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One distinguishes between ‘‘true’’ CP-violating triple-product (TP) asymmetries which require no

strong phases and ‘‘fake’’ asymmetries which are due to strong phases but require no CP violation. So far

a single true TP asymmetry has been measured in KL ! �þ��eþe�. A general discussion is presented

for T-odd TP asymmetries in four-body decays. It is shown that TP asymmetries vanish for two identical

and kinematically indistinguishable particles in the final state. Two examples are D0 ! K��þ���þ and

Dþ ! K��þ�þ�0. A nonzero TP asymmetry can be expected when nontrivial kinematic correlations

exist, as in the decay KL ! eþe�eþe�. Triple-product asymmetries measured in charmed particle decays

indicate an interesting pattern of final-state interactions. We reiterate a discussion of TP asymmetries in B

meson decays to two vector mesons each decaying to a pseudoscalar pair, extending results to decays

where one vector meson decays into a lepton pair. We derive expressions for time-dependent TP

asymmetries for neutral B decays to flavorless states in terms of the neutral B mass difference �m and

the width-difference ��. Time-integrated true CP-violating asymmetries, measurable for untagged Bs

decays, are shown to be suppressed by neither �s=�ms nor��s=�s if transversity amplitudes for CP-even

and CP-odd states involve different weak phases. In contrast, fake asymmetries require flavor tagging and

are suppressed by the former ratio when time integrated. We apply our results to B ! K�� and Bs ! ��

data and suggest an application for Bs ! J=c�.
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I. INTRODUCTION

A powerful tool for displaying CP violation in weak
decays is the investigation of triple-product asymmetries
[1–4]. A four-body decay gives rise to three independent
final momenta in the rest frame of the decaying particle,
and one can form a T-odd expectation value out of
(e.g.) ~p1 � ~p2 � ~p3. Under certain circumstances a non-
zero value of this triple product can also signify CP vio-
lation. A famous example is the CP-odd asymmetry of
ð13:6� 1:4� 1:5Þ% reported by the KTeV Collaboration
[5]. Here we present a general discussion for T-odd triple-
product (TP) asymmetries in four-body decays of strange,
charmed, and beauty mesons, focusing on genuine
CP-violating asymmetries. While these asymmetries are
generally expected to be small in the standard model,
larger values can signify new physics, and their observa-
tion (in contrast to direct CP asymmetries in decay rates)
does not depend on the presence of large (but generally
incalculable) strong final-state phases.

Charmed meson decays are expected to exhibit very
small CP-violating effects in the standard model [6].
Triple-product asymmetries in four body D and Ds decays
are expected to reflect final-state interactions. Comparing
triple-product asymmetries in charmed meson decays
and in CP-conjugate processes provides CP-violating ob-
servables which could serve as potential probes for new
physics.

Focusing on B meson decays, four-particle final states
are obtained through two vector meson intermediate states.
Studying CP-violating TP asymmetries is of particular
interest in a class of decays which are induced by b ! s
transitions. These CKM (Cabibbo-Kobayashi-Maskawa)
and loop-suppressed processes are sensitive to new decay
amplitudes [7]. Bs decays to two vector mesons induced by
b ! c �cs involve in the standard model a very small weak
phase occurring in the interference of Bs– �Bs mixing and
decay amplitudes. This phase may be affected by new
contributions to Bs– �Bs mixing. The question is whether
such new contributions could show up in TP asymmetries.
In Sec. II we lay the foundation for a discussion of triple-

product asymmetries in four-body decays. We specialize to
an example of neutral kaon decays in Sec. III. Recently
measured triple-product asymmetries and CP-violating
asymmetries in charmed particle decays are discussed in
Sec. IV, drawing some conclusions about final-state inter-
actions. A discussion of T-odd asymmetries is presented in
Sec. V for decays of a B meson to a pair of vector mesons,
which decay either to two pseudoscalar pairs or to a
pseudoscalar pair and a lepton pair. The corresponding
CP-violating TP asymmetries are then treated in Sec. VI,
studying time dependence for asymmetries in neutral B
decays in terms of a mass difference �m and a width
difference ��. We discuss triple products for specific B
decays to two vector mesons in Sec. VII and present a short
conclusion in Sec. VIII.
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II. TRIPLE PRODUCTS IN FOUR-BODY DECAYS

Scalar triple products of three-momentum or spin vec-
tors occurring in particle decays are interesting because
they are odd under time-reversal T. This may be due to
a T-violating (and CP-violating) phase or caused by a
CP-conserving phase from final-state interactions. A non-
trivial triple product requires at least four particles in the
final state if only momenta are measured. Consider a four-
body decay of a particle P, P ! abcd, in which one
measures the four particles’ momenta in the P rest frame.
The momenta of the two pairs of particles, ab and cd, form
two decay planes intersecting at a straight line given by the
momentum vector ~pa þ ~pb ¼ � ~pc � ~pd. We define z to
be the direction of ~pa þ ~pb and denote by ẑ a unit vector in
this direction. Unit vectors normal to the two decay planes
and to their line of intersection ẑ are denoted by n̂ab, n̂cd.
The angle � between these two normal vectors is conven-
tionally defined to be the angle between the two decay
planes.

Thus we have

n̂ ab � n̂cd ¼ cos�; n̂ab � n̂cd ¼ sin� ẑ; (1)

implying a T-odd scalar triple product

ðn̂ab � n̂cdÞ � ẑ ¼ sin�; (2)

and

sin2� ¼ 2ðn̂ab � n̂cdÞðn̂ab � n̂cdÞ � ẑ; (3)

which is also odd under time-reversal because n̂ab � n̂cd is
even under this transformation. A T-odd asymmetry in the
decay can be defined by an asymmetry between the number
of events N with positive and negative values of sin� or
sin2�, for example,

ATðsin2�Þ � Nðsin2�> 0Þ � Nðsin2�< 0Þ
Nðsin2�> 0Þ þ Nðsin2�< 0Þ : (4)

A special example of this kind of asymmetry has been
studied several years ago by the KTeV and NA48
Collaborations in KL ! �þ��eþe�, measuring values
ATðsin2�Þ ¼ ð13:6� 1:4� 1:5Þ% [5] and ATðsin2�Þ ¼
ð14:2� 3:6Þ% [8], respectively. Here � is the angle be-
tween vectors n̂� and n̂e which are normal to the �þ��
and eþe� planes, sin2� ¼ 2ðn̂� � n̂eÞðn̂� � n̂eÞ � ẑ, ẑ �
½ ~pð�þÞ þ ~pð��Þ�=j ~pð�þÞ þ ~pð��Þj. In this particular
decay, which involves two particle-antiparticle pairs, the
quantity sin2� changes sign under both T and CP [9].
The latter property can be seen by noting that under C,
~pð��Þ ! ~pð��Þ, ~pðe�Þ! ~pðe�Þwhile under P, ~pð��Þ !
� ~pð��Þ, ~pðe�Þ ! � ~pðe�Þ. CP invariance would imply
that the expectation value of this CP-odd observable van-
ishes for an initial CP eigenstate. Thus, this measurement
provides the largest CP-nonconserving effect observed in
kaon decays.

