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We construct �� amplitudes that fulfill exact elastic unitarity, account for one-loop chiral perturbation

theory contributions and include all 1=NC leading terms, with the only limitation of considering just the

lowest-lying nonet of exchanged resonances. Within such a scheme, the NC dependence of � and �

masses and widths is discussed. Robust conclusions are drawn in the case of the � resonance, confirming

that it is a stable meson in the limit of a large number of QCD colors, NC. Less definitive conclusions are

reached in the scalar-isoscalar sector. With the present quality of data, we cannot firmly conclude whether

or not the NC ¼ 3 f0ð600Þ resonance completely disappears at large NC or if it has a subdominant

component in its structure, which would become dominant for a number of quark colors sufficiently large.

DOI: 10.1103/PhysRevD.84.096002 PACS numbers: 11.15.Pg, 12.39.Fe, 12.39.Mk, 13.75.Lb

I. INTRODUCTION

Light JP ¼ 0þ scalar resonance properties are of great
interest, since they might help to unravel details of QCD
chiral symmetry breaking and confinement. Despite many
theoretical efforts, the current understanding of the micro-
scopic structure of these resonances is still far from being
complete. The difficulty is triggered by the fact that scalar
mesons carry vacuum quantum numbers, and also because
strong final-state interactions hide their underlying nature
when they are produced. Among other resonances, the
lightest one f0ð600Þ, currently denoted as the � meson,
is an essential ingredient of the nuclear force, as antici-
pated long ago [1]. Its contribution to the midrange nuclear
attraction provides saturation and binding in atomic nuclei.
During many years, there has been some arbitrariness on
the ‘‘effective’’ scalar meson mass and coupling constant to
the nucleon, partly stimulated by lack of other sources of
information. The existence of this broad low-lying state is
by now out of the question; its mass and width have
accurately been extracted from data analysis incorporating
a large body of theoretical and experimental constraints
[2–4]. The debate on the nature of the � meson is none-
theless not completely over. Structures of the tetraquark
or glueball type have been proposed (see e.g. Ref. [5] for
a recent review and references therein). It is remarkable
that such an accurately determined state is so poorly under-
stood from the more fundamental point of view of the
underlying QCD dynamics of NC�NF quarks and N2

C�1
gluons, where NC ¼ 3 is the number of color species and
NF is the number of flavors. To clarify the issue on the
nature of the � meson, it has been suggested to follow the
dependence on a variable number of colors NC � 3 of its
mass and width [6] by assuming that hadronic properties

scale similarly as if NC was large. A prerequisite for this
scaling approach to work is that at least all leading-NC

effects are taken into account.
The limit of an infinite number of quark colors keeping

�sNC fixed (�s is the strong coupling constant), turns out
to be a very useful and simplifying starting point to under-
stand many qualitative features of the strong interaction
[7,8]. While keeping essential properties of quantum chro-
modynamics (QCD), under the assumption of confinement,
the large-NC limit provides a weak coupling regime to
perform quantitative QCD studies. In this work, we are
interested in describing the large-NC scaling of �� scat-
tering and the induced large-NC behavior of two-pion
resonances. At leading order in 1=NC, the meson-meson
scattering amplitudes are given by sums of tree diagrams
induced by the exchange of an infinite number of weakly
interacting physical (stable) hadrons. Indeed, meson and
glueball masses scale as OðN0

CÞ whereas the widths do as

Oð1=NCÞ and Oð1=N2
CÞ, respectively. Crossing symmetry

implies that this sum is the tree-level approximation to
some local effective relativistically-invariant Lagrangian,
which by assuming that confinement still holds at largeNC,
can be rewritten in terms of mesonic fields and hence
complies with quark-hadron duality. Higher-order 1=NC

corrections correspond to hadronic loop diagrams and
effectively restore unitarity in the timelike region.
Resonance chiral theory (R�T) [9,10] includes the

pseudo-Goldstone bosons and the resonances as dynami-
cally active degrees of freedom of the theory. The low-
energy limit of R�T must comply with low-energy
theorems based on chiral perturbation theory (ChPT)
[11–13], and this property has been used to predict sys-
tematically the low energy constants (LECs) of ChPT in
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terms of masses and couplings of the resonances, when
integrating them out of the action, at the chiral orders
Oðp4Þ [9] and Oðp6Þ [14]. The ChPT Lagrangian includes
the octet of pseudo-Goldstone bosons, however, when ex-
tending ChPT, R�T incorporates the resonances as active
degrees of freedom that are included in nonets, since the
octet and singlet of a SUðNF ¼ 3Þ group merge into a
nonet for NC ! 1. The ChPT Lagrangian is built using
the spontaneously-broken chiral symmetry of massless
QCD. The explicit symmetry breaking from nonzero quark
masses and electromagnetic interactions is incorporated in
exactly the same way as it happens in QCD. The nonets of
resonances are added requiring the general properties and
invariance under charge conjugation and parity, and the
structure of the operators is determined by chiral symme-
try. At first order in the 1=NC expansion, terms with more
than one trace and loops are suppressed. The first property
permits to postpone some terms allowed by the symmetries
as subleading. However, the theory determined by just
symmetries does not share yet some of the known proper-
ties of QCD at high energies or accepted from hadronic
Regge phenomenology.1 Further constraints on the cou-
plings arise by matching the interpolating resonance theory
at intermediate energies with asymptotic QCD at the level
of Green functions and/or form factors. The application of
these properties determines a series of relations between
the couplings of R�T, reducing the number of couplings
and enhancing the predictability. We remind here that
QCD, besides current quark masses, has only one dimen-
sionful parameter, �QCD. Of course, there are infinitely

many such short-distance constraints and hence a suffi-
ciently large number of states may eventually be needed to
avoid contradictory results [15].

A further and less trivial question is related to whether or
not purely contact terms should be regarded as independent
of exchange terms in the large-NC framework. Within ��
scattering, this corresponds to distinguish between contact
4� vertices and those where a resonance field propagates
between 2� states (see Fig. 1). While the large-NC expan-
sion is expected to provide a better approximation to data
in the spacelike region where unitarity does not play an
active role, the approach is not specifically related to a
given energy range. This means that if the tower of all
infinitely many states is included, the question on the
duality between contact and exchange terms is pertinent.
However, if the exchanged resonance spectrum is truncated
above a given energy, contact terms must necessarily arise
to encode the explicitly disregarded high-energy contribu-
tions while still complying to the short-distance constraints
[10]. The explicit values of the contact LECs depend on the

functional parametrization adopted for the resonance
fields.
In the single-resonance-approximation (SRA) scheme,

each infinite resonance sum is just approximated by the
contribution from the lowest-lying meson multiplet with
the given quantum numbers. This is meaningful at low
energies where the contributions from higher-mass states
are suppressed by their corresponding propagators. The
SRA corresponds to work with a low-energy effective field
theory below the scale of the second resonance multiplets.
In this work, we will use the SRA of R�T to reanalyze how
the � and � properties depend on NC, mainly based on the
study of �� scattering. An early investigation was pro-
posed in Refs. [16,17] keeping the leading 1=NC contribu-
tions but omitting the ChPT chiral logarithms. We impose
leading-NC short-distance constraints, as discussed in de-
tail in Refs. [10,18]. This turns out to be of capital impor-
tance because it leads to a clear distinction between leading
and subleading NC contributions to the �� amplitudes. It
also allows for a meaningful extension of the framework to
the NC > 3 world. Besides, enforcing the short-distance
constraints reduces the number of free parameters to only
the subtraction constants, needed to restore exact elastic
unitarity, and the masses of the exchanged resonances. In
addition, we check that a direct analysis of�� scattering at
leading order in 1=NC and using high-energy constraints,
based on forward dispersion relations and Regge phenome-
nology, generates relations between the resonance proper-
ties compatible with those already obtained in [10,18] by
looking at other processes.
We will first construct �� amplitudes that fulfill exact

