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We explore the possibility that the dark matter is a condensate of a very light vector boson. Such a

condensate could be produced during inflation, provided the vector mass arises via the Stueckelberg

mechanism. We derive bounds on the kinetic mixing of the dark matter boson with the photon, and point

out several potential signatures of this model.
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I. INTRODUCTION

In the past decades there has been mounting evidence
that approximately 20% of the energy density in the uni-
verse is nonbaryonic, pressureless, and very weakly inter-
acting. Structure formation, baryon acoustic oscillations,
galactic rotational curves, the Bullet cluster—all of these
theories or observations point towards nonbaryonic invis-
ible stuff, with the same equation of state as nonrelativistic
matter. Unfortunately, there is no compelling experimental
evidence that dark matter has any nongravitational inter-
action with the standard model. At present there are two
popular large classes of dark matter theories: Axions and
Weakly Interacting Massive Particles. Both are well moti-
vated and potentially detectable using specific techniques.
It is however possible that neither is chosen by nature.
Amongst some of the less canonical candidates lie several
variants of light massive vector particles [1–3]. Quite a few
authors have already considered some of the consequences
of the existence of such particles [3–8]. However, the
conclusion of these authors is that it is difficult to obtain
sufficiently cold dark matter from a light vector particle.

We propose a variation that allows us to generate an
extremely cold light vector component of the Universe,
with a pressureless equation of state. We make essential
use of the Stueckelberg mechanism for generating the
vector mass [9,10]. This theory is economical and renor-
malizable. It is easy to populate the Universe with this
particle: like the axion [11], during inflation, the expecta-
tion value of a light boson fluctuates. Immediately after
inflation the value of the field in our horizon is a randomly
selected (or perhaps anthropically selected [12–14]) initial
condition. After inflation, when the Hubble constant is of
order of the boson mass, the field begins to oscillate. This
oscillating field may the thought of as a Universe-sized
Bose-Einstein condensate, as described in Sec. III. Such a
particle is allowed to kinetically mix with the photon via a
renormalizable interaction. Therefore, at some level, it
presumably does mix, although no lower bound on the
mixing parameter is required for the model to work. In
Sec. V we find the upper bounds on the kinetic mixing
parameter such that the early Universe neither thermalizes
nor evaporates this condensate. We also ensure that the
vector boson lifetime is sufficiently long, and consider

constraints on the coupling from possible apparent
Lorentz violating effects.

II. A MODEL OF LIGHT VECTOR DARK MATTER

Our massive vector will be represented by �� in a
Lagrangian of the form:

�L ¼ 1

4
ðF��F�� þ������ þ 2����F��Þ

þM2

2
���

� þ J�A
� (2.1)

where A� and F�� represent the field strength of ordinary
photon, J� is the ordinary charged current and ��� ¼
@��� � @���. Applying a nonunitary transformation
(A ! A� �� and � ! �þOð�2Þ) we can redefine our
fields in terms of the mass eigenstates called massless
photon and heavy photon:

�L¼1

4
ðF��F��þ������ÞþM2

2
���

�þJ�ðA�����Þ
(2.2)

By rotating ( ~A ¼ A� �� and ~� ¼ �þ �A) we can reach
the flavor eigenstates, called interacting and sterile photon.
These two mix through their mass term:

�L ¼ 1

4
ð ~F�� ~F�� þ ~��� ~���Þ

þM2

2
ð ~�� � � ~A�Þð ~�� � � ~A�Þ þ J� ~A� (2.3)

Unless otherwise stated, we will use the mass eigenstate
basis.1 In this basis, the heavy photon couples to the
electromagnetic current with the coupling constant scaled
by e ! �e.
Note that the model has 2 free parameters: M and �.