A particular case, in which the expectation value of a
T-odd scalar triple product of three momenta vanishes

(irrespective of CP invariance), occurs when two of the
four final decay particles are identical, assuming that these
particles are kinematically indistinguishable. This happens
when one does not include a constraint on the final particle
momenta. Two useful examples, which will be discussed in
Sec. IV with other charm decays, are D0 ! K��þ���þ
and Dþ ! K��þ�þ�0 both of which involve two iden-
tical �þ mesons in the final state.
A general proof of this property is based on the covariant

form of a triple-product observable in P ! abcd ex-
pressed as �����p

�
a p�

bp
�
cp�

d in terms of the four outgoing

particle four-momenta. We are assuming that the final
particles a and b are identical and are kinematically in-
distinguishable. Using energy-momentum conservation
(pd¼pB�pa�pb�pc), the above expression becomes

proportional to �ijkp
i
ap

j
bp

k
c¼ð ~pa� ~pbÞ � ~pc¼�ð ~pb� ~paÞ �

~pc in the B rest frame. Because of its antisymmetry in ~pa

and ~pb, the expectation value of this triple product van-
ishes, hð ~pa � ~pbÞ � ~pci ¼ 0, when summing over the indis-
tinguishable momenta of the two identical particles.
An alternative proof of this theorem for identical par-

ticles a and b may be presented by showing that
ATðsin�Þ ¼ 0 or hsin�i ¼ 0, where sin� is defined in
Eq. (2). Writing

sin� ¼ n̂ab � ðn̂cd � ẑÞ; (5)

one has n̂ab¼ð ~pa� ~pbÞ=j ~pa� ~pbj while n̂cd � ẑ is a vec-
tor in the plane of ~pc and ~pd perpendicular to ~pc þ ~pd.
Using momentum conservation, ~pd¼� ~pa� ~pb� ~pc, the
vector n̂cd � ẑ may be replaced by ~pc while ~pa and ~pb do
not contribute to (5). Thus

hsin�i / h½ð ~pa � ~pbÞ � ~pc�=j ~pa � ~pbji; (6)

which vanishes when summing symmetrically over the
momenta ~pa and ~pb.
A nonzero triple-product asymmetry may occur when at

least one of the two identical particles forms a resonance,
or favors a low invariant mass, with a third particle (c or d),
in which case one does not sum symmetrically over ~pa and
~pb in hð ~pa � ~pbÞ � ~pci. In four-body decays, where two
pairs of final particles are associated with two vector
mesons in an intermediate state, the triple-product asym-
metry depends also on the vector meson polarization and
does not have to vanish for two identical particles. This
situation occurs in B and Bs decays to two vector mesons,
for instance in B0 ! K�0ð! Kþ��Þ�ð! KþK�Þ and
Bs ! �ð! KþK�Þ�ð! KþK�Þ.

III. THE DECAYS KL ! eþe�eþe�
AND KL ! eþe��þ��

A simple example demonstrates the above circum-
stances permitting a CP- or T-violating expectation value
in a four-body decay even when two pairs of final-state
particles are equal. This is in the decay KL ! eþe�eþe�
for which 441 and 200 events were observed by the KTeV
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[10] and NA48 [11] collaborations. (The decay KL !
eþe��þ�� also has been observed by KTeV [12].)
Consider first of all only very low-mass eþe� pairs pro-
duced by photons very near their mass shell.

Define theCP-even andCP-odd combinations ofK0 and
�K0 to beK1 andK2, respectively. We haveKL ’ K2 þ �K1,
where j�j ¼ ð2:228� 0:011Þ � 10�3, Argð�Þ ¼ ð43:51�
0:05Þ	 [13]. Since the KL is mainly CP odd, its decay to
two photons is dominated by the effective Lagrangian
L� / K2F��

~F��, but the smallCP-even admixture decays

via an effective Lagrangian Lþ / K1F��F
��. Here

F�� ¼

0 E1 E2 E3

�E1 0 �B3 B2

�E2 B3 0 �B1

�E3 �B2 B1 0

2
666664

3
777775;

~F�� ¼

0 �B1 �B2 �B3

B1 0 �E3 E2

B2 E3 0 �E1

B3 �E2 E1 0

2
666664

3
777775;

(7)

so that Lþ / K1ð ~B2 � ~E2Þ, L� / 2K2
~E � ~B. Let one pho-

ton be emitted along theþẑ axis with polarization �1 ¼ x̂,
and measure the polarization of a second photon along the
�ẑ axis with a polarizer oriented in the direction �2 ¼
x̂ cos�þ ŷ sin�. For the decay of a CP-(even, odd) state,
the amplitudes for observing this photon are then propor-
tional to cos�, sin�, respectively [14]. The decay of a CP
admixture such as KL then will give rise to interference
between these two amplitudes and hence an amplitude
proportional to sinð�� �Þ, where � � ð0; �=2Þ.

In the case of KL ! eþe�eþe�, the virtual photons
giving rise to eþe� pairs are not exclusively transversely
polarized, and the eþe� planes do not analyze photon
polarizations perfectly, so that the signal for even or odd
CP will be diluted. For example, in the case of �0 !
eþe�eþe� [15], the angular distribution of the decay
rate is

�
1

�

d�

d�
¼ ð0:59sin2�þ 0:41cos2�Þ; (8)

whereas an argument based on transversely polarized pho-
tons would have given sin2� for the right-hand side. For
KL ! eþe�eþe� one finds assuming no direct CP viola-
tion [15,16]

2�
1

�

d�

d�
¼ 1þ 	CP cosð2�Þ þ 
CP sinð2�Þ; (9)

	CP � 1� j�rj2
1þ j�rj2 B; 
CP � 2Reð�rÞ

1þ j�rj2 C; (10)

where r � jAðK1 ! eþe�eþe�Þ=AðK2 ! eþe�eþe�Þj
is of order unity, B ’ �0:2 (it would be þ0:2 for

KS ! eþe�eþe�), and C has not yet been calculated.
One would expect C to be of the same order as B as it
represents a ‘‘dilution’’ of the interference between
CP-even and CP-odd decays as analyzed by the
electron-positron pairs.
The term 
CP is directly related to the T-odd observable

in Eq. (4),

ATðsin2�Þ ¼ ð2=�Þ
CP; (11)

which in this case of two particle-antiparticle pairs in the
final state is also CP odd. Measured values of 	CP and 
CP

are shown in Table I. They are consistent with theoretical
predictions, although improvement of accuracy by at least
a factor of 100 will be needed to see nonzero 
CP at the
predicted level. We thus show that in order to form a T and
CP-odd observable it is not necessary to have four distinct
particles as long as they exhibit nontrivial kinematic
correlations.

IV. TP AND CP-VIOLATING ASYMMETRIES
IN DðsÞ DECAYS

Four-body Cabibbo-favored D and Ds decays in-
volve sizable branching ratios. For instance, a few years
ago the CLEO Collaboration reported measurements [17]
BðD0!K��þ���þÞ¼ð8:30�0:07�0:20Þ%, BðDþ !
K��þ�þ�0Þ ¼ ð5:98 � 0:08 � 0:18Þ% and [18]
BðDs ! KþK��þ�0Þ ¼ ð5:65� 0:29� 0:40Þ%. As we
have shown in Sec. II, triple-product asymmetries are
expected to vanish in the first two processes both of which
involve two identical �þ mesons which are kinematically
indistinguishable.
Triple-product correlations have been studied by the

FOCUS and BABAR collaborations in Cabibbo-suppressed
decays D0 ! KþK��þ�� [19,20] and very recently
by the BABAR Collaboration in both Cabibbo-favored
and Cabibbo-suppressed decays, Dþ

s ! KþKS�
þ�� and

Dþ ! KþKS�
þ��, respectively [21]. Denoting a scalar

triple-product for momenta of three final particles in the
charmed meson rest frame, CT � ~p1 � ð ~p2 � ~p3Þ, one de-
fines a triple-product asymmetry for D or Ds decay [6]

AT � �ðCT > 0Þ � �ðCT < 0Þ
�ðCT > 0Þ þ �ðCT < 0Þ : (12)

This T-odd asymmetry is expected to be nonzero as a result
of final-state interactions. In order to test for CP violation

TABLE I. Measured values of 	CP and 
CP [Eqs. (9) and (10)]
in KL ! eþe�eþe�.