elastic unitarity, account for one-loop ChPT contributions,
and include all 1=NC leading terms in the SRA. Next, we
will look for poles in the appropriate unphysical sheets of
the amplitudes, and discuss their properties when NC de-
viates from its physical value,2 to learn details on their
nature. In this manner, we improve on previous analyses
[6,21–23] where leading 1=NC terms, beyond a certain
order in the chiral expansion, were neglected.
On the other hand, in the strict chiral and large-NC

limits, the pseudoscalar singlet�1 and the� are degenerate
[24–26]. The interplay between ChPT and large NC has
been addressed in Ref. [27]. Uð3Þ meson-meson scattering
has been treated in [28] with only contact Oðp2Þ chiral
interactions. In Ref. [29], in addition to the contact Oðp2Þ,
the leading-NC scalar resonance exchange has been in-
cluded, but leaving aside the vector meson exchange.
This latter mechanism not only contributes to the P-waves,
but also to other S-wave channels via the left-cut
contribution. Recently, a full-fledged one-loop unitarized

1Regge behavior, while not directly deduced from QCD,
works rather well and has played a decisive role in the bench-
mark and unprecedented accurate determination of the � meson
mass and width [2–4], by extending the high energy region
above

ffiffiffi
s

p
> 1:4 GeV.

2We will focus here on the properties of the poles in the
complex s plane. The NC behavior of the Breit-Wigner reso-
nance parameters has been discussed, in a model-independent
manner, at length in Refs. [19,20], and we refer the reader to this
latter work for further details.
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couple-channel Uð3Þ calculation, including both scalar
and vector resonance exchanges, has been undertaken in
Ref. [30]. Besides achieving an excellent description of
phase shifts until center-of-mass energies of around
1.4 GeV, this reference also analyzes the NC behavior of
the amplitudes. Among other results, it is explicitly shown
there that when NC increases, the mass of the lowest
eigenstate of the �1-�8 mass matrix decreases, reaching
values of around twice the pion mass in the NC ¼ 30
region. Thus, a natural question arises here, namely, do
the �-�0 degrees of freedom play a relevant role to deter-
mine the NC trajectory of the � and � resonances? This is
addressed also in Ref. [30], from where one might infer
that this is certainly not the case. Those degrees of freedom
turn out to be much more relevant in the study of the NC

dependence of masses and widths of higher resonances, as
for instance the f0ð980Þ. We benefit here from this obser-
vation, and we will neglect �-�0 effects in what follows.

We should also point out that some aspects of the
NC � 3 extension undertaken in Ref. [30] deserve discus-
sion, and we believe they can be improved along the lines
followed in this paper. In particular, the leading 1=NC

contributions were not properly considered in Ref. [30].
As a consequence, we cannot firmly conclude a scenario
where the �moves far away in the complex plane for large
NC, as obtained in [30]. We will give some more details
below Eq. (24). Note that crossing symmetry, the possible
absence of an exotic isotensor (I ¼ 2) state and the well-
established fact that the � width decreases with NC imply
the existence of a narrow scalar-isoscalar resonance, in the
large-NC limit, with a mass comparable to that of the �
meson [31].

The paper is organized as follows. In Sec. II, we discuss
the �� scattering amplitude in the SRA of R�T and
analyze high-energy conditions which yield to the short-
distance constraints. In Sec. III, the Oðp4Þ ChPT contribu-
tions to the�� scattering amplitude and its matching to the
leading 1=NC piece are discussed. Actually, we manage to
write an amplitude which is correct toOðp4Þ and includes,
within the SRA, the leadingOð1=NCÞ terms to all orders in
the chiral expansion. However, it still needs to be unita-
rized before being confronted to scattering data. After
unitarization, we fix our parameters in Sec. IV by fitting
the ðI; JÞ ¼ ð0; 0Þ, (1, 1) and (2, 0) phase shifts in the real
NC ¼ 3world. This complies with the determination of the
R�T Lagrangian parameters at the leading-NC approxi-
mation. Only then do we allow ourselves to analyze the

NC > 3 situation in Sec. Vand the emerging picture for��
resonances as the number of colors is varied. Finally, in
Sec. VI we draw the main conclusions of our work. In
addition, there exist two appendices (A and B), where
some relevant issues of �� scattering are addressed in
order to make the paper self-contained, and where we
also review some features of �� forward dispersion rela-
tions and crossing symmetry, which yield to the Adler and
� sum rules, keeping an eye on the large-NC expansion.

II. R�T AND �� SCATTERING

In this section, we discuss some aspects of R�T which
will provide some useful guidance in our analysis of the
large-NC limit of �� scattering. Let us denote by TIJðsÞ,
the projection of the ��-elastic scattering amplitude with
given total isospin I and angular momentum J (

ffiffiffi
s

p
is the

total energy in the center-of-mass frame (c.m.)). That is, if
TIðs; t; uÞ stands for the amplitude with total isospin I, one
has (we will use here the conventions from [32])

TIðs; t; uÞ ¼
X1
J¼0

ð2J þ 1ÞTIJðsÞPJðcos�Þ (1)

TIJðsÞ ¼ 1

2

Z þ1

�1
dðcos�ÞPJðcos�ÞTIðs; tðs;cos�Þ;uðs;cos�ÞÞ

¼�16�

�
�IJðsÞe2i�IJðsÞ � 1

2i�ðsÞ
�

(2)

with �ðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=s
p

, being m� ¼ 139:57 MeV
the pion mass, and PJ the Legendre polynomials. The
inelasticity �IJðsÞ ¼ 1 for s < 16m2

� and �IJðsÞ< 1
for s > 16m2

�. Besides, �IJ are the phase-shift and the
Mandelstam variables t and u depend on s and on �, the
scattering angle in the c.m. frame. There exists only one
independent amplitude thanks to isospin and crossing sym-
metries, so that one has

TI¼0ðs; t; uÞ ¼ 1

2
f3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞg (3)

TI¼1ðs; t; uÞ ¼ 1

2
fAðt; s; uÞ � Aðu; t; sÞg (4)

TI¼2ðs; t; uÞ ¼ 1

2
fAðt; s; uÞ þ Aðu; t; sÞg (5)

where Aðs; t; uÞ is the �þ�� ! �0�0 amplitude.

