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We discuss the response of neutron stars to the tidal interaction in a compact binary system, as encoded

in the Love number associated with the induced deformation. This problem is of interest for gravitational-

wave astronomy as there may be a detectable imprint on the signal from the late stages of binary

coalescence. Previous work has focused on simple barotropic neutron star models, providing an under-

standing of the role of the stellar compactness and overall density profile. We add realism to the discussion

by developing the framework required to model stars with varying composition and an elastic crust. These

effects are not expected to be significant for the next generation of detectors, but it is nevertheless useful to

be able to quantify them. Our results show that (perhaps surprisingly) internal stratification has no impact

whatsoever on the Love number. We also show that crust elasticity provides a (predictably) small

correction to existing models.
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I. INTRODUCTION

When a massive body is exposed to a relatively weak
external gravitational field we expect it to respond by
changing shape. This is most easily understood by consid-
ering the gravitational effects of the Moon on the Earth.
The oceans move to reach equilibrium as the moon orbits,
leading to the observed tides. The effect will also deform
the Earth’s elastic crust, again to reach an equilibrium with
the passing body. The deformation of the massive body
modifies the tidal potential, an effect that can be expressed
in terms of dimensionless quantities known as the Love
numbers. We will consider this problem for a neutron star
in a close binary system, focusing on the tidal Love num-
ber; the measure of the tidal response of an object to an
external gravitational field [1].

Specifically, we are interested in k2, the measure of a
tidal deformation by a quadrupole perturbation due to an
external gravitational field. This quantity is of direct rele-
vance for future gravitational-wave astronomy, as it pro-
vides a potentially detectable ‘‘finite-size correction’’ to
the late stages of a binary inspiral signal [2]. The effect
depends on the density distribution of the star, and hence
may be used as a diagnostic to use observational data to
constrain neutron star theory. The implications for obser-
vations, and the formalism required to work out the tidal
deformation in relativity, were first discussed in [2]. Since
then the formalism has been generalized to determine, in
particular, the shape Love number, see for example [3,4].
Applications have mainly considered barotropic fluid mod-
els, with realistic equations of state studied in [4] and the
difference between neutron stars and self-bound quark
stars being quantified in [5].

The main aim of the present work is to develop the
formalism required to study the tidal deformation of real

neutron stars, accounting for key aspects like the elastic
crust and variations in the interior composition. These
are important developments, even though we do not ex-
pect these features to be easily observed in a binary
gravitational-wave signal. The Love number leaves an
imprint that is borderline detectable by advanced LIGO
[2]. The effect will be more important for the third gen-
eration Einstein Telescope [6], but small corrections to
it may not seem that relevant. Nevertheless, as a matter
of principle it is important to move beyond back-of-the-
envelope estimates and quantify the actual effect. More-
over, developments in this direction are required to address
a number of questions of more immediate astrophysical
relevance. By developing the required relativistic pertur-
bation formalism for the static deformations induced by
the tidal interaction, we prepare the ground for studies of
general crust asymmetries, e.g., neutron star ‘‘mountains’’
which lead to gravitational-wave emission at twice the
star’s spin frequency [7,8]. The work presented here rep-
resents key steps towards modelling such mountains in
general relativity, which would allow us to consider real-
istic equations of state for the first time in this context.
A closely related problem to that considered here concerns
the breaking of the crust during binary inspiral. It is easy to
estimate (based on the energetics involved [5]) that the
crust will break before the final merger, but when exactly
does this happen and where does the crust yield first?
Another related problem concerns the quasiperiodic oscil-
lations observed in the tails of magnetar flares [9,10].
Again, a key issue concerns the build-up of stresses in
the crust of these strongly magnetized stars, the eventual
fracture and the induced dynamics. The formalism devel-
oped here provides a useful first step for a discussion of this
problem as well.
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II. NEUTRON STAR RELASTICITY

The structure of the neutron star crust is relatively well
understood [11], although issues associated with the dy-
namics of the superfluid neutron component and the pos-
sible pasta phases in the deep crust layers need to be
explored further. The theory required to model the crust
in the framework of general relativity is also well devel-
oped. Building on pioneering work by Carter [12,13] and
more recent efforts by Karlovini and Samuelsson [14], two
of us have recently completed a formalism for Lagrangian
perturbations of a relativistic elastic system [15] (see [16]
for the corresponding model in Newtonian gravity). These
developments allow us to consider a range of relevant
astrophysical applications.

In order to quantify the effect that the neutron star crust
has on the tidal deformability of the star, we need to
formulate and solve the problem for static (quadrupole)
deformations of a given stellar model. As usual, this is a
two-stage process. The first stage is straightforward. If we
assume that the unperturbed elastic star is relaxed, i.e., that
the crust is unstrained, then we simply need to solve the
usual Tolman-Oppenheimer-Volkoff (TOV) equations for a
nonrotating relativistic perfect fluid star. The crust mani-
fests itself only at the linear perturbation level. At this
second stage, we need to consider the static perturbations
of a model that accounts for the associated elastic stresses.

In this section, we develop the formalism required to
solve the tidal deformation problem for elastic relativistic
stars. In particular, we develop the relevant perturbation
equations and discuss the key differences from the perfect
fluid case. Throughout most of the analysis, we use geo-
metric units where c ¼ G ¼ 1, and all primes denote
differentiation with respect to the radial coordinate. We
restore the physical units only when they are useful for
analysis purposes.

A. The background problem

The equilibrium of a static, spherically symmetric, rela-
tivistic star is described by a spacetime metric gab given by

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2d�2 þ r2sin2�d’2: (1)

The fluid four-velocity is simply given by

ua ¼ e��=2ta; (2)

where ta ¼ ð@tÞa is the timelike Killing vector of the
spacetime.

We want to model a neutron star with a fluid core, an
elastic crust and possibly a fluid ocean. The corresponding
equilibrium problem simplifies significantly if we assume
that the crust is relaxed in the unperturbed configuration.
If this is the case, then the problem reduces to that of a fluid
system. Physically, this assumption makes sense provided
the crust has had time to release any built up strain, e.g.
via plastic flow, before the tidal interaction with the star’s

companion becomes sizeable. The upshot is that we can
use the perfect fluid stress-energy tensor to model the back-
ground star. In other words, we have

Tab ¼ ð�þ PÞuaub þ Pgab ¼ �uaub þ P ?ab; (3)

where?ab¼ gab þ uaub is the usual projection orthogonal
to the fluid frame. In the particular case of a barotropic star,
the pressure and energy density are related by an equation
of state of form P ¼ Pð�Þ. We will discuss the more gen-
eral case, where the (cold) equation of state is such that
pressure also depends on the composition of matter at
supranuclear densities, later.
Once the equation of state is provided we need to solve

the standard TOV equations starting with

�0 ¼ � 2e�

r2
ðM� 4�r3�Þ; (4)

where the gravitational mass MðrÞ, inside radius r, is
obtained from

M0 ¼ 4�r2�: (5)

Then using

�0 ¼ 2e�

r2
ðMþ 4�r3PÞ ¼ � 2

ð�þ PÞP
0; (6)

we arrive at

P0 ¼ � ð�þ PÞðMþ 4�r3PÞ
rðr� 2MÞ : (7)

These relations provide enough information to determine
the background stellar model.