Collaboration KTeV [10] NA48 [11]

Events 441 200

	CP �0:23� 0:09� 0:02 �0:13� 0:10� 0:03

CP �0:09� 0:09� 0:02 0:13� 0:10� 0:03
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one compares this asymmetry with a corresponding asym-
metry in the CP conjugate process involving �D or �Ds,

�A T � �ð� �CT > 0Þ � �ð� �CT < 0Þ
�ð� �CT > 0Þ þ �ð� �CT < 0Þ : (13)

Here �CT denotes a triple product of momenta for charge-
conjugate particles while the minus sign in front of �CT

follows by applying parity.
The difference

AT � 1

2
ðAT � �ATÞ (14)

provides a measure for CP violation. A nonzero asym-
metry AT may follow from a CP asymmetry in partial
rates. In the absence of such asymmetry [assuming
�ð� �CT > 0Þ þ �ð� �CT < 0Þ ¼ �ðCT > 0Þ þ �ðCT < 0Þ]
AT � 0 may be the result of a CP asymmetry in triple-
product correlations, �ð� �CT > 0Þ � �ð� �CT < 0Þ �
�ðCT > 0Þ � �ðCT < 0Þ.

Table II quotes values of AT , �AT , and AT

from Refs. [20,21] for Cabibbo-suppressed D0 !
KþK��þ��, Dþ ! KþKS�

þ�� and Cabibbo-favored
Dþ

s ! KþKS�
þ��. For completeness we also include in

the table values calculated for a quantity

�T � 1

2
ðAT þ �ATÞ: (15)

This average of triple-product asymmetries in a charmed
meson decay and its CP conjugate is not CP violating.
Rather, being T odd, it may provide information on final-
state interaction.

While all three values of AT in Table II are consistent
with zero, the values of �T are considerably more signifi-
cant for D0 and Dþ

s decays than for Dþ decays. This
pattern seems to indicate a difference among final-state
interactions in the three decays. Final-state interactions in
Cabibbo-favored D decays could in part be responsible
for the hierarchy of lifetimes �ðDþÞ> �ðDþ

s Þ * �ðD0Þ.
The final states in Cabibbo-favored Dþ decays are
‘‘exotic’’ involving I ¼ 3=2 with quantum numbers of
su �d �d and do not correspond to any known resonances,
whereas Cabibbo-favored D0 and Dþ

s decays populate
I ¼ 1=2 and I ¼ 1 states with quantum numbers of s �d

and u �d, respectively. The measured longer Dþ lifetime
could thus be associated with the lack of resonances con-
tributing to its decays [22,23].
One may perhaps expect an enhancement pattern similar

to the one observed in the total hadronic decay rate of D0

relative to that of Dþ also in Cabibbo-suppressed decays.
The total hadronic enhancement is given by [13]

�hðD0Þ
�hðDþÞ ¼ �ðDþÞ

�ðD0Þ
�
1�BslðD0Þ
1�BslðDþÞ

�

¼ 1040� 7

410:1� 1:5

�
0:868� 0:006

0:66� 0:03

�
¼ 3:34� 0:15:

(16)

Here Bsl�Bsl;eþBsl;� are semileptonic branching ratios,

Bsl;eðD0Þ ¼ ð6:49� 0:11Þ%, Bsl;�ðD0Þ ¼ ð6:7� 0:6Þ%,

Bsl;eðDþÞ¼ð16:07�0:30Þ%, Bsl;�ðDþÞ ¼ ð17:6� 3:2Þ%.

Using [13] BðD0!KþK��þ��Þ¼ð2:42�0:12Þ�10�3,
BðDþ ! KþKS�

þ��Þ ¼ ð1:75� 0:18Þ � 10�3, one cal-
culates the ratio of Cabibbo-suppressed decay rates,

�ðD0 ! KþK��þ��Þ
�ðDþ ! Kþ �K0�þ��Þ

¼ �ðDþÞ
�ðD0Þ

BðD0 ! KþK��þ��Þ
2BðDþ ! KþKS�

þ��Þ ¼ 1:75� 0:20:

(17)

Thus we conclude that some enhancement of Cabibbo-
suppressed D0 ! KþK��þ�� relative to Dþ !
Kþ �K0�þ�� occurs, although it is less than in Cabibbo-
favored decays.
This partial enhancement may account for the pattern

of measured values of �T quoted for these two Cabibbo-
suppressed processes in Table II. The large value of �T

measured for Dþ
s ! KþKS�

þ�� reflects an enhance-
ment in Dþ

s Cabibbo-favored decay rates. A total hadronic
enhancement factor for Dþ

s similar to (16), �hðDþ
s Þ=

�hðDþÞ ’ 2:6, is calculated including in the numerator a
subtraction of BðDþ

s ! �þ��Þ ¼ ð5:43� 0:31Þ% [13].

V. T-ODD ASYMMETRIES IN BðsÞ ! V1V2

Consider BðsÞ decays into two vector mesons V1 and V2,

each decaying to a pair of pseudoscalars, P1P
0
1 and P2P

0
2.

The decay amplitude for BðsÞðpÞ ! V1ðk1; �1Þ þ V2ðk2; �2Þ

TABLE II. Triple-product asymmetries AT , �AT ,AT , and �T (defined in the text) for Cabibbo-
suppressed decays D0 ! KþK��þ�� [20], Dþ ! KþKS�

þ�� [21] and Cabibbo-favored
decays Dþ

s ! KþKS�
þ�� [21]. Values are quoted in units of 10�3.

Asymmetry D0= �D0 Dþ=D� Dþ
s =D

�
s

AT �68:5� 7:3� 5:8 11:2� 14:1� 5:7 �99:2� 10:7� 8:3
�AT �70:5� 7:3� 3:9 35:1� 14:3� 7:2 �72:1� 10:9� 10:7
AT 1:0� 5:1� 4:4 �12:0� 10:0� 4:6 �13:6� 7:7� 3:4
�T �69:5� 6:2 23:1� 11:0 85:6� 10:2
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may be written in terms of angular momentum amplitudes
[1] (we use normalization as in [3]),

M¼a��1 ���2þ
b

m2
B

ðp ���1Þðp ���2Þþ i
c

m2
B

�����p
�q��

��
1 ���2 ;

(18)

where q � k1 � k2. The amplitudes a and b are linear
combinations of S and D wave amplitudes while c corre-
sponds to P wave. It is customary to use transversity
amplitudes [24], which are related to the angular momen-
tum amplitudes through the following relations [3] (see
also [25] for relations involving helicity amplitudes):

Ak ¼
ffiffiffi
2

p
a; A0 ¼ �ax�m1m2

m2
B

bðx2 � 1Þ;

A? ¼ 2
ffiffiffi
2

p m1m2

m2
B

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
:

(19)

Here x � ðk1 � k2Þ=ðm1m2Þ;m1 and m2 are the masses of
V1 and V2.