Fundamental theory gives us little guidance for their val-
ues. The theory is technically natural for any values of M
and �, in the sense that for a cutoff of order the Planck

1For M ¼ 0, we could work in a basis where one state is
completely decoupled. However, in the light photon dark matter
model, the number density is inversely proportional to M so a
smooth M ! 0 limit does not exist.
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scale, the renormalized values are of similar size to the bare
values. If we assume that the Uð1Þ of the standard model is
grand-unified into a semisimple or simple group, then �
can only be induced via loop corrections. In this case, if the
mass of the particles in the loops mC is below the grand
unification scale �GUT, the natural size of � is of order
ðg2=ð16�2ÞÞn, where n is the number of loops required to
induce the kinetic mixing, and g is the relevant combina-
tion of coupling constants in the loops. We will see that for
� to be viable dark matter, � has to be tiny, less than 10�7

over the entire mass range, so for g� 1, n should be
greater than or equal to about 3. If the particles in the loops
are heavier than the grand unification scale, there is an
additional suppression of at least ð�GUT=mCÞ2.

III. MISALIGNMENT MECHANISM FOR VECTOR
DARK MATTER GENESIS DURING INFLATION

The misalignment mechanism for producing a boson
condensate has been considered in connection with the
axion [11,15–18] and various other light scalar fields
such as moduli. Spatially varying modes of a bosonic field
will be smoothed by the expansion of the universe.
However the zero-momentum component of the scalar
field A in the FRW background has the equation of motion:

€Aþ 3HðtÞ _Aþm2A ¼ 0 (3.1)

which is reminiscent of harmonic oscillator, with a time
dependent damping term HðtÞ. In the early Universe,
HðtÞ � m, the scalar is effectively massless and its
Compton wavelength does not fit into the horizon. The
field is stuck: it does not go through a single oscillation and
therefore we observe no particles. The value of the field is
assumed to take on some random nonzero value, because
when the mass term is negligible there is no reason to
prefer a field value of A ¼ 0. An episode of inflation will
generally produce a spatially uniform field, but form � H
in any causally connected patch of the universe the mean
value of the field takes on some random, non zero value.
After inflation, the Hubble constant begins to decrease. As
soon as the discriminant 9H2 � 4m2 becomes negative, the
field A begins to oscillate and we can quantize the different
modes and call them particles. Since, up to the small
perturbations in the temperature, Hð�Þ is everywhere the
same, the transition happens everywhere in the Universe at
the same time (in the rest frame of A). We are left an energy
density which may be thought of as a coherent state of a
macroscopic number of particles. The particles are ex-
tremely cold and nonrelativistic, whatever their mass. An
adiabatic perturbation spectrum arising from the fluctua-
tions of the inflaton field [18,19] will imprint adiabatic
spatial variations on the density of the scalar particles, as is
needed to fit the WMAP data. On large distance scales
compared with the particle Compton wavelength 1=m the
dynamics of gravitational structure formation is identical
to that for any weakly interacting massive particle.

Note that inflation will produce isocurvature perturba-
tions arising from fluctuations of the scalar field A.
Such perturbations are highly constrained, and will place
an m dependent upper bound on the inflation scale
[11,13,18,20–24] for this scenario.
We can show that the same scenario applies to a light

massive vector in a FRW Universe. As shown in the
appendix, the equation of motion for such a vector is:

� @�ð��� ffiffiffiffiffiffiffi�g
p Þ ¼ �M2�� ffiffiffiffiffiffiffi�g

p
(3.2)

As inflation blows up a small patch of space, we can assume
the dark photon is uniformly distributed and picks a par-
ticular polarization. This means that in the Cosmic frame
@i�

� ¼ 0, and the time component of (3.2) implies�0 ¼ 0
as long asM � 0. The spatial component of (3.2) satisfies:

€� i þ 3H _�i þM2�i ¼ 0 (3.3)

We see that each spatial component of the vector satisfies
the same equation of motion as the scalar A in the previous
example and so has the same dynamics. After entering the
lightly damped oscillation regime the vector behaves just
like dust with dð�a3Þ=dt ¼ 0 where � ¼ hM2�2i. Taking
the upper bound of � ¼ mpl when M�H we can see that

the mass of �� should satisfy M � �2
DMH0ℏ ¼

6:6� 10�35 eV. This mass corresponds to a wavelength
of about 1011 pc. This lower bound on the mass is weaker
than the one implied by the existence of compact galaxies
[25] with L� 1 kpc and MCG � 2� 1011M�. Requiring
that the Compton wavelength of the dark matter is low
enough to allow structure formation on the kpc scale gives
a sharper bound on the lowest mass:

1 kpc<
ℏ
�p

¼ ℏ
Mvesc

) M � 1:67� 10�24 eV (3.4)

The amount of dark matter produced by this mechanism
becomes simply a randomly chosen initial condition for the
value of the field in our patch of the universe. In other
regions of the universe, which are beyond our current
horizon, the dark matter abundance is different. In
ref. [14] it was shown, that for an axion or similar dark
matter condensate produced during inflation, assuming
other parameters do not vary, the regions of universe with
dark matter abundance of order the abundance in our
observed universe are the most highly correlated with
physical features of our universe that seem favorable for
existence of observers, allowing for an ‘‘anthropic’’ expla-
nation of the dark matter density.

IV. STUECKELBERG VERSUS
THE HIGGS MECHANISM

The vector mass M2���� is not manifestly gauge

invariant. In the standard model of particle physics, all
massive vector particles acquire their mass due to a
Higgs mechanism. However, if the � were to get its mass
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from the Higgs mechanism, the inflationary misalignment
mechanism would not work to produce a condensate.
Assuming the Higgs Lagrangian is:

L ¼ ½ð@� þ ig��Þ’�2 þ �ð’2 �m2=ð2�ÞÞ2 (4.1)

the mass term for � is M2�2 ¼ g2m2�2=ð2�Þ, however,
the symmetry breaking happens around T2 �m2=g2,
which implies that the � is massless above this tempera-
ture. Therefore, in order to make sure that there exists a
time when M 	 HðTÞ while � is not massless, we need to
satisfy:

1 	 H=M ¼ T2

Mmpl

¼ m2

Mg2mpl

¼ 2�M

g4mpl

(4.2)

Therefore we need:

M

mpl
� g4

2�
(4.3)

We can look at the Z boson to illustrate this condition: the
right hand side is of the order 2g4v2=m2

h � 10�3 even for a

heavy Higgs (500 GeV) and so a condensate of W and Z
bosons could not have been created by a misalignment
mechanism. However, one could imagine taking the
limit in which M2 ¼ g2v2 ¼ g2m2=2� is fixed, but both
m ! 1 and � ! 1. In this case the right hand side of (4.3)
can be made arbitrarily small and the vector retains its
mass for arbitrarily high temperature. The limit m ! 1
can be handled in a better way: parametrize the Higgs in

polar coordinates ’ ¼ ðvþ hÞei	=v and integrate out the
heavy h. The effective Lagrangian of the light degrees of
freedom takes the form:

L ¼ � 1

4
F2 � 1

2
ðMA� þ @�	Þ2 (4.4)

which is identical to the Stueckelberg Lagrangian [9,10],
with 	 filling the role of the Stueckelberg scalar field which
fixes the correct number of degrees of freedom for a
massive vector. This Lagrangian is still invariant under:

��A ¼ Aþ @� ��	 ¼ 	�M� (4.5)

A redefinition �� ¼ A� þ @�	 leads to F�� ¼ ��� ¼
@��� � @��� and gives us a massive vector described by:

L S ¼ � 1

4
������ �M2

2
���� (4.6)

Naturally, this Lagrangian is still invariant under ��,
although it is not invariant under the naive gauge trans-
formation �� ! �� þ @��. Unlike the nonabelian case,
for a Uð1Þ gauge theory, the Higgs boson is not needed
to unitarize the scattering of the longitudinal mode
of a massive vector boson, and is unnecessary for
renormalizability.