B. Static perturbations of a fluid star

In order to investigate the tidal deformations, we need to
consider static perturbations of the system. Since we plan
to account for elastic contributions, it is natural to approach
the problem within Lagrangian perturbation theory. The
relevant formalism has recently been developed [15]. For
the present purposes it is worth noting that the problem we
consider is very similar to that of the zero-frequency sub-
space of perturbations for slowly rotating stars. This means
that we can draw on work relating to the gravitational-wave
driven r-mode instability. In particular, the spacetime part
of the perturbation equations is identical to that considered
in [17].
Because of the nature of the tidal interaction, we focus

on the polar perturbations. These lead to the electric-type
Love numbers, as discussed in [3,4]. We use the standard
Regge-Wheeler gauge, representing the perturbed metric
hab by
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hab ¼

H0ðrÞe� H1ðrÞ 0 0

H1ðrÞ H2ðrÞe� 0 0

0 0 r2KðrÞ 0

0 0 0 r2sin2�KðrÞ

0
BBBBB@

1
CCCCCAYm

l ;

(8)

(noting a typo in the off-diagonal element in [17]). Because
of the spherical symmetry of the problem, the different
multipoles do not couple. In fact, we can, without loss of
generality, assume that the perturbations are axisymmetric
(set m ¼ 0).

We introduce a static displacement vector given by [18],

�a ¼
�
1

r
WðrÞYm

l r
a þ VðrÞraYm

l

�
: (9)

Within relativistic Lagrangian perturbation theory
[13,15,21–23] we then have the perturbed four-velocity

�ua ¼ 1

2
uaubuc�gbc; (10)

where

�gab ¼ hab þ 2rða�bÞ: (11)

Moreover, the Lagrangian perturbations are related to the
Eulerian perturbations by

� ¼ �þL�; (12)

where L� is the Lie derivative along �
a. It follows that the

perturbed 4-velocity, �ua, is given by

�ua ¼?a
bLu�

b þ 1

2
uaubuchbc: (13)

Since the displacement vector is taken to be static, we have

�ut ¼ 1

2
e��=2H0Y

m
l ; and �uj ¼ 0; (14)

where j ¼ 1–3 represents a spatial index.
We also know that the perturbed number density can be

obtained from the displacement vector, since [23]

�n ¼ �nþ �aran ¼ � 1

2
n ?ab �gab: (15)

Explicitly, we have

�n ¼ � n

r2

�
r2
�
K þ 1

2
H2

�
� lðlþ 1ÞV

þ rW0 þ
�
1þ 1

2
r�0

�
W

�
Ym
l : (16)

In the case of barotropic matter the energy density will be a
function only of the number density of the constituent
particles, � ¼ �ðnÞ which means that,

�� ¼ d�

dn
�n ¼ ��n; (17)

where we have introduced the chemical potential � [23].
For algebraic simplicity later we define

?g ¼ 2

r2

�
r2
�
K þ 1

2
H2

�
� lðlþ 1ÞV þ rW 0

þ
�
1þ 1

2
r�0

�
W

�
: (18)

Combining (16) with the Gibbs relation Pþ � ¼ n�, we
see that

�� ¼ � 1

2
ðPþ �Þ ?g Ym

l : (19)

Finally, in the case of a barotrope, the perturbed pressure
follows from

�P ¼ dP

d�
�� ¼ c2s��; and �P ¼ dP

d�
��; (20)

where we have defined the speed of sound, c2s . These
relations show that we can choose to work either with the
components of the displacement vector or the perturbed
density/pressure. One of the variables, ��, W and V is re-
dundant. The situation is, of course, different for a non-
barotropic model. We will discuss this case later.
To complete the specification of the fluid problem we

need the perturbed Einstein equations (for l � 2). The
right-hand side of the equations follows from (3). In the
case of a perfect fluid we have

�Ta
b ¼ ð��þ �PÞuaub þ �P�a

b

þ ðPþ �Þðub�ua þ ua�u
bÞ; (21)

where the scalar perturbations are to be expanded in
spherical harmonics. It is worth noting that all off-diagonal
components vanish identically since �uj ¼ 0.
The corresponding left-hand side of the Einstein equa-

tions, expressed in terms of the perturbed metric, obviously
does not depend on the matter content of the spacetime at
all. Basically, the required expressions can be found in a
number of other studies, including [17,19,24]. In the case
of a spherically symmetric system, we end up with six
coupled ordinary differential equations to solve. The final
fluid equations are easily obtained from the full elastic
equations discussed below, so we will not give them here.

C. Elasticity

Having outlined the fluid perturbation problem, and the
foundations of Lagrangian perturbation theory in the rela-
tivistic setting, we can move on to consider the role of
the neutron star’s elastic crust. As we are working with the
Einstein equations, we only need to consider the relevant
alterations to the stress-energy tensor. A perfect fluid can-
not support shear stresses and hence does not introduce
off-diagonal stress-energy terms. When we account for
elasticity we need to include such stresses [15,16].
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As discussed above, we assume the background star is in
a relaxed unstrained state. Given this assumption, the
elastic crust does not contribute to the stress-energy ten-
sor of the background star, which leaves our equilibrium
equations unaltered. The elastic contributions enter only
through the perturbed stress-energy tensor. Following [15],
we have the Lagrangian perturbation of the anisotropic
stress tensor;

��ab ¼ �2 ���sab; (22)

where �� is the shear modulus (not to be confused with the
chemical potential), and

2�sab ¼
�
?c

a ?d
b �

1

3
?ab?cd

�
�gcd: (23)

The anisotropic stress tensor is a trace-free tensor that
describes the stress caused by nonisotropic deformations
of the relaxed state. For systems that cannot support shear
stresses the anisotropic tensor vanishes identically. For
more details we refer the reader to [14].