A. V1 ! P1P
0
1, V2 ! P2P

0
2

Let us consider decays in which each of the two vector
mesons in BðsÞ ! V1V2 decays into two pseudoscalar me-

sons. This class of decays consists of charmless decays of
B and Bs mesons including B ! �ð! KþK�ÞK�ð! K�Þ
and Bs ! �ð! KþK�Þ�ð! KþK�Þ. We denote by �1
(�2) the angle between the directions of motion of P1

(P2) in the V1 (V2) rest frame and V1 (V2) in the B rest
frame. The angle between the planes defined by P1P

0
1 and

P2P
0
2 in the BðsÞ rest frame will be denoted by � as in

Sec. II. The decay angular distribution in these three angles
is given in terms of the three transversity amplitudes A0,
Ak, A? [26] (see also [25]):

d�

d cos�1d cos�2d�
¼ N

�
jA0j2cos2�1cos2�2 þ jAkj2

2
sin2�1sin

2�2cos
2�þ jA?j2

2
sin2�1sin

2�2sin
2�

þ ReðA0A
�
kÞ

2
ffiffiffi
2

p sin2�1 sin2�2 cos�� ImðA?A�
0Þ

2
ffiffiffi
2

p sin2�1 sin2�2 sin�� ImðA?A�
kÞ

2
sin2�1sin

2�2 sin2�

�
:

(20)

Integrating over �1 and �2 and using

Z 1

�1
cos2�d cos� ¼ 2

3
;

Z 1

�1
sin2�d cos� ¼ 4

3
;

Z 1

�1
sin2�d cos� ¼ 0;

(21)

one obtains the following distribution in �:

d�

d�
¼ 4

9
NðjA0j2 þ 2jA?j2sin2�þ 2jAkj2cos2�

� 2 ImðA?A�
kÞ sin2�Þ: (22)

The last term in this angular distribution provides a poten-
tial T-odd asymmetry. Note that the term involving
ImðA?A�

0Þ does not contribute to a T-odd asymmetry
when integrating over the angle �1 or �2.
One has now, in analogy with Eqs. (2) and (3),

sin� ¼ ðn̂V1
� n̂V2

Þ � p̂V1
;

sin2� ¼ 2ðn̂V1
� n̂V2

Þðn̂V1
� n̂V2

Þ � p̂V1
;

(23)

where n̂Vi
ði ¼ 1; 2Þ is a unit vector perpendicular to the Vi

decay plane and p̂V1
is a unit vector in the direction of V1

in the BðsÞ rest frame. A triple-product (or more precisely

a T-odd) asymmetry is now defined similarly to Eq. (4) as
an asymmetry between the number of decays involving
positive and negative values of sin2� [3]:

Að2Þ
T � �ðsin2�> 0Þ � �ðsin2�< 0Þ

�ðsin2�> 0Þ þ �ðsin2�< 0Þ ¼
½R�=2

0 þR
3�=2
� �ðd�=d�Þd�� ½R�

�=2 þ
R
2�
3�=2�ðd�=d�Þd�R

2�
0 ðd�=d�Þd� : (24)

Using (22) one obtains

Að2Þ
T ¼ � 4

�

ImðA?A�
kÞ

jA0j2 þ jA?j2 þ jAkj2
: (25)

The dependence of the angular distribution (20) on
�1 and �2 permits considering a second triple-product

asymmetry [3] (or, more precisely, a T-odd asymmetry)

Að1Þ
T involving the ratio ImðA?A�

0Þ=ðjA0j2 þ jA?j2 þ
jAkj2Þ. One defines an asymmetry with respect to values

of sin� (a triple product), assigning it the sign of

cos�1 cos�2 (a T-even quantity) and integrating over all

angles,
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Að1Þ
T � �½signðcos�1 cos�2Þ sin�> 0� � �½signðcos�1 cos�2Þ sin�< 0�

�½signðcos�1 cos�2Þ sin�> 0� þ �½signðcos�1 cos�2Þ sin�< 0� : (26)

A straightforward calculation using Eq. (20) gives

Að1Þ
T ¼ � 2

ffiffiffi
2

p
�

ImðA?A�
0Þ

jA0j2 þ jA?j2 þ jAkj2
: (27)

The two triple-product asymmetries, defined in Eqs. (24)
and (26) and given in (25) and (27) in terms of transversity
amplitudes, are odd under time reversal; however, they are
not genuine CP-violating or T-violating observables.
Rather, they may be nonzero due to a CP-conserving phase
difference between two corresponding transversity ampli-
tudes while the weak phase difference of these amplitudes
vanishes.

B. V1 ! P1P
0
1, V2 ! ‘þ‘�

We now consider a second class of decays into two vec-
tor mesons of which one meson decays into a pair of

pseudoscalars while the other decays into a lepton
pair ‘þ‘�, ‘ ¼ e, �. This class of processes involving
charmonium in the final state includes the decays
B!K�ð!K�ÞJ=c ð!�þ��Þ and Bs!�ð!KþK�ÞJ=
c ð!�þ��Þ. As in decays into four pseudoscalars, we
denote by �1 the angle between the directions of motion
ofP1 in theV1 rest frame andV1 in theBðsÞ rest frame, while

�‘ is the corresponding angle of ‘þ in the V2 rest frame.
The angle between the planes defined by P1P

0
1 and ‘

þ‘� in
the BðsÞ rest frame will be denoted here by �. One is

interested in triple products which are functions of this
angle.
The complete decay angular distribution for this class of

decays is given by [24] (see also [25]):

d�

dcos�1dcos�‘d�
¼N

�
jA‘

0j2cos2�1sin2�‘þ
jA‘

kj2
2

sin2�1ðsin2�þcos2�‘cos
2�ÞþjA‘

?j2
2

sin2�1ðcos2�þcos2�‘sin
2�Þ
(28)

þ 1

2
ffiffiffi
2

p ImðA‘
?A

‘�
0 Þ sin2�1 sin2�‘ sin�� ReðA‘

0A
‘�
k Þ

2
ffiffiffi
2

p sin2�1 sin2�‘ cos�

þ 1

2
ImðA‘

?A
‘�
k Þsin2�1sin2�2 sin2�

�
: (29)

Integrating over the angles �1 and �‘ one obtains

d�

d�
¼ 4

9
Nð2jA‘

0j2 þ jA‘
kj2ð1þ 2sin2�Þ

þ jA‘
?j2ð1þ 2cos2�Þ þ 2 ImðA‘

?A
‘�
k Þ sin2�Þ: (30)

The last term is a source of one of two triple-product
asymmetries. A T-odd asymmetry defined for sin2� in
analogy with (24) obtains a similar expression (but differ-
ent sign and normalization) in terms of transversity ampli-
tudes,

Að2Þ‘
T � �ðsin2�> 0Þ � �ðsin2�< 0Þ

�ðsin2�> 0Þ þ �ðsin2�< 0Þ

¼ 2

�

ImðA‘
?A

‘�
k Þ

jA‘
0j2 þ jA‘

?j2 þ jA‘
kj2

: (31)

A second asymmetry can be defined for values of the
triple product sin�, in the same manner as Eq. (26). One
obtains

