gravity in the
weak gravity limit. Based on the simple background analy-
sis, it is unclear how to address this issue. Here we propose
to answer this question in the context of cosmological
perturbation theory.
Our starting point is a universe described by AS gravity

with Einstein-Hilbert truncation minimally coupling to
matter fields. Without loss of generality, we take a canoni-
cal scalar field� description of matter with the Lagrangian

L m ¼ �1
2@��@��� Vð�Þ; (33)

where Vð�Þ is the potential of the background scalar.

A. RG modified background cosmology

We consider the metric of a homogeneous flat
Friedmann-Robertson-Walker space-time,

ds2 ¼ �dt2 þ a2ðtÞd~x2; (34)

FIG. 1 (color online). Plot of the Einstein-frame potential
~Uð�Þ.

FIG. 2. Plot of the relevant portion of the ð�; _�Þ-phase space.
The inflationary attractor is clearly visible and becomes strong
for large values of negative �.
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where t is the physical time, ~x denotes the comoving spatial
coordinates, and aðtÞ is the scale factor. By varying the
action with respect to the metric, we can obtain the back-
ground equations of motion. Both the expansion rate of
the universe, i.e., the Hubble parameter H � _a=a, and its
time derivative _H are determined by the RG modified
Friedmann equations as follows,

H2 ¼ 8�GðpÞ
3

½�m þ ��ðpÞ�; (35)

_H ¼ �4�GðpÞð�m þ PmÞ: (36)

In the above, �m and Pm are the energy density and
pressure of the matter field �, respectively:

�m ¼ 1
2
_�2 þ V; Pm ¼ 1

2
_�2 � V: (37)

The dynamics of � are determined by the equation of
motion,

€�þ 3H _�þ V;� ¼ 0; (38)

where the subscript ‘‘; �’’ denotes the derivative with
respect to �. Making use of Eq. (38), the continuity
equation for the matter field is satisfied automatically.

Additionally, we have introduced an effective energy
density of the cosmological constant

�� ¼ �ðpÞ
8�GðpÞ ; (39)

which is varying along with the running of the cutoff scale
p. Therefore, we need to know the dynamics of the cutoff
in order to determine the effective energy density of the
cosmological constant. The running of the cutoff is gov-
erned by the generalized Bianchi identity under the RG
corrections, which is given by

½ð3H2 ��ÞG;p þG�;p� _p ¼ 0: (40)

From Eq. (40), one can easily find that there exist two
solutions for the cutoff scale p. One is _p ¼ 0 which
implies p does not change during the cosmological evolu-
tion, but this solution does not help us to understand the
role of quantum gravity in the context of cosmology. The
other solution is required to satisfy the following equation,

H2 ¼ �

3
�G�;p

3G;p

: (41)

B. RG modified cosmological perturbation theory

As a consequence, using Eqs. (35), (36), (38), and (41),
we can study the cosmological evolution of the universe
once suitable initial conditions are chosen. Relevant topics
were discussed in the literature; however, in the current
paper, our main purpose is to extend the AS cosmology to
the perturbative level. In particular, we will explore the
cosmological perturbation theory of the RG modified
universe.

We conduct our analysis in the longitudinal gauge which
only involves scalar-type metric fluctuations1:

ds2 ¼ �ð1þ 2�Þdt2 þ a2ðtÞð1� 2�Þdx2; (42)

thus, as usual, the scalar metric fluctuations are character-
ized by two functions, � and �.
By expanding the gravitational equations of motion to

linear order, we obtain the (0, 0), ð0; iÞ, and ði; iÞ compo-
nents of perturbed Einstein equations as follows,

r2

a2
�� 3H _�� 3H2� ¼ 4�ðG	�þ �G;p	pÞ; (43)

_�þH� ¼ 4�ðG	qþ qG;p	pÞ; (44)

€�þ4H _�þ2 _H�þ3H2�¼4�ðG	PþPG;p	pÞ: (45)

Moreover, we assume there is no anisotropic stress, leading
to � ¼ � due to the vanishing ði; jÞ component of the
perturbed Einstein equations. In the above perturbation
equations, �, P, and q are the energy density, pressure,
and momentum of the whole universe, respectively. Thus,
we have q ¼ 0 at the background level. The perturbations
of the above quantities are given by

	� ¼ _�ð	 _�� _��Þ þ V;�	�þ ��;p	p; (46)

	P ¼ _�ð	 _�� _��Þ � V;�	�� ��;p	p; (47)

	q ¼ _�	�; (48)

respectively. Moreover, the fluctuation of the scalar field
	� obeys the perturbed Klein-Gordon equation,

	 €�þ3H	 _��r2

a2
	�þV;��	�¼4 _� _��2V;��: (49)

Note that, in Eqs. (43)–(45), the last terms are contribu-
tions from the quantum corrections of AS gravity. For the
background cosmology, the cutoff scale p is only a func-
tion of cosmic time. Thus, the homogeneity of the universe
requires that the RG modification to gravity is globally the
same in the entire universe. However, after taking into
account cosmological perturbations, such a requirement
would violate the local gauge transformation of general
relativity. Therefore, we expect the cutoff p to be both time
and space dependent when cosmological perturbations are
considered. See also [38] for an application of the space-
dependent cutoff scale to cosmological perturbation the-
ory. From the above generic analysis of cosmological
perturbations, this feature is reflected in the perturbed
mode 	pðt; ~xÞ. In the following, we will show that this

1We refer the reader to [37] for a comprehensive study of
cosmological perturbation theory in the classical frame of stan-
dard Einstein gravity.

YI-FU CAI AND DAMIEN A. EASSON PHYSICAL REVIEW D 84, 103502 (2011)

103502-6



important correction brought by AS gravity drastically
affects the analysis of cosmological perturbation theory.