V. BOUNDS

A. Early Universe—Compton evaporation

In order to be a successful dark matter candidate, the
dark photon has to be a stable particle both in vacuum and
in the dense, ionized early Universe. For light � bosons,
we need to ensure that the dark photon population does not
get thermalized, otherwise it would become ultra relativ-
istic and fail to be a good dark matter candidate. As with
photons and plasmas, the main process for thermalization
is the Compton-like scattering process: �e
 ! �e
.
However, this process will be suppressed by a factor of
�2 with respect to two other processes: �e
 $ 
e
. We
will call the right going process Compton evaporation and
the left going Inverse Compton evaporation. Therefore in
order to ensure there are enough dark photons left after
interaction with plasma, we need to require that Compton
evaporation rate � is smaller than the expansion rate of the
universe HðTÞ. Such condition will also imply that the
thermalization rate from Compton-like scattering will be
small and we will be left with enough cold dark matter to
populate our Universe. In order to investigate this bound
we need to know the product of the velocity and cross-
section v�ðM;pÞ as a function of the dark photon mass
M and electron three momentum p, which can be reex-
pressed for M � me:

v�ðM;pÞ ¼ 8�2�2�ð3m2 þ 2p2Þ
9m2ðm2 þ p2Þ þOðMÞ (5.1)

The width of the dark photon in plasma is then given by the
thermal average over the electron momentum density dis-
tribution for a given temperature of the Universe. We
would like this width to be smaller than the characteristic
expansion rate of the Universe at given temperature:

HðTÞ> �ðTÞ ¼
Z

dp3�ðM;pÞvðpÞnðp; T;�ðTÞÞ (5.2)

Where we have used the exact �ðM;pÞ, not the approxi-
mate expression (5.1), nðp; T;�Þ is the Fermi-Dirac distri-
bution with chemical potential �. We have chosen � ¼ 0
for T * me and after T drops below me it was picked to be
consistent with today’s electron comoving density. Given
that the early Universe is growing less and less dense, the
strongest bound on � is in effect at the earliest time the
dark photon is present, that is at the time when the mis-
alignment mechanism kicks in at M�H. This guarantees
that if the dark photon survives the first characteristic time
period, then it will not evaporate anymore during the
subsequent time. The condition H � � does not guarantee
this, but is a lower bound on such survival. We find it is
unnecessary to consider other particles than the electron,
since the contribution of all other charged particles with
mass mi and charge qi will be suppressed by a factor
giðme=miÞ2ðqi=qeÞ4 which together with their sup-
pressed thermal momentum distributions will make their
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contribution small. Likewise, it is unnecessary to consider
other evaporation processes such as �
 ! 

 since they
become important for dark photon mass of order

M ¼ ðmplm
2
eÞ1=3 � 1013 eV—well above the range we

consider in this paper. The bound imposed by Compton
evaporation is plotted in Fig. 1 and labeled Early Universe.
We would like to point out two features. When the
Universe reaches temperatures of order T � 0:1me, its
free charge density significantly drops and the evaporation
process becomes much less effective. This temperature
marks the generation of dark photon with mass M�
T2=mpl � 10�18 eV, hence the sharp dip in the bound on

� in this region. On the other hand, since the cross-section
starts dropping off when

ffiffiffi
s

p �m2
e=M and

ffiffiffi
s

p � T, we can
estimate a change in the slope of the bound around

M� ðm4
e=mplÞ1=3 which agrees with the observed dip at

M� 10�2 eV.

B. Decays

Apart from Compton evaporation, we can consider pure
vacuum decay processes, which become significant once

M>me or M>MW . Requiring that the dark photon is
stable on cosmological timescales requires that

P
�i < H0:

Process Width Notes

� ! lþl� �1 ¼ �2�
M2þ2m2

l

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 4m2

l

q
M> 2mi, Exact

� ! � �� �2 ¼ �2�3

16�

�
M
MW

�
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 4m2
�

p
Estimate of the

loop process

� ! 


 �3 ¼ 17�2�4M
11664000�3

�
M
me

�
8

See [4], valid

for M<me

The bounds imposed by these decays are plotted in Fig. 1.

C. Earth detection

Although �� does not satisfy Maxwell’s equations, its

coupling to ordinary matter is the same as that of the
photon A�. Therefore, a nonzero �� will appear as a

combination of electric and magnetic fields with strength
suppressed by a factor of �. Such fields will be detectable
in various precision experiments and it is our desire to
quantify the expected phenomena as accurately as
possible.