Að1Þ‘
T ¼

ffiffiffi
2

p
�

ImðA‘
?A

‘�
0 Þ

jA0j2 þ jA‘
?j2 þ jA‘

kj2
: (32)

VI. CP-VIOLATING TP ASYMMETRIES
IN BðsÞ ! V1V2

A. Self-tagged decays of charged
and neutral B mesons

In this subsection we consider B and Bs decays to states

with specific flavor, e.g. Bðþ;0Þ ! K�ðþ;0Þ� and Bðþ;0Þ !
K�ðþ;0ÞJ=c belonging to the two classes considered in
Secs. VA and VB, respectively. We denote by �A0, �Ak, and
�A? transversity amplitudes for the CP-conjugate decay
�BðsÞ ! �V1

�V2. The corresponding three angles describing

the two vector meson decays into pairs of pseudoscalar
mesons will be denoted by ��1, ��2, and ��. The decay angular
distribution for �BðsÞ decays has an expression similar to BðsÞ
decays. The two terms linear in the parity-odd amplitude �A?
change sign relative to the corresponding two terms in
Eq. (20). Thus, for decays in which both vector mesons
�V1 and �V2 decay to a pseudoscalar pair one has
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d ��

d cos ��1d cos ��2d ��
¼ N

�
j �A0j2cos2 ��1cos2 ��2 þ j �A?j2

2
sin2 ��1sin

2 ��2sin
2 ��þ j �Akj2

2
sin2 ��1sin

2 ��2cos
2 ��

þ Reð �A0
�A�
kÞ

2
ffiffiffi
2

p sin2 ��1 sin2 ��2 cos ��þ Imð �A? �A�
0Þ

2
ffiffiffi
2

p sin2 ��1 sin2 ��2 sin ��þ Imð �A? �A�
kÞ

2
sin2 ��1sin

2 ��2 sin2 ��

�
:

(33)

It has been pointed out [1,3] that the two quantities
ImðA?A�

0 � �A? �A�
0Þ and ImðA?A�

k � �A? �A�
kÞ, occurring in

the sum (rather than the difference) of decay distributions
(20) and (33) for BðsÞ and �BðsÞ for ��1 ¼ �1, ��2 ¼ �2, �� ¼
�, are genuinely CP-violating and do not require nonzero
CP conserving phases. For instance, assuming that each of
the transversity amplitudes is dominated by a magnitude,
jAj, a single CP-conserving phase, �, and a single
CP-violating phase, � (which amounts to assuming no
direct CP violation),

A ¼ jAjei�ei� ; �A ¼ jAjei�e�i�ð ¼ 0; k;?Þ;
(34)

implies

ImðA?A�
0 � �A? �A�

0Þ ¼ 2jA?jjA0j cosð�? � �0Þ
� sinð�? ��0Þ: (35)

This true CP-violating quantity is nonzero also when the
CP-conserving phase difference �? � �0 vanishes, pro-
vided that the CP-violating phase difference �? ��0

between the two transversity amplitudes A? and A0 is
nonzero. In contrast, a quantity occurring in the difference
of rates for BðsÞ and �BðsÞ,

ImðA?A�
0 þ �A? �A�

0Þ ¼ 2jA?jjA0j sinð�? � �0Þ
� cosð�? ��0Þ; (36)

is not CP-violating as it is nonzero also when CP-violating
phases vanish. Such a quantity will sometimes be referred
to as a fake asymmetry.
The above expressions for the quantities ImðA?A�

0 �
�A? �A�

0Þ may be generalized to the case of direct CP viola-

tion, in which transversity amplitudes involve each several
contributions with distinct weak and strong phases,

A ¼ �ljAl
jei�l

ei�
l
 : (37)

One finds

ImðA?A�
0 � �A? �A�

0Þ ¼ 2�l;mjAl
?jjAm

0 j cosð�l
? � �m

0 Þ
� sinð�l

? ��m
0 Þ; (38)

ImðA?A�
0 þ �A? �A�

0Þ ¼ 2�l;mjAl
?jjAm

0 j sinð�l
? � �m

0 Þ
� cosð�l

? ��m
0 Þ: (39)

It is interesting to note that the CP-violating quantities
ImðA?A�

0 � �A? �A�
0Þ and ImðA?A�

k � �A? �A�
kÞ occur in triple-

product asymmetries for CP-averaged decay rates. We
denote partial decay rates for BðsÞ ! f and �BðsÞ ! �f by

�ðBðsÞ ! fÞ and ��ð �BðsÞ ! �fÞ, respectively. The charge-

averaged decay rate is ½�ðBðsÞ ! fÞ þ ��ð �BðsÞ ! �fÞ�=2,
and a triple-product asymmetry defined for this rate is
given by

A ð2Þchg-avg
T � ½�ðsin2�> 0Þ þ ��ðsin2 ��> 0Þ� � ½�ðsin2�< 0Þ þ ��ðsin2 ��< 0Þ�

½�ðsin2�> 0Þ þ ��ðsin2 ��> 0Þ� þ ½�ðsin2�< 0Þ þ ��ðsin2 ��< 0Þ�

¼ � 4

�

ImðA?A�
k � �A? �A�

kÞ
ðjA0j2 þ jA?j2 þ jAkj2Þ þ ðj �A0j2 þ j �A?j2 þ j �Akj2Þ

: (40)

As noted above the numerator is genuinely CP-violating. A second charge-averaged asymmetry, defined with respect
to the variables S � signðcos�1 cos�2Þ sin� for BðsÞ and �S � signðcos ��1 cos ��2Þ sin �� for �BðsÞ, is proportional to ImðA?A�

0 �
�A? �A�

0Þ:

A ð1Þchg-avg
T � ½�ðS > 0Þ þ ��ð �S > 0Þ� � ½�ðS < 0Þ þ ��ð �S < 0Þ�

½�ðS > 0Þ þ ��ð �S > 0Þ� þ ½�ðS < 0Þ þ ��ð �S < 0Þ�

¼ � 2
ffiffiffi
2

p
�

ImðA?A�
0 � �A? �A�

0Þ
ðjA0j2 þ jA?j2 þ jAkj2Þ þ ðj �A0j2 þ j �A?j2 þ j �Akj2Þ

: (41)

Similarly, one may define charge-averaged triple-product asymmetries for decays in which one vector meson decays to a
pseudoscalar pair while the other meson decays into a lepton pair. (Corresponding CP-violating observables in angular
distributions for B ! J=cK� have been discussed in Ref. [27].) For these decays one finds
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Að2Þ‘;chg-avg
T ¼ 2

�

ImðA‘
?A

‘�
k � �A‘

? �A‘�
k Þ

ðjA‘
0j2 þ jA‘

?j2 þ jA‘
kj2Þ þ ðj �A‘

0j2 þ j �A‘
?j2 þ j �A‘

kj2Þ
;

Að1Þ‘;chg-avg
T ¼

ffiffiffi
2

p
�

ImðA‘
?A

‘�
0 � �A‘

? �A‘�
0 Þ

ðjA‘
0j2 þ jA‘

?j2 þ jA‘
kj2Þ þ ðj �A‘

0j2 þ j �A‘
?j2 þ j �A‘

kj2Þ
: (42)

The two asymmetries AðiÞchg-avg
T (i ¼ 1, 2) should be distinguished from somewhat different quantities discussed in

Refs. [1,3], the average of the asymmetries AðiÞ
T and their charge-conjugates �AðiÞ