In the case of an unstrained background, these expres-
sions lead to

��a
b ¼ �2 ��

�
?c

a ?db � 1

3
?a

b ?cd

�
�gcd; (24)

which should be added to the fluid result (21). For future
reference, it is useful to note that

��t
b ¼ 0: (25)

In order to complete the perturbed Einstein equations in
the elastic case, we need to express the perturbed stress
tensor in terms of our chosen variables. Thus, we find that

��r
r ! 4

3
r2 ��½r2ðK �H2Þ � lðlþ 1ÞV

� 2rW 0 þ ð4� r�0ÞW�; (26)

(here, and in the following, we suppress the angular de-
pendence for clarity). Moreover, since the anisotropic
stress must be trace-free, cf., (24), it follows immediately
that

���
� þ ��’

’ ¼ ���r
r: (27)

Note that this result requires that the background is re-
laxed. That is, we have

���
� þ ��’

’ ! 4

3
��½r2ðH2 � KÞ þ lðlþ 1ÞV

þ 2rW 0 � ð4� r�0ÞW�: (28)

We also find that

���
� � ��’

’ ! 8 ��V; (29)

and, finally,

��r
� ! � 2 ��

r3
ðrV0 � 2V þ e�WÞ: (30)

Given the above results, the perturbation equations for
the stellar interior become more complicated. However, the
½tt�-component of the perturbed Einstein equations is un-
affected by the presence of the crust, so we have from the
fluid case,

e��r2K00 þ e��

�
3� r�0

2

�
rK0 �

�
1

2
lðlþ 1Þ � 1

�
K

� e��rH0
2 �

�
1

2
lðlþ 1Þ þ e��ð1� r�0Þ

�
H2

¼ �8�r2��: (31)

Moreover, because our star is spherically symmetric and
��t

r ¼ 0, we find that H1 ¼ 0 (cf., [24]). Finally, because
��a

b is traceless, we can take the trace of the perturbation
equations to arrive at a second equation without explicit
dependence on the elasticity. This equation takes the form

� r2H00
0 þ

�
1

2
r�0 � r�0 � 2

�
rH0

0 þ r2�0K0 � 1

2
r2�0H0

2

þ lðlþ 1Þe�H0 þ ½2ðe� � 1Þ � rð�0 þ 3�0Þ�H2

¼ 8�r2e�ð3�Pþ ��Þ: (32)

In practice, it is useful to introduce two additional
variables closely related to the traction. These variables,
which vanish in the fluid case, are key to the implementa-
tion of the relevant junction conditions at the crust-core
interface. Hence, we define a variable linked to the radial
component of the traction;

T1�4

3
��½r2ðK�H2Þ� lðlþ1ÞV�2rW 0 þð4�r�0ÞW�;

(33)

and its � component;

T2 � �4 ��ðrV 0 � 2V þ e�WÞ: (34)

Working out the perturbed Einstein equations, following
the same strategy as in the fluid problem (see [17,24]), we
find that the difference between the ½��� and the ½’’�
components leads to

H2 �H0 ¼ 64� ��V: (35)

Meanwhile, the ½r�� equation leads to

K0 ¼ e��½e�H0�0 þ 32� ��

r
ðr�0 þ 2ÞV � 8�

T2

r
: (36)

In terms of the traction variables we can write the sum of
the ½��� and the ½’’� component as
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�P ¼ 1

16�r
e��ð�0 þ �0ÞH0 þ e��

r2

�
2 ��e�½2� lðlþ 1Þ�V

�
�
r

4
ð�0 � �0Þ þ 1

�
T2 þ e�

2
T1 � T0

2

2
þ T2

2

�
; (37)

where we have also used (35) and (36).
Finally, the ½rr� component of the Einstein equations

leads to

½lðlþ1Þ�2�e�K¼ r2�0H0
0þ½lðlþ1Þe��2

þr2ð�0Þ2�rð�0 þ�0Þ�H0

þ32� ��½r2ð�0Þ2þ lðlþ1Þ�2�V
�4�rð�0 þ�0ÞT2þ8�ðrT0

2�T2Þ
�24�T1: (38)

It is worth noting that, by adding (37) and (38) then
subtracting (31) we have the trace of the Einstein equa-
tions, i.e., we recover (32).

D. The final perturbation equations

The set of equations that we need to solve in the crust
region combines the conservation law (16) with the
perturbed Einstein Eqs. (35)–(38), including the defini-
tions (33) and (34). We want to formulate the problem in
such a way that the required integration becomes as
straightforward as possible. To do this, we note that we
can reduce the order of the system. However, in the elastic
case this reduction does not lead to the same level of
simplification as in the fluid problem, where we only
need to solve a single second order equation for H0, cf.,
(66) below. This is of course as expected, as the problem
has additional degrees of freedom due to the elasticity.
For example, it is natural that we will have to solve for
the components of the displacement vector. We take the
view that these components are obtained from the defini-
tions (33) and (34). That is, we integrate

W 0 �
�
2

r
� �0

2

�
W ¼ r

2
ðK �H0Þ �

�
32� ��rþ lðlþ 1Þ

2r

�
V

� 3

8 ��r
T1; (39)

and

V 0 � 2V

r
¼ � e�

r
W � 1

4 ��

T2

r
: (40)

Next we note that we have several relations involving the
perturbed pressure. If we focus on the barotropic problem it
follows from (16) that we should have

�P ¼ c2s�� ¼ � 1

2
ðPþ �Þc2s ?g; (41)

where

�P ¼ �PþW

r
P0 ¼ �P� 1

2r
ðPþ �Þ�0W: (42)

Using (39) to remove W 0 from ?g we arrive at the alge-

braic relation

�P ¼ �Pþ �

r2
c2s

�
3

2
r2K � 3

2
lðlþ 1ÞV

þ
�
3� r�0

2c2s

�
W � 3

8 ��
T1

�
: (43)

We can rearrange this as an equation that determines T1,
giving

T1 ¼ 8 ��

3

�
r2

ðPþ �Þc2s
�Pþ 3

2
r2K

� 3

2
lðlþ 1ÞV þ

�
3� r�0

2c2s

�
W

�
: (44)

By combining (37) and (38), in such a way that T0
2 is

removed, we arrive at a second algebraic relation. This
provides another expression for �P, giving

16�r2e��P¼ r2�0H0
0þ½2� lðlþ1Þ�e�Kþ½lðlþ1Þe��2þr2ð�0Þ2�H0þ32� ��fr2ð�0Þ2þ½lðlþ1Þ�2�ð1�e�ÞgV

�8�ðr�0 þ2ÞT2þ8�ðe��3ÞT1: (45)

We can use this for the left-hand side of (37), which then becomes an equation that we can integrate to get T2;

T0
2 þ

�
1

2
ð�0 � �0Þ þ 1

r

�
T2 ¼ �2e�r�Pþ 1

8�
ð�0 þ �0ÞH0 þ 4 ��

r
e�½2� lðlþ 1Þ�V þ e�

r
T1: (46)

Finally, we have (36) for K0, which we can use in (32) (together with (35) for H2) to get

� r2H00
0 þ

�
1

2
rð�0 � �0Þ � 2

�
rH0

0 þ ½lðlþ 1Þe� þ 2ðe� � 1Þ � rð�0 þ 3�0Þ þ r2ð�0Þ2�H0

¼ 8�

�
r2e�ð3�Pþ ��Þ þ 16 ��

�
1� e� þ r

�
�0 þ 1

2
�0
�
� 1

4
ðr�0Þ2

�
V þ 4r2�0ð ��VÞ0 þ r�0T2

�
: (47)
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These equations completely specify the perturbation prob-
lem in the elastic region. It is easy to verify that we have the
same number of equations as we have unknowns.