= + +
R

π

π

π

π

RR+ Σ
R

FIG. 1. Leading large-NC �� scattering diagrams made of contact (polynomial) and resonance-exchange (pole) terms in t, s and u
channels.
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A. �� elastic scattering amplitude in the SRA

From the lowest-order R�T Lagrangian [9,10], describ-
ing the couplings of the lowest-lying Vð1��Þ, Að1þþÞ,
Sð0þþÞ, and Pð0�þÞ resonance nonet multiplets to the
pions, we find3

ASRAðs; t; uÞ ¼ m2
� � s

f2�
þG2

V

f4�

�
tðs� uÞ
t�m2

V

þ uðs� tÞ
u�m2

V

�

þ 2

3f4�

½cdðs� 2m2
�Þ þ 2m2

�cm�2
s�m2

S8

þ 4

f4�

½ �cdðs� 2m2
�Þ þ 2m2

� �cm�2
s�m2

S1

þ 8d2m
f4�

m4
�

m2
P8

�m2
�

: (6)

with f� � 93 MeV, the pion decay constant. In the

large-NC limit, j �cdj ¼ jcdj=
ffiffiffi
3

p
and j �cmj ¼ jcmj=

ffiffiffi
3

p
.

We have specified for clarity the contributions from non-
degenerate singlet, S1, and isosinglet octet, S8, fields. Quite
generally, mS8 �mS1 ¼ Oð1=NCÞ and mixing effects have

been analyzed in Refs. [33,34].4 Glueball mixing within
R�T has been discussed in Ref. [35].

Taking mS8 ¼ mS1 ¼ mS, j �cdj ¼ jcdj=
ffiffiffi
3

p
and j �cmj ¼

jcmj=
ffiffiffi
3

p
, we reproduce the expressions in Ref. [36]. In

principle, the couplings appearing in the scattering ampli-
tude can be determined by analyzing the decay processes

� ! 2� and S ! 2� with S ¼ ffiffiffiffiffiffiffiffi
2=3

p
S1 þ S8=

ffiffiffi
3

p
, corre-

sponding to a ð �uuþ �ddÞ= ffiffiffi
2

p
flavor composition in the q �q

picture, which yield in the chiral limit (see also Ref. [37]),5

�S ¼ 3c2dm
3
S

16�f4�
; �V ¼ G2

Vm
3
V

48�f4�
: (7)

The residues of the scalar-isoscalar and the vector-
isovector poles in the partial-wave amplitudes are

gS ¼ cdm
2
S

f2�
; gV ¼ GVm

2
Vffiffiffi

3
p

f2�
: (8)

Note that the (large-NC) relations g2S ¼ 16��SmS=3 and

g2V ¼ 16��VmV hold in the SRA, in the chiral limit. The
SRA amplitude in Eq. (6) contains too many parameters to
be analyzed in full detail. In the next subsections, we will
discuss a sensible way of reducing the number of couplings
and masses.
After projecting onto partial waves we get for the

ðI; JÞ ¼ ð0; 0Þ, (1, 1) and (2, 0) channels the following
asymptotic behavior at large values of s:

TSRA
IJ ðsÞ ¼ 	IJ

2c2d þ 3G2
V � f2�

f4�
sþ . . . ; 	00 ¼ 1;

	11 ¼ 1

6
; 	20 ¼ � 1

2
: (9)

The above behavior implies that subtractions would be
necessary to make convergent a dispersion relation.6 We
will add subtraction constants after unitarization.

B. Short-distance constraints

The short-distance constraints encompass R�T with
proper high-energy behavior [18]. In general, they produce
a set of conditions which, for a limited set of resonances
and in particular in the SRA, reduce the number of inde-
pendent couplings. These conditions may be overdeter-
mined yielding at times to mutually inconsistent values, a
problem which can be sidestepped by introducing more
resonances. In the present case, we think it of interest to
pursue such an analysis within �� scattering.
In the chiral limit, the t-channel amplitudes, see

Eq. (A4), in the forward direction have the following
asymptotic behavior in terms of the crossing-odd variable

 ¼ ðs� uÞ=2:

TSRA
It¼0ð
;0Þ¼2

c2dm
2
Sþ 2

3g
2
Tm

2
TþG2

Vm
2
V

f4�
þOð
�2Þ;

TSRA
It¼1ð
;0Þ¼

6c2d�3f2�þ4g2Tþ3G2
V

3f4�

þOð
�1Þ;

TSRA
It¼2ð
;0Þ¼2

c2dm
2
Sþ 2

3g
2
Tm

2
T�G2

Vm
2
V=2

f4�
þOð
�2Þ;

(10)

where we have included momentarily the tensor-meson
coupling gT and mass mT , to be discussed below in more

3Here we use the antisymmetric field formulation where the
A-� mixing is absent. Note that the axial resonance does not
contribute to the elastic �� scattering amplitude. After proper
incorporation of short-distance constraints, the Proca formula-
tion using gV ¼ GV=f� yields the same amplitude [10]. Uð3Þ
nonet resonance fields are generically parametrized as R ¼ 1ffiffi

2
p �P

8
i¼1 Ri	i þ 1ffiffi

3
p R0 with 	i the standard Gell-Mann matrices.

4Ref. [34] finds sizeable mixing effects between the singlet
and octet scalar-isoscalar mesons and identifies two possible
phenomenologically acceptable scenarios for the tree-level
mass eigenstates: a) ML ¼ 1:35 GeV and MH ¼ 1:47 GeV, or
b) ML ¼ 0:985 GeV and MH ¼ 1:74 GeV. The light solution
was less preferential at it would correspond to a case where
f0ð980Þ would not couple to pions. Therefore in several studies
the heavy solution has been adopted.

5The full expressions are �S ¼ 3m3
S

16�f4�
�S½cd þ ðcm � cdÞ 2m2

�

m2
S

�2
and �V ¼ G2

Vm
3
V

48�f4�
�3
V , where �R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=m
2
R

q
.

6Requiring that the leading term proportional to 	IJ vanishes
would yield the relation 2c2d þ 3G2

V ¼ f2�, advocated in

Ref. [37]. This would imply GV � f�=
ffiffiffi
3

p
, giving a 30% too

small � ! 2� decay width. This relation has also been found as
a necessary high-energy constraint in a NLO R�T analysis of the
vector form factor, incorporating subleading 1=NC corrections

[38]. In the cd ¼ 0 limit, it gives GV ¼ f�=
ffiffiffi
3

p
, which was also

found in the study of one-meson radiative tau decays carried out
in [39]. Notice however that imposing this relation is not enough
to make subtractions unnecessary, because the partial waves
would still grow at large values of s as TIJðsÞ � ðm2

VG
2
V=f

4
�Þ�

logðs=m2
VÞ.
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detail. This limit is compatible with the Froissart bound, a
specific merit of the antisymmetric tensor formulation
[10].7

As it is discussed in Appendix A, it makes sense to
divide the �� scattering amplitudes in Eq. (A5) into three
pieces: i) the low-energy part which takes the form of
subtraction constants and is fixed by chiral symmetry,
ii) an intermediate-energy part, dominated by resonance
exchange, and iii) the high-energy remainder which we
expect to be responsible for the Regge behavior. Therefore,
if we impose a behavior for the resonance contribution no
worse than suggested by Regge theory, we obtain the
constraints

f2� ¼ 2c2d þ
4

3
g2T þG2

V; (11)

0 ¼ 6c2dm
2
S þ 4g2Tm

2
T � 3G2

Vm
2
V: (12)

These constraints correspond to require that the 
 and the

0 coefficients of TSRA

It¼1 and TSRA
It¼2, respectively, vanish in

the large-
 regime. The second condition is less robust
than the first one, attending to what it is discussed on Regge
phenomenology in Appendix A. Indeed, Eqs. (11) and (12)
can be also obtained from the Adler and � sum rules (see
discussion in Sec. A 3), in the chiral limit, using the
narrow-resonance approximation of Eq. (A3) to estimate
the cross sections that appear in the right-hand sides of the
sum rules. Note that since we have not considered any
exotic isotensor resonance, we are approximating �2 ¼ 0.