FIG. 1 (color online). Summary of constraints (color online): The early Universe behavior puts a dominant bound on � in the higher
mass range, for M> 2me the bounds are dominated by decays. The shaded region called AdC marks the possible combinations of
ð�;MÞ that could lead to adiabatic conversions. We have marked out the projection of the limits that can be achieved by ADMX [30]
(Orange)—axion search experiment turned into a light shinning through the wall experiment. The bounds put by shaded regions with
dotted lines come from a summary by [2] and comprise the bounds by both theoretical and experimental considerations such as
lifetime of the Sun (red), Horizontal branch Star limits (green), Coulomb law tests (blue), CMB pollution by the dark photon (yellow)
and beam dump experiments E141 and E137 (purple). In the low mass region the dominant bound comes from the drift of fine structure
constant (blue, solid/dashed).
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By our hypothesis, in the dark matter rest frame, �� ¼

�3A3 cosðMtÞ and so it will mimic an electric field E3 ¼
�A3M sinðMtÞ. Given that the local density of dark matter
is T00 ¼ M2A2

3=2 ¼ 0:3 GeV=cm3, we can infer that the

amplitude of the electric field will be

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:3 GeV=cm3=�0

q
� 3300�V=m (5.3)

However, there is no reason to believe that the dark matter
rest frame is identical with the Earth frame and hence we
need to perform a Lorentz boost to the right frame. Given
~� ¼ ð�x;�y;�zÞ cosðMtÞ and ~v—the velocity with re-

spect to the dark matter rest frame, the B-fields in the
Earth frame will be:

~B ¼ ~r� L~vð ~�Þ ¼ 
M ~v� ~� cosð
MtÞ (5.4)

We should note, that at v ¼ 0:001c, 
 ¼ 1þOð10�6Þ,
and that jM�j is the magnitude of electric field in the
dark matter rest frame. Therefore the B-field is simply
~B ¼ ~v� ~E—precisely as expected.

1. Attenuation

If these fields are to be detected by Earth-based experi-
ments we need to check that the dark photon field is not
screened by the atmosphere or by the many shields that
experimental physicists put up in order to protect their
experiments from stray electric and magnetic fields. In
materials, bound electrons will only contribute to shielding
if M falls close to some energy gap of a kinematically
allowed transition, however, even such transitions will be
suppressed by factor of �2. On the other hand, free elec-
trons in metals will allow a continuum of transitions, that
would lead to Compton evaporation effects. Therefore, we
will treat the interaction of dark photons with materials as a
wall penetration by weakly interacting particles, similarly
to what we have done with the early Universe. The change
in dark photon density will be proportional to:

a ¼ exp

�
�
Z

dxnðxÞ�ðM;vÞ
�

(5.5)

where nðxÞ is the free electron density of the shielding
material and �ðM;MvÞ is the Compton evaporation cross-
section and v ¼ 0:001c is the assumed velocity with re-
spect to the local dark matter flow. Given that the respec-
tive average densities of free electrons in the ionosphere
and copper are nat � 3� 1011 m�3 and nCu � 1029 m�3,
it is clear that a whole column of 1000 km of atmosphere
corresponds to a layer of metal about 10�12 m thick, which
is much less than any normal electric shielding of earth-
borne experiments hence we can disregard this contribu-
tion. Moreover, the early Universe bound on � gives an
attenuation length longer than 1 m in a copper plate and
once combined with the bounds from the next section the
attenuation length is larger than 1010 m.

2. Atomic physics

The Stark effect associated with the background dark
electric field would induce a shift in the ground state
energy of a hydrogenlike atom of order �ES ¼
�með3a20eEd=2ℏÞ2 � �2 � 10�15 eV which is 5 orders

of magnitude smaller than the current limits [26], even if
� ¼ 1. The Zeeman effect would produce a shift of�EZ ¼
5�� 10�13 eV. This is still too small to register. The
advantage of the Zeeman effect is that it is first order in
the fields, hence in �, which makes up for the fact that the
magnetic field is suppressed by a factor of v=c. However,
effects linear in fields go as cosðMtÞ, implying a zero time
average, and so a search without prior knowledge of M
would be time consuming. However, in the region of small
mass (M & 10�22 eV� 1 year) the slow oscillations im-
ply no need for averaging. In this regime the slowly chang-
ing background electric field would mimic a slow drift in
�. As an example we can take a system comprised of two
clocks: one driven by two photon transition from 1s ! 2s
in hydrogen and the other by the hyperfine transition in
cesium. The major correction to the hydrogen clock rate
comes as a Stark effect with a relative shift in the frequency
that goes as


!