E. Interface conditions

Having determined the perturbation equations for the
elastic crust region, we need to connect them to the fluid
perturbations for both the core and the fluid ocean near the
star’s surface. This requires a set of interface conditions at
a radius rc, which could represent either the crust-core or
the crust-ocean interface. The interface problem has al-
ready been analyzed in detail, the most relevant work being
that of Finn [20]. As our analysis is identical, we simply
summarize the results here.

From our assumption that the unperturbed crust is in a
relaxed state we know that all background quantities are
continuous across a fluid-crust interface. This includes the
density. It may, of course, be that the true equation of state
is such that the interface is associated with a small density
discontinuity (cf., the discussion in [5]). We do not account
for this possibility here, but it would be very easy to do so,
should it be required.

To determine the behavior of the perturbed quantities
across the fluid-elastic interface we calculate the intrinsic
curvature at the interface. From the Israel junction con-
ditions we know that the intrinsic curvature must be con-
tinuous. In the fluid problem (in fact, even for multifluids
[25]), this results in the continuity of all perturbed metric
variables, as well as their first derivatives. The proof of this
relies on the fact that H2 ¼ H0 in the fluid case. This is,
however, no longer true when we consider the elastic
problem. Consequently, the behavior at a fluid-elastic in-
terface is a little bit more complicated.

Nevertheless, we know from the analysis of Finn [20]
that the continuity of the first fundamental form de-
mands the continuity of W, H0, H1 and K at the interface.
The first of these conditions follows from the continuity of
�r ¼ W=r, which tells us that in order to ‘‘avoid a void’’,
the radial displacement component W must be continuous
across the interface. Note also that the condition on H1 is
irrelevant to us as this variable vanishes identically in the
problem under consideration.

Combining (35) with the stated continuity conditions we
see that we should have

½H2�rc ¼ 32�½ ��V�rc ; (48)

where ½A�rc is shorthand for lim	!0Aðrc þ 	Þ �
lim	!0Aðrc � 	Þ. This result shows that we should expect
a jump in theH2 perturbation; first of all the shear modulus
will vanish sharply as the crust gives way to the fluid core,
and secondly there is no reason why the tangential dis-
placement V should be continuous (at least not as long as
we are ignoring viscosity and magnetic field stresses). In
the limit where �� ! 0 we obviously recover the standard
fluid interface condition.

The remaining interface conditions can be obtained
either by imposing the continuity of the extrinsic curvature
Kab, or the surface stresses Sab on the perturbed hypersur-
face. The two approaches are related since [26],

Sab ¼ 1

8�
ð½Kab�rc � ½K�rc ð3ÞgabÞ; (49)

where ð3Þgab ¼ gab � NaNb is the induced three-metric on

the surface and K ¼ Kab
ð3Þgab, and Na is the normal to the

surface. Since the right-hand side must be continuous
across the surface we demand that ½Sab�rc ¼ 0. This pro-

vides two additional conditions [20];

½T1 þ r2�P�rc ¼ 0; (50)

for the (perturbed) radial traction, and

½T2�rc ¼ 0; (51)

for the horizontal part. Since the background variables
are taken to be continuous across the interface, and since
the intrinsic curvature conditions lead to ½W�rc ¼ 0, con-

dition (50) yields

½r2�Pþ T1�rc ¼ 0: (52)

We now have six conditions at each fluid-crust interface,
to combine with the six ODEs in the crust. The problem is
therefore well posed.
The implementation of the interface condition depends,

to some extent, on the physical model considered. We are
interested in a stellar model with a fluid core and an elastic
crust that transitions back to a fluid ocean near the surface.
Consequently, we need to impose the junction conditions at
two fluid-elastic interfaces. Integrating from the center of
the star, we solve the fluid problem up to the crust-core
interface. At this point the conditions provide us with all
information needed to continue the integration using the
elastic equations. Finally, the same conditions are imposed
at the crust melting point. Here, the continuity ofH0 and K
implies that we have the information required to integrate
the fluid equations to the actual surface of the star.
Specifically, we first of all have the continuity of H0

and K at each interface. Moreover, from the condition
½T2�rc ¼ 0 we realize that since the shear modulus �� has

a finite value in the crust, but vanishes in the fluid, we must
have T2 ¼ 0 at the interface. The condition ½W�rc ¼ 0 is a

little more complicated. Since we do not calculate the
radial perturbation, W, in the fluid we need a means to
initiate the integration in the crust. To do this, we make use
of the condition (50). Considering the algebraic relations
between �P and T1, Eqns. (43) and (44), and using con-
tinuity we have

16�r2e��PE¼ r2�0H0
0Eþ½2� lðlþ1Þ�e�KE

þ½lðlþ1Þe��2þr2ð�0Þ2�H0E

þ32� ��fr2ð�0Þ2þ½lðlþ1Þ�2�ð1�e�ÞgVE

þ8�ðe��3ÞT1E; (53)
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where the subscript E denotes a quantity calculated in the
crust region. Using the jump conditions we can expressHE

and KE in terms of the fluid quantities. We also use

3T1E

8 ��
¼ r2�PE

ð�þ PÞc2s
þ 3

2
r2KE � 3

2
lðlþ 1ÞVE

þ
�
3� r�0

2c2s

�
WE: (54)

The continuity of the radial traction closes this set of
equations: since T1F ¼ 0 (F indicating a variable in the
fluid region) identically we must have

T1E ¼ r2
�
1

2
ð�þ PÞH0F � �PE

�
: (55)

Combining Eqs. (53)–(55) we have the information re-
quired to determine WE, the radial perturbation at the
base of the crust.

III. THE LOVE NUMBER

In order to implement the formalism in an astrophysi-
cally meaningful context, we will quantify how the crust
elasticity affects the tidal deformation of a neutron star.
This effect can be expressed in terms of the tidal Love
number. A static spherically symmetric star of massM and
radius R exposed to a time-independent external tidal field
Eij will develop a quadrupole moment Qij. To linear order

we relate this quadrupole moment Qij to the tidal moment

Eij thus defining the Love number, k2, [24],

Qij ¼ � 2

3
k2R

5Eij: (56)

We briefly review the procedure used to calculate the
tidal Love number below. For a detailed description we
refer the reader to any of [2–4] or [24].