In the absence of tensor couplings, gT ¼ 0, these

constraints imply cd ¼ sin�f�=
ffiffiffi
2

p
, GV ¼ cos�f� and

mV=mS ¼ tan�, where � is a mixing angle. The KSFR

relation (GV ¼ f�=
ffiffiffi
2

p
) requires � ¼ �=4 and hence

mS ¼ mV , as well as 2cd ¼
ffiffiffi
2

p
GV ¼ f�, implying �S ¼

9�V=2. These constraints have also been found in the
algebraic chiral-symmetry approach [41–43] and can be
rewritten, in terms of the decay widths, as

1¼ �S

mS

32�f2�
3m2

S

þ9

2

�V

mV

32�f2�
3m2

V

; 0¼ �S

mS

�9

2

�V

mV

; (13)

which yield the value of the scalar mass and width to be
mS ¼ 660 MeV, �S ¼ 570 MeV, when phenomenologi-
cal values for the mass and width of the � meson are
used. These numbers are quite sensitive to details. For
instance if the KSFR set of parameters is used, one gets
instead (taking as input the � meson mass) mS ¼ mV ¼
775 MeV, �S ¼ 9�V=2 ¼ 805 MeV.

Of course, given the fact that the scalar turns out to be a
broad resonance, it is unclear what these estimates should
be compared to, since generally a resonance is character-
ized by the complex pole and the complex residue of the
scattering amplitude. The benchmark calculation of the
pole on the second Riemann sheet of the �� scattering
amplitude [2,3], when written as s� ¼ m2

� � im���,
yields m� ¼ 347ð17Þ MeV and �� ¼ 690ð48Þ MeV. On
the other hand, the connection between the Breit-Wigner
(BW) resonance parameters, defined as �ðm2

BWÞ ¼ �=2
and �BW ¼ 1=ðmBW�

0ðm2
BWÞÞ, and the pole resonance pa-

rameters has been discussed on the light of their NC

behavior in a model-independent fashion [19], suggesting
that the large shift in the mass is Oð1=N2

CÞ and can be

computed, yielding an acceptable extrapolation of mBW �
700 GeV. The recent ��-scattering analysis of Ref. [44]
leads to the Breit-Wigner values ½m�;BW;��;BW� ¼
½841ð5Þ MeV; 820ð20Þ MeV�.8 The quoted errors above
also account for the existing differences when UFD and
CFD parameterizations [44] are used. This yields a ratio
��;BW=m�;BW � 5:0ð1Þ��;BW=m�;BW, which suggests a

10% accuracy of large NC in the SRA, supporting as well
the identification of the large-NC parameters with the
BW ones.

C. Higher-energy resonances

We have so far been limited to states below the �KK
threshold,

ffiffiffi
s

p
< 1 GeV. On the other hand, Regge behav-

ior works for
ffiffiffi
s

p
> 1:4 GeV. So, it is interesting to see the

modifications induced by other resonances which may
decay into 2�, in the mass range 1 GeV<mR < 1:4 GeV,
namely f0ð980Þ, h1ð1170Þ, b1ð1235Þ, f2ð1275Þ, f0ð1370Þ
and �1ð1450Þ.
After implementing the appropriate short-distance con-

straints, via the Froissart bound, the inclusion of a 2þþ
tensor yields a resonance amplitude [45]

ATðs; t; uÞ ¼ � 2g2T
f4�

ðt� uÞ2 � s2=3

m2
T � s

� 4g2T
f4�

ðs2 � t2 � u2Þ
m2

T

; (14)

where the coupling is determined from the decay into ��
in a relative D-wave yielding

�T ¼ g2Tm
3
T

40�f4�
�5
T: (15)

The previous amplitude yields the following contributions
to the Oðp4Þ ChPT couplings [45]: LT

1 ¼ LT
2 ¼ 0 and

7Physical results are actually independent of the field repre-
sentation. The naive exchange of Proca fields does not satisfy the
Froissart bound, but after suitable polynomial subtractions to
comply with the short-distance constraints, one ends up with the
same amplitude [10]. Fields remain a useful framework to
incorporate symmetries, see also the discussion in Ref. [40].

8The value of the pole is
ffiffiffiffiffi
s�

p ¼ 445ð8Þ � i297ð7Þ MeV, in
agreement with Ref. [2]. On the other hand, the model-
independent large-NC-based extrapolation from the resonance
pole mass to the BW pole mass [19] yields m�;BW ¼
670ð20Þ MeV, when the UFD parameterization of Ref. [44] is
used.
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LT
3 ¼ g2T=ð3m2

TÞ � 0:16� 10�3 (see also Ref. [46]). The

axial 1þ� mesons, such as h1ð1170Þ and b1ð1235Þ, give just
a purely polynomial contribution to the �� scattering
amplitude (without s-channel propagator poles) which
cannot satisfy the Froissart bound, yielding to no contri-
bution at all to the LECs. We remind that the exchange of
J > 1 resonances in the t-channel naively violates the
Froissart bound, a situation which has been the standard
motivation to rely on high-energy Regge behavior as a way
of introducing suitable cancellations.

If the tensor meson f2ð1275Þ is considered, we might
include �0 � �1ð1450Þ and f0ð980Þ as well, where the
decay widths into �� are taken to be �ðf2 ! ��Þ ¼
150 MeV, �ðf0 ! ��Þ ¼ 80 MeV and �ð�0 ! ��Þ ¼
250 MeV (note the large inaccuracies). This yields the
extended sum rules (we remain in the chiral limit)

1 ¼ X
S

�S

mS

32�f2�
3m2

S

þX
V

9

2

�V

mV

32�f2�
3m2

V

þX
T

5
�T

mT

32�f2�
3m2

T

;

0 ¼ X
S

�S

mS

þX
T

5
�T

mT

�X
V

9

2

�V

mV

: (16)

Using PDG values [47], the higher resonances f0ð980Þ,
f2ð1275Þ and �1ð1450Þ produce corrections of the order of
ð0:06;�0:01Þ for the rhs of the first and second sum rules,
respectively. This shows a trend to cancellation which
supports that higher states not only play a minor role at
low energies but also in the region of interest below 1 GeV,
to leading order inNC. Therefore we will carry our analysis
below with just scalar 0þþ and vector 1�� states.9

D. Other short-distance constraints

Alternatively to the previous analysis, one may derive
short-distance constraints from other processes involving
two- and three-point functions [10,14]. Imposing the short-
distance properties of the underlying QCD dynamics,
within the SRA, one gets [9,18]ffiffiffi
2

p
GV ¼ 2cd ¼ 2cm ¼ 2

ffiffiffi
3

p
�cd ¼ 2

ffiffiffi
3

p
�cm ¼ 2

ffiffiffi
2

p
dm ¼ f�:

(17)

These constraints are obtained from a variety of processes,
some of them involving electroweak probes. It is remark-
able that they turn out to be totally compatible with those
deduced here by looking to �� phenomenology at
high energies, for a vanishing tensor-meson contribution

(gT ¼ 0). Neglecting the f2ð1270Þ and higher-mass reso-
nance contributions leads to a realistic and simplified
scenario for the purpose of the present work. On the other
hand, from the �� scattering amplitude, we have derived
the additional restriction mS ¼ mV . Although we will ex-
plore the effects of this constraint in one of the fits that will
be presented below, we should mention here that it relies
on the assumption of an asymptotic behavior for TIt¼2ð
Þ
more convergent than that of a constant (
0). This is not a
totally robust result, though it is certainly plausible, given
the accuracy of current �� analyses at high energies [44].
For mV ¼ 775 GeV, the conditions in Eq. (17) lead to

�S ¼ 3m3
S

64�f2�
�S ¼ 750 MeV;

�V ¼ m3
V

96�f2�
�3
V ¼ 150 MeV:

(18)

Besides, by requiring the two-point correlation functions of
two scalar or two pseudoscalar currents to be equal at high
energies, up to corrections of the order �sf

4=t2, one finds

[18] mP8
¼ ffiffiffi

2
p

mS. This relation involves a small correc-

tion, of the order 5%, which we neglect, together with the
tiny effects from light quark masses. We will use Eq. (17)
to fix our parameters below, and allowingmS to be different
from mV .