T . For instance,

1

2
ðAð2Þ

T þ �Að2Þ
T Þ � 1

2

�
�ðsin2�> 0Þ � �ðsin2�< 0Þ
�ðsin2�> 0Þ þ �ðsin2�< 0Þ þ

��ðsin2 ��> 0Þ � ��ðsin2 ��< 0Þ
��ðsin2 ��> 0Þ þ ��ðsin2 ��< 0Þ

�

¼ � 2

�

� ImðA?A�
kÞ

jA0j2 þ jA?j2 þ jAkj2
� Imð �A? �A�

kÞ
j �A0j2 þ j �A?j2 þ j �Akj2

�
: (43)

In general this quantity is not proportional to
ImðA?A�

k � �A? �A�
kÞ. That is, the two asymmetries defined

in Eqs. (40) and (43) are different in the most general case.
They become equal when no direct CP asymmetry occurs
in the total decay rate,

�ðsin2� 
 0Þ þ �ðsin2�< 0Þ ¼ ��ðsin2 ��


 0Þ þ ��ðsin2 ��< 0Þ; (44)

namely, when

jA0j2 þ jA?j2 þ jAkj2 ¼ j �A0j2 þ j �A?j2 þ j �Akj2: (45)

CP may be violated in decay rates for individual trans-
versity amplitudes, jAkj2 � j �Akj2 (k ¼ 0, k , ? ). This
implies nonzero CP asymmetries in these channels and

a potential violation of (45) leading to ðAð1;2Þ
T þ �Að1;2Þ

T Þ=
2 � Að1;2Þchg-avg

T . This happens when a given transversity
amplitude obtains contributions involving at least two
different weak phases and two different strong phases.
[See Eq. (37)]. This is to be contrasted with a very special

case of no direct CP violation in which A?, A0, and Ak
each involve a single weak phase.

B. Neutral BðsÞ decays to flavorless states

We now consider neutralBðsÞ decays into flavorless states
which are accessible to both BðsÞ and �BðsÞ decays. Two

examples, belonging to the two classes considered in
Secs. VA and VB are Bs ! �� and Bs ! J=c�. As a
result of BðsÞ- �BðsÞ oscillation angular decay distributions

become time-dependent. Decay distributions for initial
BðsÞ mesons are given for these two classes by Eqs. (20) and

(28), where the coefficients jAkj2ðk ¼ 0; k;?Þ, ReðA0A
�
kÞ,

ImðA?A�
i Þði ¼ 0; kÞ are now functions of time. The instan-

taneous transversity amplitude for a BðsÞ meson is Ak �
Akðt ¼ 0Þ. Similar expressions, in which AkðtÞ are replaced
by �AkðtÞ, apply to angular distributions for initial �BðsÞ me-

sons with �Ak � �Akðt ¼ 0Þ. Thus, for decays in which each
of the two vector mesons decays into a pseudoscalar pair,

d ��ðtÞ
dtd cos�1d cos�2d�

¼ N

�
j �A0ðtÞj2cos2�1cos2�2 þ j �A?ðtÞj2

2
sin2�1sin

2�2sin
2�þ j �AkðtÞj2

2
sin2�1sin

2�2cos
2�

þ Reð �A0ðtÞ �A�
kðtÞÞ

2
ffiffiffi
2

p sin2�1 sin2�2 cos�� Imð �A?ðtÞ �A�
0ðtÞÞ

2
ffiffiffi
2

p sin2�1 sin2�2 sin�

� Imð �A?ðtÞ �A�
kðtÞÞ

2
sin2�1sin

2�2 sin2�

�
: (46)

In particular, time-dependent terms relevant for triple
products involving Im½A?ðtÞA�

i ðtÞ� and Im½ �A?ðtÞ �A�
i ðtÞ�

appear with equal signs in the distributions for initial BðsÞ
and �BðsÞ. Thus, time-dependent TP quantities measured in

untagged neutral BðsÞ decays to flavorless states are of the

form Im½A?ðtÞA�
i ðtÞ þ �A?ðtÞ �A�

i ðtÞ�. Note that the corre-
sponding time-independent terms in Eqs. (20) and (33) ap-
pear with opposite signs for two distributions written in

terms of �1, �2, �, and ��1, ��2, ��. The opposite relative
signs in the two cases may be explained by noting that a
CP transformation in decays to flavorless states corre-
sponds to sin �� ¼ � sin� while the functions of �i and
��i are equal.
Let us study flavor-untagged decays which involve

the time-dependent triple products Im½A?ðtÞA�
i ðtÞ þ

�A?ðtÞ �A�
i ðtÞ�ði ¼ 0; kÞ. Considering their values at t ¼ 0,
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ImðA?A�
i þ �A? �A�

i Þ, we now show that these two quantities
are genuinely CP-violating. We use standard notations for
BðsÞ– �BðsÞ mixing and assume no CP violation in mixing

(jq=pj ¼ 1). For a moment we will also assume no direct
decay CP violation (j �Aj ¼ jAj) so that [28]

q

p

�A

A

¼ �e
�2i� : (47)

Here � is the CP parity for a state of transversity  (�0 ¼
�k ¼ ��? ¼ þ1), while � is the weak phase involved

in an interference between mixing and decay amplitudes.
Denoting the CP conserving strong phase of A by �,
A ¼ jAjei�ei� , so �A ¼ ðp=qÞ�e

i�e�i� , one has
for i ¼ 0, k :

ImðA?A�
i þ �A? �A�

i Þ¼jA?jjAij
�Im½eið�?��iÞðeið�?��iÞ�e�ið�?��iÞÞ�

¼2jA?jjAijcosð�?��iÞsinð�?��iÞ:
(48)

In the case of direct CP violation, when each transversity
amplitude obtains contributions with different weak
phases, this expression is generalized to a sum as on
the right-hand side of (38). As argued above, this true
CP-violating quantity is nonzero also when the
CP-conserving phase difference vanishes, provided that
the CP-violating phase difference between the two trans-
versity amplitudes is nonzero. Note the change of relative
sign between terms on the left-hand-side of Eqs. (35) and
(48), defining true CP-violating asymmetries in decays
into specific flavor states and into flavorless CP states of
opposite CP parity, respectively.

Time-dependence of the CP-violating triple products
Im½A?ðtÞA�

i ðtÞ þ �A?ðtÞ �A�
i ðtÞ� (i ¼ 0, k ) depends on the

BðsÞ– �BðsÞ oscillation frequency determined by a mass dif-

ference �m and on a width difference �� affecting the

exponential decay. Early studies of time-dependent angular
distributions [29], applied, in particular, to Bs ! J=c�,
have assumed that a single weak phase, common to all
three transversity states, is associated with interference
between Bs– �Bs mixing and decay amplitudes. In this
case (�? ¼ �i) the above two triple products vanish.
Refs. [1,3] study some aspects of TP asymmetries induced
by B– �B mixing. We will now generalize the time depen-
dence of the two triple products to the case under consid-
eration, �? � �iði ¼ 0; kÞ. Our calculation applies to
both strange and nonstrange neutral mesons, B ¼ B0, Bs

and their antiparticles, �B ¼ �B0, �Bs.
One starts with evolution equations for B and �B [28]

BðtÞ ¼ gþðtÞBþ ðq=pÞg�ðtÞ �B;
�BðtÞ ¼ ðp=qÞg�ðtÞBþ gþðtÞ �B;