Following [24], the Love number is extracted from the
asymptotic behavior of the gravitational field of a tidally
deformed body. To do this we note that the vacuum per-
turbation problem reduces to a single ODE for H0

H00
0 þ

�
2

r
� �0

�
H0

0 �
�
lðlþ 1Þe�

r2
� ð�0Þ2

�
H0 ¼ 0; (57)

where we have used � ¼ �� and MðrÞ ¼ M ¼ const ex-
terior to the star. Equation (57) may be expressed as an
associated Legendre equation, which is solved in terms of
the associated Legendre polynomials [2,4,19], leading to;

H0ðrÞ ¼ aPPl2

�
r

M
� 1

�
þ aQQl2

�
r

M
� 1

�
: (58)

We have recorded both the increasing solution P��ðxÞ and
decreasing solution Q��ðxÞ for � ¼ l and � ¼ 2.

Since the problem is studied within linear perturbation
theory the amplitude of the solution is arbitrary, so we
demand that the function

yðrÞ ¼ r
H0ðrÞ
HðrÞ ; (59)

matches across the surface at the star. Substituting the
general solution Eqn. (58) into Eqn. (59), we get

yðxÞ ¼ ð1þ xÞP
0
l2ðxÞ þ alQ

0
l2ðxÞ

Pl2ðxÞ þ alQl2ðxÞ ; (60)

where x ¼ R=M� 1. Following [4] we have defined
al ¼ aQ=aP which is determined by matching Eq. (60)

across the surface of the star. This leads to

al ¼ � P0
l2ðxÞ � CylPl2ðxÞ

Q0
l2ðxÞ � CylQl2ðxÞ

��������R
; (61)

where C ¼ M=R is the compactness of the star.
Substituting l ¼ 2, and taking the asymptotic expansion
we get

H0 � 8

5

�
M

r

�
3
aQ þ 3

�
r

M

�
2
aP; (62)

which is the result used in [24].
Finally, we relate the coefficient al to the Love number

by comparing to the response of a spherically symmetric
star to an external quadrupolar field, Eij [24,27],

�1þgtt
2

¼�M

r
�3Qij

2r3

�
xixj

r2
�1

3
�ij

�
þ1

2
Eijx

ixj; (63)

where we have dropped terms of order Oð1=r3Þ and Oðr3Þ.
Using

gtt ¼ �
�
1� 2M

r

�
ð1�H0YlmÞ; (64)

and Eq. (56), we determine the Love number, k2, to be

k2 ¼ 4G

15

�
M

R

�
5
a2; (65)

where a2 is determined by Eq. (61) from the solution to the
interior problem.
In the perfect fluid problem, i.e., ignoring the elastic

contributions, the interior equations can be reduced to a
single second order equation for H0 [24],

r2H00
0 þ

�
2

r
þ 1

2
ð�0 � �0Þ

�
r2H0

0 þ ½2ð1� e�Þ � lðlþ 1Þe�

þ 2rð2�0 þ �0Þ � r2ð�0Þ2�H0

¼ �8�r2e�ð�Pþ ��Þ: (66)

Combining this equation with �P ¼ c2s�� (for a barotropic
model) and (37), obviously still ignoring the elastic con-
tributions, we have a complete formulation of the problem,
and a route to determining the coefficients aP and aQ
required in the exterior. When considering the elastic
system, we have to solve the set of equations discussed
in the previous section in order to determine aP and aQ.
For future reference, it is worth noting that (66) con-

tains the same information as (32), as is necessary for the
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problem not to be overdetermined. However, one can show
that this implies that

8�r3e��0�� ¼ ½r2�00 � r2ð�0Þ2 þ 2ð1� e�Þ�H0: (67)

Making use of the background equations and the sum of the
½��� and ½’’� components of the Einstein equations we
find that we must have

�0�P ¼ P0��: (68)

This is (obviously) true for barotropes, where P ¼ Pð�Þ, so
the problem is well posed.
Finally, using Eq. (59) and the compactness parameter

C, we determine the coefficient a2 and obtain the Love
number from

k2 ¼
�
8C5

5
ð1� 2CÞ2½2þ 2Cðy� 1Þ � y�

�
f2Cð6� 3yþ 3Cð5y� 8ÞÞ þ 4C3½13� 11yþ Cð3y� 2Þ þ 2C2ð1þ yÞ�

þ 3ð1� 2CÞ2½2� yþ 2Cðy� 1Þ� logð1� 2CÞg�1: (69)

IV. RESULTS

The previous sections specify the calculations needed to
account for the crust elasticity, determine tidal response
and quantify the Love number k2 for realistic neutron star
models. We will now show how the detailed interior phys-
ics affects the result. We consider both composition varia-
tions and the role of the elastic crust.

A. Stratification

It is well-known that variations in the composition of the
neutron star core, e.g. represented by a varying proton
fraction, may have repercussions for the global dynamics.
In particular, the associated stratification may lead to the
presence of g-modes in the star’s oscillation spectrum [28].
From a mathematical point of view, these effects arise from
the equation of state depending on two (or more) parame-
ters. The impact on the dynamics depends on the detailed
timescales of the problem. We will consider two extreme
limits. In the first case, when reactions are very fast, the
perturbed fluid elements will adjust to their surroundings
very quickly. In other words, they lose their original iden-
tity as the system evolves. In this limit one would expect
the problem to remain effectively barotropic. In the oppo-
site limit, reactions act slowly compared to the dynamics.
In the present context, this should be taken as meaning that
the reactions are slow compared to the binary inspiral
timescale. If we focus on the late stages of evolution, which
are key from the gravitational-wave observation perspec-
tive, then this timescale would be of the order of a few
minutes. If the involved reactions are slower than this, then
a perturbed fluid element must retain its identity (compo-
sition) through the evolution. We expect this limit to be
relevant for binary neutron stars. For a detailed discussion
on the timescales for a fluid neutron star core to reach
chemical equilibrium, see Reisenegger & Goldreich [28].

Let us first analyze the case where the relevant reactions
are much faster than the tidal dynamics. In this case it is
natural to consider an equation of state such that the
pressure depends on two parameters; the energy density
� and a parameter 
 that represents the deviation from
chemical equilibrium. Since the fluid elements will have
time to equilibrate with the surrounding fluid, they will

remain at (local) chemical equilibrium and we will have
�
 ¼ 0. However, 
 ¼ 0 also in the background, which
means that

�
 ¼ �
� �ara
 ¼ 0; (70)

as well. The upshot of this is that the system behaves as a
barotrope. The fast interactions do not affect the tidal
perturbations, and cannot have an impact on the Love
number.
In the opposite case, when reactions are very slow, it is

natural to consider an equation of state with two charge
neutral components, neutrons (with index n) and a con-
glomerate of protons and electrons (with index p), such
that P ¼ Pðn; xpÞ where n ¼ nn þ np is the total baryon

number density and xp ¼ np=n is the proton fraction.