III. ONE-LOOP CHPT CORRECTIONS,
UNITARIZATION OF THE �� ELASTIC

SCATTERING AMPLITUDE AND LARGE-NC

COUNTING RULES

A. �� scattering at one loop in ChPT

At Oðp4Þ in ChPT, the �� elastic scattering amplitudes
can be written in the form [12]:

AChPTðs; t; uÞ ¼ AChPT
2 ðs; t; uÞ þ AChPT

4 ðs; t; uÞ; (19)

AChPT
2 ðs; t; uÞ ¼ m2

� � s

f2�
; (20)

AChPT
4 ðs;t;uÞ¼ �1

96�2f4�

�
ð2�l1þ �l2�7

2

�
s2þ

�
�l2�5

6

�
ðt�uÞ2

þ4

�
3�l4�2�l1�1

3

�
m2

�s

�
�
3�l3þ12�l4�8�l1�13

3

�
m4

�

þ3ðs2�m4
�Þ �JðsÞþðtðt�uÞ�2m2

�t

þ4m2
�u�2m4

�Þ �JðtÞþðuðu� tÞ
�2m2

�uþ4m2
�t�2m4

�Þ �JðuÞ
�
: (21)

The lowest-order amplitude AChPT
2 ðs; t; uÞ is identical to the

first term in Eq. (6) (pion contribution) and only depends
on the pion mass and weak decay constant. The Oðp4Þ

9Of course, it is intriguing to analyze the role of the
ðIG; JPCÞ ¼ ð2þ; 0þþÞ exotic state, named X(1420) in the
PDG [47] (and found also in the SU(6) study of Ref. [48]),
which decays into 2� in a S-wave with estimated mass
MX ¼ 1420ð20Þ MeV and width �X ¼ 160ð20Þ MeV. The con-
tributions of such a state to the Adler and � sum rules,
Eqs. (A16) and (A17), in the narrow-resonance approximation
are �80��X=3m

3
X ��4:6 GeV�2 and 16��X=3mX � 1:9, re-

spectively. As compared to the individual contributions from
other mesons, they seem too small to provide a clear signal.
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correction involves four SU(2) renormalization-scale-
independent LECs: �li (i ¼ 1, 2, 3, 4). In addition,
AChPT
4 ðs; t; uÞ includes one-loop chiral corrections, which

are suppressed by one power of 1=NC; they are parameter-
ized through the loop function

�JðsÞ ¼ 2þ �ðsÞ log
�
�ðsÞ � 1

�ðsÞ þ 1

�
: (22)

The relation between the LEC’s �li and the most common
SU(3) parameters Lr

i ð�Þ [12,13] can be found in
Appendix B.

B. Oðp4Þ ChPT-improved SRA amplitudes
and large-NC counting rules

In the limit of a large number of colors [7,8], ASRA in
Eq. (6) scales like 1=NC, since the pion weak decay con-
stant behaves like Oð ffiffiffiffiffiffiffi

NC

p Þ. Furthermore, ASRA provides
the leading-NC prediction for the actual �� scattering
amplitude, with the only limitation of considering just
the lowest-lying nonet of exchanged resonances [9]. This
latter approximation is justified as long as s, t and u are
kept far from the second resonance region.

The lightest resonances have an important impact on
the low-energy dynamics of the pseudoscalar bosons.
Below the resonance mass scale, the singularity associated
with the pole of a resonance propagator is replaced by
the corresponding momentum expansion; therefore, the
exchange of virtual resonances generates derivative
Goldstone couplings proportional to powers of 1=m2

R. At
lowest order in derivatives, this gives the large-NC predic-
tions for the Oðp4Þ ChPT couplings [9]. At Oðp4Þ the
amplitude ASRA in Eq. (6) reduces to

ASRA
4 ðs; t; uÞ ¼ m2

� � s

f2�
�G2

V

f4�

�
tðs� uÞ
m2

V

þ uðs� tÞ
m2

V

�

� 2

3f4�

½cdðs� 2m2
�Þ þ 2m2

�cm�2
m2

S8

� 4

f4�

� ½ �cdðs� 2m2
�Þ þ 2m2

� �cm�2
m2

S1

þ 8d2m
f4�

m4
�

m2
P8

;

(23)

which constitutes the leading 1=NC approximation to
AChPT. SRA predictions for the SU(3) LEC’s Lið�Þ can
be read off from the above equation, and they are explicitly
given in Appendix B.

Let us pay now some attention to the NC dependence of
the one-loop ChPT amplitude. Note that from Eq. (21), the
logarithmic contribution to AChPT

4 scales as 1=N2
C, while the

polynomial piece behaves as 1=NC in the NC � 1 limit.
This is because, as shown in the relations (B5), the LECs
Li behave as OðNCÞ, with the exceptions of L2 � 2L1,
L4 and L6 that scale as OðN0

CÞ [13]. The renormalization

scale dependence of the LECs provides further subleading
contributions in the 1=NC counting. Unfortunately,

the measured values of the Li couplings cannot be phe-
nomenologically split into their large-NC leading and
subleading parts. In general, one has the scale-dependent
relation

Lr
i ð�Þ ¼ AiNC þ Bið�Þ; (24)

where Ai is scale independent. Note that only the NC ¼ 3
combination is experimentally accessible. However a
meaningful extension of the chiral amplitudes to an arbi-
trary number of colors requires some knowledge of the
coefficients Ai and Bi. This difficulty is precisely what
ASRA
4 helps to overcome, and thus the SRA predictions of

Eq. (B5) can be used to read off the Ai coefficients.
10

In the recent work of Ref. [30], the SRA parameters GV ,
cd, cm, �cd, �cm, mV , mS8 and mS1 are fitted to data.