Before performing the detailed perturbation analysis, we
shall study the determination of 	p. Recall that the Bianchi
identity r�G

�
� still holds, but its detailed form is modified

due to quantum corrections of RG running. At next-to-
leading order, it yields

d

dt
	ðG�Þ þ 3H	ðGð�þ PÞÞ � r2

a2
	ðGqÞ

¼ 3Gð�þ PÞ _�: (50)

The combination of (49) and (50) leads to the following
interesting relation,

	p ¼ G2
;p½ _�ð	 _�� _��Þ þ V;�	��

GG;pp��;p � 2G2
;p��;p �GG;p��;pp

; (51)

when _p � 0.
Notice that, since the background variable q is vanish-

ing, Eq. (44) yields

	� ¼
_�þH�

4�G _�
; (52)

which is the same as the relation in classical Einstein
gravity. Thus, to make use of the expressions (51) and
(52), we find that there is only a single degree of freedom
in the perturbation theory of AS cosmology with Einstein-
Hilbert truncation. Combining Eqs. (43) and (45), and
making use of Eqs. (51) and (52), we obtain the form of the
main perturbation equation for the gravitational potential,

€�þ
�
ð3c2s � 2ÞH � €H

_H
þG;p

G
_p

�
_�

þ
�
2 _H �H €H

_H
þ 3ðc2s � 1ÞH2 þHG;p

G
_p

�
�� c2s

r2

a2
�

¼ 0; (53)

where we have introduced an effective sound speed
parameter

c2s ¼
G3

;pP� 3GG2
;p��;p þG2G;pp��;p �G2G;p��;pp

G3
;p��GG2

;p��;p þG2G;pp��;p �G2G;p��;pp

:

(54)

This main perturbation equation reduces to the standard
version in the theory of classical Einstein gravity when we
set _p ¼ 0 and c2s ¼ 1 by hand. However, we observe that
these two perturbation equations are not continuously re-
lated by setting a fixed value of the cutoff. This feature is
completely different from the background dynamics, since
once we fix a specific value of p throughout the whole
cosmic evolution, the background equations of motion in
AS cosmology could automatically become the equations
obtained in classical cosmology. Therefore, an important

lesson we learned from AS gravity in cosmology is that the
dynamics of perturbations might be greatly different from
that of the background.
Specifically, we make use of the simplest AS scenario as

an example. Inserting (27) into the expression for the sound
speed (54), one gets

c2s ’ 
�ð1þ 
GGNp
2Þ2 � 8�G2

N
GPm

3
�ð1þ 
GGNp
2Þ2 � 8�G2

N
G�m

’ 1

3
; (55)

if we only focus on the physics below the Planck scale with
p � 1=

ffiffiffiffiffiffiffi
GN

p
. This result implies that the propagation of

cosmological perturbations is similar to that of fluctuations
from radiation, although we did not introduce any radiation
in the model we consider. This result obviously contradicts
the usual behavior of cosmological perturbation theory
in the framework of standard general relativity, in which
the sound speed of the gravitational potential in a system
only filled with gravity and a canonical scalar is unity.
Consequently, we arrive at the following important result:
The contribution of the running gravitational constant to
the stress energy tensor should be taken into account in
order to maintain consistency of the perturbation analysis
with general relativity. Thus, to determine the perturbation
analysis for asymptotically safe cosmology with Einstein-
Hilbert truncation, we may simply work directly in the
Einstein frame given by (18).

VI. CONCLUSIONS AND DISCUSSION

The scenario of AS gravity predicts that RG flows of
gravitational couplings approach a certain nontrivial fixed
point at the UV limit. It is important to question how such
quantum behavior might be observed in experiments.
Unfortunately, this quantum behavior often occurs at an
experimentally inaccessible energy scale which is near or
even higher than the Planck scale. It becomes almost
impossible to test AS gravity in any laboratory experi-
ments. One might hope that cosmology could provide a
new window to observe the quantum nature of Einstein
gravity. For example, in the literature, there have been
studies of how AS gravity might affect dark energy dy-
namics, lead to inflationary cosmology by virtue of a
varying cosmological constant, and be constrained by as-
tronomical observations.
In this paper, we have explored a correspondence be-

tween the classical dynamics of AS gravity and a class of
JBD theories. In certain cases, the JBD theory can be
reformulated as a model of fðRÞ gravity. Through a con-
formal transformation, the theory of AS gravity can be
expressed as a classical Einstein gravity minimally coupled
to a canonical scalar field. As a consequence, one can
considerably simplify the analysis of the background dy-
namics of AS gravity.
As an illustration, we considered a toy model of FRW

cosmology with explicit running behavior of both gravita-
tional and cosmological constants. In this simple model,
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we found that inflation can occur at high Planck scale
energies and for sufficiently large values of the inflaton
field. Therefore, such a simple model cannot describe a
realistic universe since the amplitude of quantum fluctua-
tions could be of the same order as the background and
would spoil the effective field theory description.

Finally, we studied the significance of the contribution
of the running gravitational constant to the stress energy
tensor in the framework of AS gravity. In a detailed
analysis, we neglected this part of the contribution and
examined the cosmological perturbation theory. Our re-
sults showed that the sound speed parameter in this case
coincides with that of normal radiation in the simplest AS
model when the cutoff scale is below the Planck scale, and
one can never recover the standard result in the IR limit.
This inconsistency illustrates that the treatment of neglect-
ing the contribution of a running gravitational constant,

which may be approximately accurate to describe the
background evolution, is not adequate in the study of
cosmological perturbations. Notice that the correct value
of the sound speed parameter for metric perturbations can
be recovered after we take into account the contribution of
the running gravitational constant to the stress energy
tensor in AS gravity. In that case, the sound speed equals
unity if the background scalar field is canonical.
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