Assuming that each species is conserved, i.e., that the
relevant reactions are too slow to equilibrate the matter,
but the two components are locked together (i.e. there is
only one displacement vector [15]), we replace (16) by

�nx ¼ � 1

2
nx ?ab �gab; x ¼ p; n: (71)

Using these relations, we find that �n is still given by (16)
and we also see that �xp ¼ 0. These results simply repre-

sent the assumption of frozen composition. It also follows
that

�P ¼
�
@P

@n

�
xp

�n; and �� ¼
�
@�

@n

�
xp

�n: (72)

That is, we have

�P ¼
�
@P

@�

�
xp

��: (73)

In other words, the Eulerian variations are related by

�P ¼
�
@P

@�

�
xp

��þ Aa�
a; (74)

where

Aa ¼ raP ¼
��

@p

@�

�
xp

�
�
@p

@�

�



�
ra�: (75)

where 
 has the same meaning as in the case of
fast reactions. The magnitude of Aa defines the
Schwarzschild discriminant [28].
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Let us now consider the perturbed Einstein equations in
the case of frozen composition. Since we made no assump-
tions about �P and �� when we discussed the perturbation
equations, the analysis in Sec. II B must remain unchanged.
In particular, the final differential equation for H0 remains
unaltered. However, the fact that this equation can be deri-
ved in two different ways is now important. As we have
already mentioned, the problem is overdetermined unless
(68) holds. Combining this condition with (74) we see that
we must have��

@P

@�

�
xp

�
�
@P

@�

�



�
�� ¼ 0;! �� ¼ 0: (76)

That is, the Lagrangian variation of the density must vanish
identically. Moreover, we are led to the (possibly surpris-
ing) conclusion that internal stratification has no effect on
the Love number.

These arguments suggest that Love number measure-
ments will only reveal limited information about the equa-
tion of state. We may be able to constrain the supranuclear
equation of state, e.g. in terms of the inferred compactness,
but not probe the detailed composition.

B. Numerical results: The crust

In order to quantify the role of the crust elasticity, we
need to study the problem numerically for specific neutron
stars models. In this first proof-of-principle study we will
consider a simple model, based on a polytropic equation of
state and an analytic model for the crust’s shear modulus.
In principle, we are ready to implement more realistic des-
criptions of both the bulk behavior and the elasticity, but
before doing this it makes sense to develop the computa-
tional strategy for this simpler model problem. An obvious
advantage of the simplified description is that it is rela-
tively straightforward to write down a set of nondimension-
alised perturbation equations, see Appendices A 1 and A 2.

In order to facilitate a direct comparison to previous
work [3,4,24] we will assume that matter is described by
the polytropic equation of state,

P ¼ K�1þ1=N; (77)

whereK andN are constant. In addition, we need to specify
the shear modulus ��. The outer regions of an astrophysical
neutron star are composed of i) a thin fluid ocean, below the
density at which the crust melts for the given temperature
(typically, � < 107 g cm�3), ii) the outer crust, reaching
up to neutron drip (107 g cm�3 � � � 1011 g cm�3), and
iii) the inner crust, where superfluid neutrons permeate
the nuclear lattice (1011 gcm�3<�<1014 gcm�3). More-
over, the bottom layers of the crust may be in the so-called
pasta phase with rather different elastic properties [11,29].
We will not consider this possibility here. Our simplified
model has a single elastic crust of thickness �Rc. We will
present results for a set of (moderately realistic) polytropic
models for which the crust region starts at 2� 1014 g=cm3,
and stops at 107 g=cm3. The noncrust regions are treated as
perfect fluids. In the crust we implement a simple linear
shear modulus [11],

�� ¼ �Pþ�0; (78)

where � is a scaling constant and�0 is a constant allowing
us to consider an adjustable shear modulus at the top of
the crust. Both � and �0 are tuneable parameters. The
equations presented in Sec. II D are, of course, independent
of the specific form of the shear modulus (78). Hence, the
implementation of more realistic models would be
straightforward.
We have, first of all, tested our numerical implementa-

tion by comparing the results for a fluid model to those of
[3,24], achieving good agreement and hence confirming
that the Love number is smaller for larger values of the

TABLE I. A sample of numerical results comparing the Love number for fluid models and the elastic crust models developed in this
work. The results are obtained using an N ¼ 1 polytrope with K ¼ 100 km2. The stellar models are determined by the central density
�c. We provide the resulting compactness, C ¼ M=R, mass, M, radius, R, and crustal thickness, �Rc, for the background star. The
tidal Love number for both the crust, kcrust2 , and purely fluid models, kfluid2 , are shown. From the differences between the final Love

numbers, �k2 ¼ kcrust2 � kfluid2 , we see that the crust produces a very small correction to the tidal Love number. For this table we used

the elastic parameters � ¼ 0:015 and �0 ¼ 10�14 km�2.

�c (km�2) C kcrust2 kfluid2 �k2=k
fluid
2 �Rc (km) R (km) M (km)

3.378893e-03 0.24813001129(7) 0.02413726613(6) 0.024138574(6) �5:420ð7Þe� 05 0.4412458028(3) 7.9838719798(7) 1.9810382445(6)

3.044717e-03 0.23938571005(1) 0.02748474657(2) 0.027486580(6) �6:672ð4Þe� 05 0.4847246944(3) 8.2035091998(7) 1.9638028747(2)

2.710540e-03 0.22915622628(4) 0.03172353529(9) 0.031726271(2) �8:623ð6Þe� 05 0.5398838957(1) 8.4494607108(1) 1.9362465306(3)

2.376364e-03 0.21709115810(1) 0.03719492461(6) 0.037199305(6) �1:177ð7Þe� 04 0.6117312291(5) 8.7266756593(2) 1.8944841252(5)

2.042188e-03 0.20272655170(3) 0.04441587924(3) 0.044423470(8) �1:708ð9Þe� 04 0.7085096707(6) 9.0414350438(4) 1.8329389488(8)

1.708012e-03 0.18543653698(4) 0.05419576631(7) 0.054210160(9) �2:655ð3Þe� 04 0.8447708420(0) 9.4018321596(9) 1.7434431969(9)

1.373836e-03 0.16435873698(6) 0.06785042152(8) 0.067880961(4) �4:499ð0Þe� 04 1.0487697824(5) 9.8184762317(9) 1.6137523525(9)

1.039659e-03 0.13827570668(3) 0.08761155990(9) 0.087687716(3) �8:684ð9Þe� 04 1.3835220344(5) 10.305549472(1) 1.4250071360(2)

7.054831e-04 0.10541985896(6) 0.11742663334(5) 0.117676862(9) �2:126ð4Þe� 03 2.0250735506(0) 10.882441793(5) 1.1472254790(8)