Afterwards and to extrapolate to NC > 3, the resonance
masses are kept constant, while all the couplings are scaled

by a
ffiffiffiffiffiffiffiffiffiffiffiffi
NC=3

p
factor. This does not take into account that

singlet and octet scalar resonances become degenerate in
the large-NC limit. On the other hand, if one fits the
resonance couplings to data, the fitted values do not nec-
essarily match their leading-NC values in Eq. (17) and
might incorporate some significant 1=NC subleading con-
tributions, which later on however, are scaled as if they
were leading in the NC counting. For instance, in Ref. [30]
a value of around 15MeV is found for cd, which is around a
factor three smaller than that of f�=2 quoted in Eq. (17). A
proper extension of this parameter when NC deviates from

3 should be 2cd ¼ fNC¼3
� � ffiffiffiffiffiffiffiffiffiffiffiffi

NC=3
p þ ð30 MeV� fNC¼3

� Þ,
instead of that assumed in [30]. For other parameters, there
exist also large deviations between the fitted values found
in [30] and the leading-NC estimates given in Eq. (17).
These differences seem to indicate 1=NC corrections to the
resonance parameters which are much larger than ex-
pected. One might wonder the underlying origin of these
disturbing large deviations. The fitting strategy certainly
might play some role on this; for instance, the choice of the
upper energy limit or the choice of the unitarization pro-
cedure. This latter issue has some relevance which we will
address now. In the next section, we will discuss our
unitarization procedure, which is rather similar to that
used in Ref. [30]. There appear independent subtraction
constants for each of the ðI; JÞ ¼ ð0; 0Þ; ð1; 1Þ and (2, 0)
sectors [32,50]. However, in Ref. [30], all three subtraction
constants were forced to be equal. From the discussion in
[32,50], this is somehow an arbitrary choice. The lack of
flexibility of data fits incorporating such constraint might

10Actually, the SU(2) scale-independent LECs defined by
Eq. (B1) display the NC separation in a scale-independent
fashion, since �li ¼ aiNC þ b where b is common to all coeffi-
cients and stems from pion loops. This allows to build differ-
ences, �li � �lj ¼ ðai � ajÞNC, which can be used to extract the
leading-NC contributions from data up to a constant. This is
illustrated in quark model calculations [49].
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influence the actual values determined for the resonance
couplings and their estimated scaling with NC.

Let us come back to our scheme. The amplitude ASRA
4 in

Eq. (23) contains neither pion loop terms, nor the 1=NC

subleading contributions to the polynomial piece of the
one-loop ChPT amplitude. Thus, and to better describe the
experimental phase shifts for NC ¼ 3, we propose to use

ASRAþChPTðs;t;uÞ¼ASRAðs;t;uÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Oð1=NCÞ

þ½AChPTðs;t;uÞ�ASRA
4 ðs;t;uÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Oð1=N2
CÞ

: (25)

In this way, by construction, we recover the one-loop ChPT
results, while at the same time all terms in the amplitude
that scale like 1=NC (leading) are also included within the
SRA. Note that in the 1=NC counting, the correction
fAChPTðs; t; uÞ � ASRA

4 ðs; t; uÞg is incomplete since it does

not account for all existing subleading 1=N2
C contributions

to Aðs; t; uÞ. A complete 1=N2
C calculation would require

quantum corrections stemming also from the low-lying
resonances [38,51–55].

C. Unitarized amplitudes

The ChPT loops incorporate the unitarity field theory
constraints in a perturbative manner, order by order in the
chiral expansion. Though subleading in the 1=NC counting,
their effect appears to be crucial for a correct understand-
ing of S-wave �� phase shifts. Furthermore, resonances
show up as poles of the unitarized amplitudes in unphysical
sheets, which positions provide their masses and widths.
Thus, to discuss the nature of the f0ð600Þ resonance, it is
crucial to restore unitarity. Any unitarization method re-
sums a perturbative expansion of the scattering amplitude
in such a way that two-body elastic unitarity,

ImT�1
IJ ðsÞ ¼ �ðsÞ

16�
; s > 4m2

�; (26)

is implemented exactly. To restore unitarity, we will make
use here of a once-subtracted dispersive representation
of T�1

IJ ðsÞ (see for instance Sec. 6 of Ref. [32]). Let be
T SRAþChPT

IJ ðsÞ and ½T2�IJðsÞ, the �� amplitudes, in the
ðI; JÞ sector, deduced from ASRAþChPTðs; t; uÞ and
AChPT
2 ðs; t; uÞ, respectively. We define an unitarized ampli-

tude as [32]

T�1
IJ ðsÞ ¼ �CIJ � �I0ðsÞ þ V�1

IJ ðsÞ; (27)

VIJðsÞ ¼ T SRAþChPT
IJ ðsÞ � ½T2�IJðsÞð �I0ðsÞ þ CIJÞ½T2�IJðsÞ;

(28)

where VIJ stands for the two-particle irreducible ampli-
tude, and the subtraction constant and the loop function are
given by

CIJ ¼ �T�1
IJ ð4m2

�Þ þ V�1
IJ ð4m2

�Þ;
�I0ðsÞ ¼ 1

16�2
½2� �JðsÞ�:

(29)

Note that i) the constants CIJ determine the scattering
length/volume in each sector and become undetermined
free parameters, and ii) with the election of V�1

IJ ðsÞ, and
considering ASRAðs; t; uÞ � ASRA

4 ðs; t; uÞ as Oðp6Þ, we re-

cover from TIJðsÞ the ChPT series up to one loop, in all
ðI; JÞ sectors.
Analytical expressions for the ChPT amplitudes pro-

jected onto the different ðI; JÞ sectors can be found in the
appendix B of Ref. [32].
A final remark concerning the 1=NC counting rules is in

order here. The subtraction constants CIJ must scale as

CIJ �OðN0
CÞ; (30)

because of their definition as the difference between
the inverses of the full and the two-particle-irreducible
amplitudes at threshold for each ðI; JÞ sector.11 Thus, the
amplitude TIJðsÞ reduces to the 1=NC leading part of
T SRAþChPT

IJ ðsÞ in the limit of a large number of colors.

IV. NC ¼ 3 PHASE SHIFTS AND � AND f0ð600Þ
MESON PROPERTIES

In this section, we fit the CIJ parameters to phase-shift
data and show results for the poles found in the second
Riemann sheet (SRS) of the amplitudes. The SRS of the
T matrix is determined by the definition of the loop func-
tion �I0ðsÞ in the SRS. We follow here Ref. [56] and use
Eq. (A13) of this latter reference to compute �I0ðsÞ in the
SRS.12

Masses and widths of the dynamically generated reso-
nances are determined from the positions of the poles, sR,
in the SRS of the corresponding scattering amplitudes in
the complex s plane, namely sR ¼ M2

R � iMR�R. For nar-
row resonances (�R � MR),

ffiffiffiffiffi
sR

p �MR � i�R=2 consti-

tutes a good approximation.13

The coupling constants of each resonance to the pion
pair are obtained from the residues at the pole, by matching
the amplitudes to the expression

11The full and the two-particle-irreducible amplitudes differ by
terms which always contains at least one s-channel pion loop,
which is subleading in the 1=NC power counting. Thus, the
difference T�1 � V�1 scales as OðN0

CÞ, as one readily deduces
by noting that both TV and ðT � VÞ scale as Oð1=N2

CÞ in
the NC � 1 limit.
12Note that the function �J0ðsÞ, defined in Eq. (A8) of [56],
reduces to �I0ðsÞ for equal masses.
13It has become customary to quote for the broad � the numberffiffiffiffiffi
s�

p
instead of s�. Here, we will also quote

ffiffiffiffiffi
s�

p
, but we will

refrain from identifying Re
ffiffiffiffiffi
s�

p
with the mass and �2 Im

ffiffiffiffiffi
s�

p
with the width of the resonance. For the � meson, the narrow-
resonance approximation works within two standard deviations.
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TIJ
SRSðsÞ ¼

g2R
ðs� sRÞ ; (31)

for values of s close to the pole. The couplings gR are
complex in general, and represent independent information
from the pole sR. In the narrow-resonance approximation,
the extrapolation of Eq. (31) to the real axis takes a Breit-
Wigner form to comply with unitarity and hence g2R ¼
16�mR�R=�ðm2

RÞ.
The first issue is to select the set of data points to

be fitted. We will consider the scalar-isoscalar, vector-
isovector and scalar-isotensor elastic �� phase shifts,
with a total of 107 data points, as follows.