!
¼ �E1s ��E2s

E1s � E2s

¼ � �E2s

E1s � E2s

¼ X
n�2

jh2; 0; 0jeEzjn; 1; 0ij2
ðE200 � En10ÞðE200 � E100Þ (5.6)

Notice that the n ¼ 2 term dominates the sum since the
degeneracy of the 2s and 2p states is broken by the lamb
shift with �Eð2p� 2sÞ � 10�6 eV, whereas the rest is on
the order of 1 eV. Therefore:


!H

!H

¼ 0:55ð�eEa0Þ2
ð�ElambÞðE1s!2sÞ � 4�2 � 10�10 (5.7)

Note that the Zeeman shift is identical for the 1s and 2s
orbitals and so there is no contribution linear in �.
In cesium the Stark shift does not distinguish the states,

but the Zeeman effect contributes by splitting the hyperfine
triplet into three distinct levels, and induces a change in the
clock frequency on the order:


!Cs

!Cs

¼ � �eB

�Ehyp

� 1:5�� 10�8 (5.8)

Clearly the cesium clock effect dominates for small �.
Therefore, as E oscillates very slowly, the experiment
sees a drift in 
!=! which could be (naively) interpreted
as drift in � of the order:

_�

�
¼ M


!

2!
� 1:5�� 10�8

�
M

10�22 eV

�
year�1 (5.9)

However, if the frequency of the oscillations is comparable
to the time scales of an experiment, such as sampling
rate and averaging times of individual data points, the
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sensitivity becomes more complicated. We pick [27] as a
model example to illustrate our point. Fisher et al. made
measurements in June 1999 and February 2003, which,
given the spacing between these two dates can be inter-
preted as two measurements separated by 44 months
(T ¼ 1320 days), each averaged over roughly one month
(t0 ¼ 30 days). Therefore, the experiment should perceive
a change in the value of the field equal to:


�ð’0Þ ¼ �0

t0

�Z t¼T

t¼0
dt cos½Mðtþ TÞ=hþ ’0�

�
Z t¼t0

t¼0
dt cos½Mt=hþ ’0�

�
; (5.10)

where ’0 is an unknown phase of the field. Performing the
integral and factorizing gives us:


�ð’0Þ ¼ 4�0

Mt0
sin

�
MT

2

�
sin

�
Mt0
2

�
sin

�
’0 þMðt0 þ TÞ

2

�
(5.11)

This means that for certain fine-tuned phases ’0 �
�Mðt0 þ TÞ=2 the experiment could see nothing by simply
being unlucky. However, we know that 95% of time
j sinð’0 þMðt0 þ TÞ=2Þj � sinð0:05=4� 2�Þ ¼ 0:0785
and so 95% of time 
� is larger than:

j
�j �
��������4�0

Mt0
sin

�
MT

2

�
sin

�
Mt0
2

�
sin

�
5�

200

��������� (5.12)

We use this expression to put a 95% confidence bound
on � and plot it as �-drift in Fig. 1. Note that in the event
that the sampling frequency of the experiment is a har-
monic of the the oscillation frequency of the field, the
experiment will also become insensitive to such a drift.
This would show up as an oscillatory behavior in the bound
on � and we have replaced the region where these oscil-
lations become too narrow to display with a dashed line in
Fig. 1.

We would like to conclude the analysis of the fine
structure constant drift bounds with two notes. First, as
the cesium contribution dominates and the exact interac-
tion of different atomic levels in cesium is beyond the
scope of this paper, we would like to shelve this bound
as tentative and in need of focused treatment. Second,
presence of dark matter in form of dark photon only
mimics a drift in � and could be potentially resolved
from an actual drift if one were to measure different energy
splittings which depend on different powers of �.