3.713069e-04 0.06313942900(5) 0.16404412956(2) 0.165596266(2) �9:373ð0Þe� 03 3.7551538607(9) 11.576364548(1) 0.7309250475(2)
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polytropic index. The tidal response is weaker for stars that
are more centrally condensed, which is natural. Adding the
crust to these models, we obtain the results given in Table I.
The results were obtained for an N ¼ 1 polytrope with
K ¼ 100 km2 and the crust model (78). The numerical
results given in Table I were obtained for a shear modulus
� ¼ 0:015 and a shear constant �0 ¼ 3� 10�14 km�2,
but we have confirmed the general behavior by varying
these parameters. The chosen models are all stable to radial
perturbations, cf., the mass-radius curve in Fig. 1. As
expected, the presence of the crust has only a small impact
on the tidal Love number. By comparing the relative
change in the Love number with increasing central density
to the corresponding change in crust thickness (the left and
right panels of Fig. 2, respectively), we see that the effect
increases as more of the star becomes elastic. This is, of
course, as expected.

The main message is that we have successfully imple-
mented the crust, and the numerical solution is accurate
enough to distinguish the small effect that the elasticity has
in this problem. The qualitative behavior of the results is
easily explained. The results in Table I show that presence
of the crust decreases the tidal Love number. This is
expected, since the Love number is a measure of the
response to the presence of an external gravitational field.
In a fluid model we expect a larger distortion since fluids
do not sustain shear stresses. Crustal models are able to
resist deformations, and are thus expected to have smaller
Love numbers.

FIG. 1. The mass-radius curve for the stellar models consid-
ered in Table I (represented by triangles), showing that the
considered models are stable to radial perturbations. In compar-
ing to the data in the Table it is useful to recall that 1M� ¼
1:4773 km in geometric units.

FIG. 2. Left panel: The ratio of crust thickness to stellar radius as function of the central density. The results show that the crust
occupies a much larger fraction of lower density stars. Right panel: The relative change in Love number due to the presence of the crust
as function of the central density. As the central density approaches the crust-core transition density, 2� 1014 g=cm3, the contribution
to the Love number becomes larger due to the fact that the crust occupies a much larger fraction of the star. Triangles correspond to the
models listed in Table I.
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V. CONCLUSIONS

We have extended the discussion of tidally deformed
relativistic stars by including the effects of internal com-
position stratification and the presence of an elastic crust,
relevant for mature neutron stars. The most important
development concerns the formalism required to account
for more realistic neutron star physics. Building on a recent
extension [15] of relativistic Lagrangian perturbation the-
ory to the multifluid setting (allowing for one of the com-
ponents to be elastic), we have formulated the tidal
deformation problem for realistic neutron star models.
The final model is obviously still ‘‘incomplete’’, as we
are ignoring the magnetic field and we are not accounting
for superfluidity (which should be relevant both in the crust
and the fluid core), but it nevertheless allows us to consider
astrophysically relevant questions.

This paper should be seen as a first, proof-of-principle,
study of the relevant issues. We have shown that (perhaps
unexpectedly) the tidal deformations are not affected at all
by composition variations in the star’s core. Having im-
plemented the formalism required to account for the crust
elasticity, and solved the problem numerically for a simple
model problem (based on a polytropic equation of state
and a simplistic model for the crust shear modulus), we
have also demonstrated that the presence of the crust has
a (predictably) small effect on the tidal Love number.
We have considered how this effect varies with the crust
parameters, and confirmed that the results agree with
intuition.

From a formal point-of-view, these are important devel-
opments, but it should be stressed that we do not expect
the new features to leave an observable imprint on a binary
gravitational-wave signal. This is fairly obvious since
the Love number leaves an imprint that is barely detectable
by future generations of gravitational-wave detectors in
the first place [2,6], and we are quantifying ‘‘small’’ cor-
rections to it. Having said that, it is clear that we need to
move beyond back-of-the-envelope estimates in this prob-
lem area and develop the computational technology
required to model real neutron stars and actual astro-
physical scenarios. The present work represents an impor-
tant step towards this goal. By developing the required
relativistic perturbation formalism for the tidal interaction
problem, we lay the foundation for work on general crust
asymmetries, e.g., neutron star mountains relevant for
gravitational-wave astronomy. This problem has not yet
been considered in general relativity, which is required if
wewant to use realistic equations of state. A closely related
problem concerns the fracture of the crust during binary
inspiral, the effect that this may have on a detected
gravitational-wave signal and possible associated electro-
magnetic signatures. Another important problem concerns
the quasiperiodic oscillations observed in the tails of mag-
netar flares [9,10,30]. In this context, a key issue concerns
the build-up of stresses in the crust of these strongly

magnetized stars, the eventual fracture and the induced
dynamics of the coupled magneto-elastic system. These
are exciting problems of immediate astrophysical interest,
and we hope to make progress on them in the near future.
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APPENDIX A: THE NON-DIMENSIONALISED
PROBLEM

1. Dimensionless background problem

The equation of state (77) allows us to write the equi-
librium Eqs. (5) and (7) in a dimensionless form, cf.,
[3,31],

� ¼ �c#
N; (A1)

P ¼ Pc#
Nþ1; (A2)

m ¼ m0�; (A3)

r ¼ r0; (A4)

where �c is the density at the center of the star, and Pc ¼
K�1þ1=N

c is the central pressure. The units of mass become

m0 ¼ 4�r30�c, and radius, r20 ¼ ðNþ1Þb
4��c

where we define

b ¼ Pc=�c. As discussed in [3], b is a parameter that
may be used to gauge the relativistic behavior of a model.
In the limit b ! 0 the model becomes Newtonian.
Using the dimensionless variables the background

Eqs. (5) and (7) are rewritten as [3],

_� ¼ 2#N; (A5)

_# ¼ �ð�þ b3#Nþ1Þð1þ b#Þ
2f

; (A6)

where f ¼ 1� 2ðN þ 1Þb�= . Using these variables and
considering regularity at the center, we have the conditions
#¼0 ¼ 1, �¼0 ¼ 0 [3].

For numerical accuracy we change variables one last
time. We use � ¼ �=3 and x ¼ ln [3]. By using these
coordinates, we allow for greater accuracy near the center
of the star. The final form of the background equations
becomes

_� ¼ #N � 3�; (A7)

_# ¼ � 2

f
ð�þ b#Nþ1Þð1þ b#Þ; (A8)
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where f ¼ 1� 2ðnþ 1Þb2�. Because of difficulties in-
tegrating from the actual origin of the star, we start the
integration at x ¼ �30 which corresponds to  	 10�14.
The integration terminates at  ¼ f where # drops below

a predetermined numerical tolerance. With these defini-
tions we define the mass, M, and radius, R, of the star to
be [3]

M ¼ ðN þ 1Þ3=2KN=2ffiffiffiffiffiffiffi
4�

p bð3�NÞ=23f�f; (A9)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

4�

s
KN=2bð1�NÞ=2f; (A10)

where �f ¼ �ðfÞ.
We note that [3] chose to use b in place of the central

density �c to label a stellar model. This is possible since
�c ¼ bN=KN where they use ðK;NÞ to parameterize their
equation of state. Motivated by the need to determine a
physical location of the crust, we choose to parameterize

our equation of state using ð�c;NÞ using K ¼ b=�1=N
c .