(i) I ¼ J ¼ 0 sector: As our main input, we will use the
Roy equations results from Refs. [3,57,58] in the
energy range

ffiffiffi
s

p � 750 GeV. We take this upper
c.m. energy cut to keep negligible coupled-channel
�KK effects, which give rise to the f0ð980Þ resonance.
We have considered the phase-shift determinations
of Ref. [57] and that of Eq. (4.8) of Ref. [58]. For
each value of

ffiffiffi
s

p
, we have used as central value the

average of both results, while the absolute difference
between them is taken as the error for the �2 fit.
From threshold to the upper cut of 750MeV, we have
moved up in steps of 10 MeV, which amounts to a
total of 48 phase shifts to be fitted.

(ii) I ¼ J ¼ 1 (I ¼ 2, J ¼ 0) sector: We fit to the phase
shifts compiled in Refs. [59,60] ([61,62]) and con-
sider an upper cut of

ffiffiffi
s

p � 910 GeV (1190 MeV),
which comprises a total of 38 (21) phase shifts.

An important point has been the selection of the fitting
interval. Clearly, we should restrict the range to the elastic
region and, in particular, below the opening of the first
inelastic K �K channel. At lowest order, this effect corre-
sponds to the two-step process �� ! K �K ! ��, which
in the subthreshold region yields a real contribution to the
amplitude and is 1=N2

C and sK �K-suppressed. The pure

elastic rescattering is just 1=N2
C-suppressed. On the other

hand, corrections to the SRA due to heavier states with
massM are ofOð1=ðNCM

2ÞÞ. Therefore we expect that, by
restricting to low energies, inelastic effects can be safely
included in 1=NC corrections to the LECs. In other words,
we may allow

ffiffiffi
s

p � 2MK � 1 GeV without much trouble.
The second issue is to design the fit procedure. For three

out of the five fits examined here, we will fix

mV ¼ 0:77 GeV; mS ¼ 1 GeV: (32)

For the fit B.3, we will force mV ¼ mS, as suggested from
our discussion of Eqs. (11) and (12), and fit the common
value to data. Finally, in the fit B.1-2 we will fix mV to
0.77 GeV, while mS is considered as a free parameter. We
will always fit C00, C11 and C20 to data; besides those

parameters, mV and mS ¼ mP=
ffiffiffi
2

p
, ASRAþChPT depends

still on Lr
1;2;3;4;5;6;8ð�Þ, once the relations in Eq. (17) are

implemented.

We have considered two well-differentiated scenarios:
(i) A: We just take the SU(3) Gasser-Leutwyler parame-

ters Lr
i ð�Þ, at a certain scale�, from other phenome-

nological analyses. In this type of fits, only the CIJ

parameters are fitted to data.
(ii) B: The contributions of the low-lying vector, axial-

vector, scalar and pseudoscalar resonances to the Li,
and therefore to the effective chiral Lagrangian at
order Oðp4Þ, were given in Eq. (B5), and thus, the
renormalized coupling constants Lr

i ð�Þ can be writ-
ten as a sum [9]

Lr
i ð�Þ ¼ LSRA

i þ L̂r
i ð�Þ (33)

of the resonance contributions, LSRA
i and a remain-

der L̂r
i ð�Þ. The choice of the renormalization scale

� is arbitrary. However, it is rather obvious that one
can only expect the resonances to dominate the
Lr
i ð�Þ when � is not too far away from the reso-

nance region. Therefore, it is common to adopt
� ¼ m� as a reasonable choice. However, one

might take as a best fit parameter one scale, �RS,
for which it occurs a complete resonance saturation
of all the LECs Lr

i , this is to say

L̂ r
i ð�RSÞ ¼ 0: (34)

In other words, at this privileged scale �RS, there is
no other contribution in addition to the meson reso-
nances. In this type of fit, besides the CIJ parame-
ters, this scale should be fitted to data.
We have also considered a scenario where the
complete resonance saturation of the LECs Lr

i oc-
curs at two different scales,�RS

V for Lr
1;2 and�

RS
S for

Lr
4;5;6;8, depending whether the LEC is dominated by

the vector or the scalar resonance contribution. Note
that, L3 is renormalization-scale invariant.

Let us start discussing results obtained from five different
fits to the phase-shift data. Best fit parameters and pole
properties are compiled in Table I, while predicted phase
shifts are depicted in Fig. 2. We have checked that none of
the fits give rise to spurious poles on the real axis below and
close to the �� threshold. Indeed, we have looked for
poles down in the real axis to s��ð0:65 GeVÞ2 and
have not found any one.
In the first fit (A), we take the SU(3) Gasser-Leutwyler

parameters Lr
i ð� ¼ m�Þ from the Oðp4Þ K‘4 fit compiled

in Table 2 of Ref. [63].14 A best fit to data using, instead,
the central values of the mainOðp6Þ fit of Ref. [63] leads to
a �2=dof more than twice larger than that of fit A. This is
not entirely surprising, since we are only considering here
one-loop chiral logarithms, besides those required to

14In units of 10�3, Lr
1;2;3;4;5;6;8ð� ¼ m�Þ ¼ 0:46, 1.49, �3:18,

0., 1.46, 0. and 1.08, respectively. For simplicity in the analysis,
we have ignored the errors on these parameters, since they do not
affect the main conclusions of this work.
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restore exact unitarity, in the �� amplitudes. In the four
other fits (B.1, B.2, B.1-2, and B.3), we assume that com-
plete resonance saturation occurs, the corresponding scale
(or scales) where it holds is fitted to data. In the fit B.1-2,
we fix �RS

V to the value obtained in fit B.1 and we fit �RS
S

andmS to data. Besides in the fit B.3, we forcemS ¼ mV in
the SRA amplitude, and fit this common mass to the data.
We explore this possibility because it is suggested from
our previous discussion on short-distance conditions in
Eqs. (11) and (12). The mS ¼ mV constraint was deduced
in Ref. [23] as well, when the one-loop SU(2) ChPT
amplitude, unitarized with the Inverse Amplitude Method
(IAM), was required to be consistent with the SRA.