D. Adiabatic conversion

In the flavor basis, the dark and ordinary photon mix
through the off-diagonal mass terms. In a thermal environ-
ment the mass matrix takes the form:

M2 ¼ 1

2

m
ðxÞ2 þOð�2Þ ��M2

��M2 M2 þOð�2Þ

 !
(5.13)

where m2

ðx; tÞ ¼ e2neðx; tÞ=me is the plasma mass, which

may depend on time or position. Should the plasma mass
be slowly varying then there could be an adiabatic conver-
sion between different states. Mirizzi et al. explore this
effect in the context of changing electron density in the
Universe as it expands and distorts the CMB through an
excess of converted dark photons [5], and they offer a very
useful comparison of this process to the neutrino MSW
effect. We observe that this process could be much more
severe in the environment of ionized gas that forms a
significant portion of a typical cluster of galaxies.
Figure 2 shows the energy of an eigenstate of the mass

matrix as a function of radial distance of a particle from the
center of the cluster. As an example we will follow a dark
photon that is infalling into a cluster. If the dark photon
infalls adiabatically, that is slowly enough, then it stays in
the same eigenstate of the mass matrix which in fact
contains more of the original photon state after it crosses
the point where m
 �M. Therefore, the dark photon is

converted into an ordinary photon, which thermalizes very
quickly (the cluster gas temperatures are in the range
106–107 K, [28]). Photons generate pressure and as a result
the cluster loses its gravitational glue holding it together.
Since we do observe clusters of ionized gas, it is imperative
that the section of parameter space is excluded.
What does slow enough mean? In order to cross from

one level to another we require that the characteristic time
associated with the change in the system needs to be on the
order of the gap between the energy levels. The rate of
change of photon plasma mass close to the point where the
energy gap is minimal is:
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FIG. 2. Mass mixing in plasma: The solid and dashed curves
show the eigenvalues of the mass matrix as a function of the
radial position inside the cluster. The dotted line shows the
density of the ionized gas in the cluster also as a function of
the radial position. In order to make the level crossing visible we
have adopted M ¼ 10�12 eV and � ¼ 0:2.
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t�1

��������m
ðxÞ¼M
¼ 1

m
ðxÞ
dm
ðxÞ

dt

��������m
ðxÞ¼M

¼ v

m
ðxÞ
dm
ðxÞ
dx

��������m
ðxÞ¼M

¼ v

2

n0ðxÞ
nðxÞ

��������m
ðxÞ¼M
(5.14)

On the other hand the mass gap between the states is
minimal when M ¼ m
 and turns out to be:

�EjM¼m

¼ �M (5.15)

We take a free electron density curve from [29], replotted
in Fig. 1, to determine the portion of ð�;MÞ parameter
space in which this infall turns out to be adiabatic, taking

the velocity of infall to be the escape velocity vðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMc=r

p
. We note that this mechanism will only work

for a mass range of 10�13 eV–10�11 eV, the lower limit
coming from the density of voids and the upper from the
highest densities inside clusters. We have plotted the re-
sulting region in Fig. 1 and marked it AdC.

E. Breaking Lorentz and rotational invariance

The existence of dark matter necessarily causes apparent
Lorentz violation because it defines a preferred frame—its
own rest frame. The effects of this frame can be measured
through its coupling to the standard model particles.
However, even if those couplings were zero, in our case
this corresponds to � ¼ 0, there would be a gravitational
interaction. Even in the dark matter rest frame there is
additional Lorentz and rotational symmetry violation due
to the polarization of the dark photon.

Moreover, we can see the gravitational violation of
Lorentz and rotational symmetry by looking at the stress-
energy tensor: assuming the polarization points in the
z-direction Ai ¼ 
i3A cosðMtÞ, we get:

T�� ¼ M2A2

2

�1

cosð2MtÞ
cosð2MtÞ

� cosð2MtÞ

0
BBBBB@

1
CCCCCA

(5.16)

The time average of T�� corresponds to pressureless dust,

just as we concluded from (3.3). Moreover, at late times the
frequency of oscillations is shorter than the expansion rate
of the Universe. The field begins to oscillate whenM�H,
and at this time the oscillations cannot be averaged over a
period and the dark matter contribution to the stress-energy
tensor is not rotationally invariant. However, at that early
time radiation dominates the energy density of the
Universe and dark matter is a minor perturbation, therefore
the lack of rotational symmetry of T�� does not produce

any significant effect on cosmological evolution. We can
find no observable consequence of the rotational asymme-
try of the dark matter contribution to T��.