Thus we can specify the central density, as well as the
crust-core and crust-ocean transition densities. This choice

of parameterization does not impact the form of the stellar
compactness or the fluid tidal Love number as defined in [3].

2. Dimensionless crustal perturbation equations

We perform the same procedure used in Sec. A 1 to
reduce our problem to a dimensionless set of equations.
First we note that our perturbation �a has units of distance,
so we define V ! r20 ~V and W ! r20 ~W. We also note that

the shear modulus �� has units of pressure, so we define
�� ! �c ~�. The factor b which should be present is ab-
sorbed into our definition of ~�.
Using this information in our definition of the traction

reveals

T1 ¼ 4 ~�

3
�cr

2
0½2ðK �H2Þ � lðlþ 1Þ ~V � 2 _~W

þ ð4�  _�Þ ~W�; (A11)

~T 2 ¼ �4 ~��cr
2
0ð _~V � 2 ~V þ e� ~WÞ; (A12)

where the dots denotes differentiation with respect to  .
For notational simplicity we also define � ~P ¼ r20�P.
This gives us the dimensionless form of the crustal

equations;

_~W ¼
�
2


�

_�

2

�
~W þ ðK �H0Þ

2
� 8 ~�ðN þ 1Þb ~V � lðlþ 1Þ

2
~V � 3T1

8 ~�

4�

ðN þ 1Þb ; (A13)

_~V ¼ 2 ~V


� e�


~W � T2

4 ~�

4�

ðN þ 1Þb ; (A14)

_K ¼ _�H þ _H þ 8 ~�


ð _�þ 2Þ ~VðN þ 1Þb� 8�

T2


; (A15)

_T 2 ¼
� _�� _�

2
� 1



�
T2 � 2e�� ~Pþ 1

8�
ð _�þ _�ÞH þ 4 ~�


e�½2� lðlþ 1Þ� ~V 4�

ðN þ 1Þbþ e�T1


; (A16)

€Hþ
�
2


þ _�� _�

2

�
_H þ

��lðlþ 1Þe�
2

þ 2ð1� e�Þ
2

þ
_�þ 3 _�


� _�2

�
H

¼ �8�

�
e�ð3þ 1=c2sÞ� ~Pþ 16 ~�

ðN þ 1Þb
4�

�
1� e� þ 

�
_�þ 1

2
_�

�
� 2 _�2

4

� ~V

2
þ 4 _�

ðN þ 1Þb
4�

ð ~� _~VÞ þ _�T2



�
: (A17)

Here we used �cr
2
0 ¼ ðN þ 1Þb=4�. We also rewrite the algebraic relations for T1 (43) and �P (44) as

T1 ¼ ðN þ 1Þb
4�

8 ~�

3

�
4�2

ðb# þ 1Þ#nðnþ 1Þbc2s
� ~Pþ 3

2
2K � 3

2
lðlþ 1Þ ~V þ

�
3�  _�

2c2s

�
~W

�
; (A18)

16�e�2� ~P ¼ 2 _� _Hþ½2� lðlþ 1Þ�e�K þ ½lðlþ 1Þe� � 2þ 2 _�2�H þ 8ðN þ 1Þb ~�½2 _�2 þ ½lðlþ 1Þ � 2�ð1� e�Þ� ~V
� 8�ð _�þ 2ÞT2 þ 8�ðe� � 3ÞT1: (A19)

Using the same computational variables as in [3] for the crust, we eliminate division by the radial coordinate. This is
more useful for calculations that include the center of the star; however, it is a simple coordinate transform that allows us to
join the fluid core to the crust without changing coordinates.
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@x ~W ¼
�
2� @x�

2

�
~W þ e�2xðK �H0Þ

2
� 8 ~�ðN þ 1Þbe�2x ~V � lðlþ 1Þ

2
~V � 3T1

8 ~�

4�

ðN þ 1Þb ; (A20)

@x ~V ¼ 2 ~V � e� ~W � T2

4 ~�

4�

ðN þ 1Þb ; (A21)

@xK ¼ ð@x�ÞHþ @xH þ 8 ~�ð@x�þ 2Þ ~VðN þ 1Þb� 8�T2; (A22)

@xT2 ¼
�ð@x�� @x�Þ

2
� 1

�
T2 � 2e�e�2x� ~Pþ 1

8�
ð@x�þ @x�ÞH þ 4 ~�e�½2� lðlþ 1Þ� ~V 4�

ðN þ 1Þbþ e�T1; (A23)

@2xHþ
�
1þ ð@x�� @x�Þ

2

�
@xH þ ½�lðlþ 1Þe� þ 2ð1� e�Þ þ ð@x�þ 3@x�Þ � ð@x�Þ2�H

¼ �8�

�
e�ð3þ 1=c2sÞe�2x� ~Pþ 16 ~�

ðN þ 1Þb
4�

�
1� e� þ

�
@x�þ 1

2
@x�

�
� @x�

2

4

�
~V

þ 4@x�
ðN þ 1Þb

4�
@xð ~� ~VÞ þ @x�T2

�
: (A24)

The algebraic relations are also slightly modified to

T1 ¼ ðN þ 1Þb
4�

8 ~�

3

�
4�e�2x

ðb# þ 1Þ#nðN þ 1Þbc2s
� ~Pþ 3

2
e�2xK � 3

2
lðlþ 1Þ ~V þ

�
3� @x�

2c2s

�
~W

�
; (A25)

16�e�e�2x� ~P ¼ @x�@xH þ ½2� lðlþ 1Þ�e�K þ ½lðlþ 1Þe� � 2þ ð@x�Þ2�H
þ 8ðN þ 1Þb ~�½ð@x�Þ2 þ ½lðlþ 1Þ � 2�ð1� e�Þ� ~V � 8�ð@x�þ 2ÞT2 þ 8�ðe� � 3ÞT1: (A26)

We note that, with our particular formulation it is not obvious that we may consider the Newtonian limit since (A20) and
(A21) are divergent in that limit. To obtain a nondivergent form we would need to use the equations that follow from the
divergence of the stress-energy. Since the Newtonian limit is not the focus of our study we do not pursue this form of the
equations. We also note that the given dimensionless analysis is only valid for a polytropic equation of state.
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