(49)

where

gþðtÞ ¼ e�imte��t=2½coshð��t=4Þ cosð�mt=2Þ
� i sinhð��t=4Þ sinð�mt=2Þ�;

g�ðtÞ ¼ e�imte�
t=2½� sinhð��t=4Þ cosð�mt=2Þ
þ i coshð��t=4Þ sinð�mt=2Þ�; (50)

jg�ðtÞj2¼ðe��t=2Þ½coshð��t=2Þ�cosð�mtÞ�;
g�þðtÞg�ðtÞ¼ ðe��t=2Þ½�sinhð��t=2Þþ isinð�mtÞ�:

(51)

Time dependence of transversity amplitudes, Ak � hkjBi,
�Ak � hkj �Bi (k ¼ 0, k , ? ), is given by

AkðtÞ � hkjBðtÞi ¼ gþðtÞAk þ ðq=pÞg�ðtÞ �Ak;

�AkðtÞ � hkj �BðtÞi ¼ ðp=qÞg�ðtÞAk þ gþðtÞ �Ak:
(52)

We are interested in interference terms A�
i ðtÞAkðtÞ and

�A�
i ðtÞ �AkðtÞ. Using Eqs. (47) and (51) one obtains

A�
i ðtÞAkðtÞ ¼ ½g�þA�

i þ ðq=pÞ�g�� �A�
i �½gþAk þ ðq=pÞg� �Ak�

¼ A�
i Ak½jgþj2 þ ðq=pÞð �Ak=AkÞg�þg�� þ �A�

i
�Ak½jg�j2 þ ðp=qÞðAk= �AkÞgþg���

¼ e��t

2
½A�

i Akðcoshð��t=2Þ þ cosð�mtÞ þ �ke
�2i�k½� sinhð��t=2Þ þ i sinð�mtÞ�Þ

þ �A�
i
�Akðcoshð��t=2Þ � cosð�mtÞ þ �ke

2i�k½� sinhð��t=2Þ � i sinð�mtÞ�Þ�: (53)

Inserting A�
i Ak ¼ jAijjAkjeið�k��iÞeið�k��iÞ, �A�

i
�Ak ¼ �i�kjAijjAkjeið�k��iÞe�ið�k��iÞ (we assume for a moment no directCP

violation) implies for i ¼ 0, k , k ¼? ,

A�
i ðtÞA?ðtÞ ¼ e��tjAijjA?jeið�?��iÞ½i sinð�? ��iÞ coshð��t=2Þ þ cosð�? ��iÞ cosð�mtÞ

� i sinð�? þ�iÞ sinhð��t=2Þ � i cosð�? þ�iÞ sinð�mtÞ�; (54)

leading to

Im½A�
i ðtÞA?ðtÞ� ¼ e��tjAijjA?jðcosð�? � �iÞ½sinð�? ��iÞ coshð��t=2Þ � sinð�? þ�iÞ sinhð��t=2Þ

� cosð�? þ�iÞ sinð�mtÞ� þ sinð�? � �iÞ cosð�? ��iÞ cosð�mtÞÞ: (55)
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Similarly one has

Im½ �A�
i ðtÞ �A?ðtÞ� ¼ e��tjAijjA?jðcosð�? � �iÞ½sinð�? ��iÞ coshð��t=2Þ � sinð�? þ�iÞ sinhð��t=2Þ

þ cosð�? þ�iÞ sinð�mtÞ� � sinð�? � �iÞ cosð�? ��iÞ cosð�mtÞÞ: (56)

Thus

Im ½A?ðtÞA�
i ðtÞ þ �A?ðtÞ �A�

i ðtÞ� ¼ 2jA?jjAije��t cosð�? � �iÞ½sinð�? ��iÞ coshð��t=2Þ � sinð�? þ�iÞ sinhð��t=2Þ�:
(57)

This time-dependent result agrees with (48) at t ¼ 0. It demonstrates for arbitrary time a behavior of a genuine
CP-violating quantity which does not vanish for nonzero weak phases and requires no strong phases.

In the case of direct CP violation, in which each transversity amplitude involves contributions with different
CP-violating phases, one has

Im½A?ðtÞA�
i ðtÞ þ �A?ðtÞ �A�

i ðtÞ� ¼ 2�l;mjAl
?jjAm

i je��t cosð�l
? � �m

i Þ½sinð�l
? ��m

i Þ coshð��t=2Þ
� sinð�l

? þ�m
i Þ sinhð��t=2Þ�: (58)

The two true CP-violating time-integrated triple-product asymmetries (i ¼ 0, k ) for untagged decays are proportional to

�
Z 1

0
Im½A?ðtÞA�

i ðtÞ þ �A?ðtÞ �A�
i ðtÞ�dt ¼ 2�l;mjAl

?jjAm
i j cosð�l

? � �m
i Þðsinð�l

? ��m
i Þ � sinð�l

? þ�m
i Þð��=2�Þ

þO½ð��=2�Þ2�Þ: (59)

We conclude that sizable CP-violating TP asymmetries do not require direct CP violation. They do require however that
weak phases �m

i and �l
? occurring in Aiði ¼ 0; kÞ and A? respectively differ from one another.

Assuming that the first term in the sum (59) is dominated by amplitudes Al
? and Am

i one finds

A ð1Þuntagged
T ¼ � 4

ffiffiffi
2

p
�

jAl
?jjAm

0 j cosð�l
? � �m

0 Þ sinð�l
? ��m

0 Þ
ðjA0j2 þ jA?j2 þ jAkj2Þ þ ðj �A0j2 þ j �A?j2 þ j �Akj2Þ

þOð��=2�Þ; (60)

A ð2Þuntagged
T ¼ � 8

�

jAl
?jjAm

k j cosð�l
? � �m

k Þ sinð�l
? ��m

k Þ
ðjA0j2 þ jA?j2 þ jAkj2Þ þ ðj �A0j2 þ j �A?j2 þ j �Akj2Þ

þOð��=2�Þ: (61)

In the special case of a single weak phase �? ¼ �0 ¼ �k considered in Ref. [29] (including the standard model) the first
terms in (60) and (61) vanish while the remaining terms are suppressed by ��=2�.

It is interesting (and perhaps surprising) that the time-integrated asymmetries for untagged Bs decays are not suppressed
due to fast Bs– �Bs oscillations by ð�s=�msÞ2 or by �s=�ms, as they would be for time-dependent terms behaving like
cosð�mtÞ or sinð�mtÞ. This behavior characterizes the two fake asymmetries which are proportional to

Im½A?ðtÞA�
i ðtÞ � �A?ðtÞ �A�

i ðtÞ� ¼ 2�l;mjAl
?jjAm

i je��t½sinð�l
? � �m

i Þ cosð�l
? ��m

i Þ cosð�mtÞ
� cosð�l

? � �m
i Þ cosð�l

? þ�m
i Þ sinð�mtÞ�: (62)

For Bs decays the corresponding time-integrated fake asymmetries are suppressed by powers of �s=�ms � 0:04 [30]:

�
Z 1

0
Im½A?ðtÞA�

i ðtÞ � �A?ðtÞ �A�
i ðtÞ�dt � 2�l;mjAl

?jjAm
i j½sinð�l

? � �m
i Þ cosð�l

? ��m
i Þð�s=�msÞ2

� cosð�l
? � �m

i Þ cosð�l
? þ�m

i Þð�s=�msÞ�: (63)

Note that measurements of both time-dependent and time-

integrated fake asymmetries do require flavor tagging.
Equations (38), (60), and (61) imply that nonzero

CP-violating triple-product asymmetries in self-tagged

and flavorless BðsÞ decays require that transversity ampli-

tudes of opposite parity (A? and A0 and/or A? and Ak)
involve different weak phases. In the standard model the
three transversity amplitudes have approximately equal
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and very small weak phases. Models with right-handed
b-quark couplings could involve contributions to transver-
sity amplitudes with substantially larger weak phases [3].
In such models transversity amplitudes of opposite parity
obtain contributions with unequal weak phases implying
nonzero CP-violating triple-product asymmetries.