VI. SUMMARY

A nonrelativistic condensate of light vector particles
could be produced during inflation and is a viable candi-
date for the dark matter component of the Universe. For
ultralight vector particles, a small kinetic mixing term with
the photon could allow this particle to be detectable. After
considering the constraints on the mixing parameter from
cosmology and astrophysics, we find that there are some
regions of parameter space which could give unusual labo-
ratory signatures of dark matter, such as apparent time
dependent shifts in electromagnetic properties of matter
and dark matter conversion to visible photons in plasmas.
This model offers a unique experimental signature—weak
background electric and magnetic fields that cannot be
screened.
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APPENDIX A: EQUATIONS OF MOTION
IN THE EARLY UNIVERSE

The kinetic term in the Lagrangian for a massive vector
L ¼ ������=4þM2����=2, can be simplified to:

1

4
����

�� ¼ 1

4
ð@��� � @���Þð@��� � @���Þ

¼ 1

2
ð@���@

��� � @���@
�A�Þ

¼ 1

2
ð@���Þð@
A
Þðg�
g�
 � g�
g�
Þ


L

ð@���Þ ¼ ð@
�
Þðg�
g�
 � g�
g�
Þ ¼ ���

Therefore, the equation of motion in curved space reads:

@�ð ffiffiffiffiffiffiffi�g
p

���Þ ¼ M2��

ffiffiffiffiffiffiffi�g
p

(A1)

Where in FRW metric this means:

� @0a
3ðtÞ�0� þ a3ðtÞ@i�i�

¼ a3ðtÞM2�� � 3 _aa2�0� � a3ðtÞ@0�0� þ a3ðtÞ@i�i�

¼ a3ðtÞM2�� � a3ðtÞð@0�0� þ 3 _a=a�0�

� a2ðtÞ@i�i� þM2��Þ ¼ 0 (A2)
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Keeping in mind that for our candidate @i�� ¼ 0 in the
cosmic frame, aðtÞ � 0 after or during inflation and _a=a ¼
H, the last line turns into:

@0�0� þ 3H�0� þM2�� ¼ 0

@0ð@0�� � @��0Þ þ 3Hð@0�� � @��0Þ þM2�� ¼ 0

(A3)

Therefore, the time component � ¼ 0 gives us:

@0ð@0�0 � @0�0Þ þ 3Hð@0�0 � @0�0Þ þM2�0 ¼ 0

M2�0 ¼ 0

(A4)

On the other hand, the spatial component� ¼ i implies the
equation for a Hubble-damped harmonic oscillator:

@0ð@0�i�@i�0Þþ3Hð@0�i�@i�0ÞþM2�i¼0

@0@0�iþ3H@0�iþM2�i¼0 (A5)

APPENDIX B: COMPTON EVAPORATION
MATRIX ELEMENTS

For reference we have evaluated the matrix elements for
the Compton evaporation. Assigning momenta as in Fig. 3,
the matrix element becomes:

iT ¼ �e2���ðlÞ��ðkÞ �uðqÞ
�
i
� �iðm� 6p� 6kÞ

ðpþ kÞ2 þm2
i
�

þ i
� �iðm� 6pþ6 lÞ
ðp� lÞ2 þm2

i
�

�
uðpÞ

Which implies that:

hjTj2i ¼ 64�2�2�2

3

�
2
ðm2 þM2Þð4m2 � tÞ � 3m2M2

ðm2 � uÞðm2 � sÞ
þm4 þ 2m2M2 þm2ð3sþ uÞ � us

ðm2 � sÞ2

þm4 þ 2m2M2 þm2ð3uþ sÞ � us

ðm2 � uÞ2
�

Which agrees, up to a number of polarizations factor, with
regular Compton scattering in the limit M ! 0, � ¼ 1.
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