VII. TRIPLE PRODUCTS IN SPECIFIC
BðsÞ ! V1V2 DECAYS

The first class of decays we shall discuss in this section
includes processes dominated by a penguin b ! s ampli-
tude. Before treating asymmetries associated with speci-
fic final states it is worth noting polarization properties
in such decays. We shall then discuss TP asymmetries in
B ! �K� and Bs ! ��.

A. Polarization in penguin-dominated decays

We shall reiterate a discussion given in Ref. [31]. The
decays B ! �K� and Bs ! �� are both dominated by the
b ! s penguin diagram. Factorization predicts dominant
longitudinal polarization of the vector mesons, in contrast
to observations [32–34]. Table III quotes longitudinal and
transverse fractions for the above penguin-dominated pro-

cesses as well as for Bðþ;0Þ ! �0K�ð0;þÞ which belong to
the same class. By contrast, the tree-dominated decay
B0 ! �þ�� has fL ¼ 0:992� 0:024þ0:026

�0:013 [35] or nearly

1 as predicted. There is no reason to trust factorization
for the penguin amplitude, which may be due to rescatter-
ing from charm-anticharm intermediate states. Although
fL < 1 in penguin-dominated decays has frequently been
quoted as possible evidence for new physics (see, e.g., [4];
however see also [36]), we prefer to reserve judgment on
this issue.

B. B ! �K�

True and fake TP asymmetries were defined in Sec. VIA
as

Atrue
T / ImðA?A�

i � �A? �A�
i Þ;

Afake
T / ImðA?A�

i þ �A? �A�
i Þ; ði ¼ 0; kÞ;

(64)

using normalizations for Að1Þ
T and Að2Þ

T as in the second
line of Eqs. (41) and (40). From B0 ! �K�0 amplitudes
and relative phases quoted in [30] we estimate

Að1Þ
T ¼�0:117�0:022; �Að1Þ

T ¼þ0:091�0:023;

Að2Þ
T ¼�0:003�0:045; �Að2Þ

T ¼�0:006�0:041:
(65)

These values imply a large fakeAT
ð1Þ (since Að1Þ

T � �Að1Þ
T �

0), no true Að1Þ
T (since Að1Þ

T þ �Að1Þ
T is consistent with zero),

and no fake or true Að2Þ
T (since both Að2Þ

T and �Að2Þ
T are

consistent with zero). The large fake Að1Þ
T simply reflects

the importance of strong final-state phases.

C. Bs ! ��

True triple-product asymmetries discussed in Sec. VI B
with definitions as in the first line of Eqs. (40) and (41)
are related to those recently reported by Dorigo on behalf
of the CDF Collaboration for the decay Bs ! �� [37].

The measured values are Au $ Að2Þ
T ¼ ð�0:7� 6:4�

1:8Þ%; Av$AT
ð1Þ ¼ ð�12:0�6:4�1:6Þ%. These ob-

servables represent time-integrated and untagged quanti-
ties, to which Eqs. (60) and (61) apply. As mentioned, these
two triple-product asymmetries require nonzero values of
the weak phase differences �? ��k and �? ��0, re-

spectively, to avoid being suppressed by a factor of
��s=2�s < 0:1 [38].

D. Bs ! J=c�

Angular and time dependence studied for Bs ! J=c�
by the CDF [39] and D0 [40] collaborations provided
information on the weak phase occurring in the interfer-
ence between Bs– �Bs mixing and b ! c �cs decay. This
phase, expected to be very small in the CKM framework
[30], may obtain corrections from new physics contribu-
tions to Bs– �Bs mixing. Here we are interested in lessons to
be learned from measuring CP-violating triple-product
asymmetries in this process.
Triple-product asymmetries in this class of decays

were studied in Sec. VB in terms of transversity ampli-
tudes. Time-dependentCP-violating asymmetries given by
Eq. (57) are obtained by adding up events for initial Bs and
initial �Bs. The first term, / sinð�? ��iÞ coshð��st=2Þ
(i ¼ 0, k ), vanishes for �? ¼ �i, while the second
term, /�sinð�?þ�iÞsinhð��st=2Þ, remains nonzero in
this limit. The phases �k (k ¼ 0, k , ? ), occurring in the
interference of the mixing amplitude with the three trans-
versity amplitudes [see Eq. (47)], are equal in the CKM
framework. They are expected to be equal to a very
good approximation also in extensions of this framework

TABLE III. Longitudinal and transverse fractions fL and fT for some b ! s-penguin B ! VV
processes.

Bs ! �� [32] Bþ ! �K�þ [33] Bþ ! �0K�þ [34] B0 ! �0K�0 [34]

fL 0:348� 0:041� 0:021 0:49� 0:05� 0:03 0:52� 0:10� 0:04 0:57� 0:09� 0:08
fT 0:652� 0:041� 0:021 0:51� 0:05� 0:03 0:48� 0:10� 0:04 0:43� 0:09� 0:08
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because b ! c �cs is CKM-favored. The quantity which can
potentially be affected in new physics schemes is �? þ
�i � 2�k (k ¼ 0, k , ? ), which determines the magni-
tude of the coefficient of the sinhð��st=2Þ term in the
CP-violating TP asymmetry. This coefficient is of order
a few percent in the CKM framework but may be sizable in
the presence of new contributions to Bs– �Bs mixing. This
term is suppressed by ��s=2�s when time-integrated.

VIII. CONCLUDING REMARKS

We have discussed the differences between true
CP-violating TP asymmetries, which require no strong
phases, and fake asymmetries, which require nonzero
strong phases but no CP violation. We have shown that
TP asymmetries vanish for two identical and kinematically
indistinguishable particles in the final state, demonstrating
this property through two examples of Cabibbo-favored
four-body D decays. Such asymmetries need not vanish
even when two identical particles are present as long as
they have nontrivial kinematic correlations, as in KL !
eþe�eþe�. We have shown that while triple-product
asymmetries in charmed meson decays do not manifest
CP violation, they display an interesting pattern of final-
state interactions correlated with total decay widths.

We studied TP asymmetries in B and Bs meson decays to
two vector mesons each decaying to a pseudoscalar pair,
extending results to decays where one vector meson decays
into a lepton pair. We derived expressions for time-
dependent TP asymmetries for neutral B and Bs decays
to flavorless states in terms of the neutral BðsÞ mass differ-

ence �m and the width difference ��. Time-integrated
true CP-violating asymmetries, measurable for untagged
Bs decays, were shown to be suppressed by neither
�s=�ms nor ��s=�s but to require two different weak
phases in decays to CP-even and CP-odd transversity
states. Finally, implications were discussed for TP asym-
metries in B ! K��, Bs ! ��, and Bs ! J=c�.
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