Since in the SRA amplitudes we have explicitly incor-
porated one vector and one scalar poles, we expect at least
one pole in each of the I ¼ J ¼ 0 and I ¼ J ¼ 1 sectors.
Because of the resummation in Eq. (27), the pole positions
will change with respect to those of the bare ones (s ¼ m2

V

and s ¼ m2
S) and the resonances will acquire a width

that accounts for their two-pion decay. In addition, as we
will see, some other poles are generated as well in the SRS
of the scattering amplitudes. The five fits have reasonable
values of �2=dof, though in the I ¼ J ¼ 1 channel B-type

fits lead to a better agreement with data than fit A. The
major improvement occurs at the higher end of the fitted
region, and it is due to the tail of a second resonance
located at around 1.4 GeV that it is generated in the B
schemes. The relation g2� ¼ m4

�=ð6f2Þ, deduced from the

KSFR prediction �� ¼ m3
�=ð96�f2�Þ, is satisfied within

3% accuracy. This is because the chiral logarithms are
almost negligible in the �-meson channel, and indeed at
order Oðp4Þ they cancel out for the SU(2) massless pion
theory [23].
Besides, it is also interesting to compare the leading-NC

values of the residues, as displayed by Eq. (8), with the
corresponding ones after unitarization, given in Table I.
Using the input values one gets jgV j � 2600 GeV, in ex-
cellent agreement with the values for jg�j quoted in the

table that range in the interval 2400–2500 GeV. For the
scalar resonance the rather stable values for jg�j �
3000–3100 GeV can only be reproduced by Eq. (8) if
mS ¼ mV (Fit B.3). Indeed, for the B.3 fitted mS ¼ mV

mass, we find jgSj � 3000 GeV. For completeness, let us
mention that the residue of the � resonance has also been
deduced from the � !  decay [64], yielding g� ¼
3204ð28Þ þ i1588ð14Þ MeV, i.e. jg�j ¼ 3580ð30Þ MeV.

TABLE I. Best fit parameters and pole properties (statistical uncertainties on these latter quantities define 68% confidence-level
regions, induced by the corresponding Gaussian correlated errors of the different fit parameters). The three CIJ parameters are always
fitted to data, and in addition �V ¼ �S, �V and �S, �S and mS, and �V ¼ �S and mV ¼ mS are also adjusted in the case of fits B.1,
B.2, B.1-2 and B.3, respectively. In the row labeled as contrb., the contributions to the �2 of the different ðI ¼ J ¼ 0Þ=ðI ¼ J ¼
1Þ=ðI ¼ 2; J ¼ 0Þ sectors are displayed. Besides, rij are Gaussian correlation coefficients between parameters i and j. Note that the

dispersive data analyses based in Roy [2] and GKPY [4] equations predict for
ffiffiffiffiffi
s�

p ¼ ð441þ16
�8 ;�i272þ9

�12Þ MeV and

ð457þ14
�13;�i279þ11�7 Þ MeV respectively, while the Review of Particle Properties [47] quotes m� ¼ 775:49	 0:34 GeV and �� ¼

149:1	 0:8 GeV.

A B.1 B.2 B.1-2 B.3

C00 �0:0210 ð5Þ �0:0218 ð9Þ �0:0278 ð18Þ �0:0283 ð18Þ �0:0142 ð4Þ
C11 �0:02054 ð11Þ �0:01 996 ð11Þ �0:01 979 ð12Þ �0:01 968 ð12Þ �0:0109 ð9Þ
C02 �0:0594 ð19Þ �0:0588 ð20Þ �0:0621 ð17Þ �0:0593 ð19Þ �0:0602 ð18Þ
�RS

V (MeV) 770 (fixed) 693 (26) 474 (16) 693 (fixed B.1) 546 (22)

�RS
S (MeV) 770 (fixed) �RS

V 1550 (180) 1190 (130) �RS
V

mS (MeV) 1000 (fixed) 1000 (fixed) 1000 (fixed) 1295 (40) 739 (3)

mV (MeV) 770 (fixed) 770 (fixed) 770 (fixed) 770 (fixed) mS

�2=dof 3.5 2.4 2.0 2.0 2.2

contrb. �2 25=323=21 26=203=22 5=178=20 17=171=20 17=192=20
r12, r13, r14, r15 0, 0, -, - 0.06, 0.13, 0.80, - 0.04, 0.05, 0.43, 0.20 0.09, �0:01, 0.47, �0:05 0.20, 0.08, 0.52, �0:19
r23, r24, r25 0, -, - 0.01, 0.07, - �0:02, �0:12, 0.21 �0:01, 0.29, 0.27 �0:02, �0:19, �0:99
r34, r35 -, - 0.06, - 0.14, �0:10 �0:03, �0:03 0.05, 0.02

r45 - - �0:59 0.60 0.21

m� (MeV) 749.1 (4) 752.6 (5) 754.0 (5) 754.8 (6) 754.7 (7)

�� (MeV) 144.5 (3) 150.4 (4) 152.0 (4) 153.1 (5) 149.5 (4)

jgj� (MeV) 2404 (4) 2490 (5) 2515 (5) 2534 (7) 2504 (6)ffiffiffiffiffi
s�

p
(MeV) ð451	 2;

�i234	 1Þ
ð453	 4;
�i238	 4Þ

ð423	 6;
�i267	 3Þ

ð442	 4;�i248	 2Þ ð443	 4;�i240	 4Þ

jgj� (MeV) 3005 (21) 3080 (70) 3070 (120) 3100 (50) 2990 (80)

mscl (MeV) 1340 (40) 1600þ0
�1200 772 (6) 1020þ70

�650 990 (30)

�scl (MeV) 117þ22
�0 300þ300

�0 580þ120
�0 1070þ240

�0 170þ40
�0

jgjscl (MeV) 2800 (300) 4700þ0
�1700 2980 (100) 2940 (120) 2900þ400

�300
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The result from Roy equations yields jg�j ¼ 3300ð300Þ
MeV [65]. Using the UFD and CFD parameterizations
from [44] yields gS ¼ 3735ð61Þ þ i874ð3Þ MeV and
g� ¼ 3742ð60Þ þ i874ð6Þ MeV or, equivalently, jg�j ¼
3836ð85Þ MeV and jg�j ¼ 3843ð84Þ MeV respectively,
while in the most recent analysis based in GKPYequations,
a value of jg�j ¼ 3590ð120Þ MeV is quoted [4].

Moreover, the scalar-isoscalar phase shifts are signifi-
cantly better described when the complete resonance satu-
ration of the Lr

i occurs at two different scales fitted to data
(fit B.2). In this latter case, mass and width of the f0ð600Þ
or � resonance compare also well with the results of
Caprini et al. [2].15 The properties of the � resonance are
strongly influenced by chiral logarithms [23]. In this

scalar-isoscalar channel, we will keep track of a second
resonance, which cannot be identified with the f0ð600Þ and
that we will label as scl. There exist two types of scenarios:
i) for fits A, B.1 and B.3, this second pole appears well
abovemS (1 GeV for the first two fits and 0.739 GeV for the
last one) and it is relatively narrow, and ii) for fits B.2 and
B.1-2, it is placed below mS (1 GeV and 1.295 GeV,
respectively) and it is quite wide (� 
 600 MeV). In the
case of the fit B.2, the effects of this resonance (scl) on
the phase shifts, in the higher end (600–750 MeV) of the
fitting range, are appreciable and considerably improve the
achieved description (see Fig. 2). A different question is
whether or not such a wide state, below 1 GeV, does have a
correspondence with any physical state or it is just an
artifact of the fitting procedure. We should note that a state
with these features has not been reported neither in the Roy
equation analysis of Ref. [65], nor in the most recent work
based in the GKPYequations of Ref. [4]. As we shall see in
the next subsection, the NC � 1 behavior of the �-pole
obtained from the B.2 fit is radically different to that
inferred from the A, B.1, and B.3 schemes. That is the

FIG. 2 (color online). Theoretical predictions for the phase shifts obtained from fits A, B.1, B.2, B.1-2 and B.3. Fitted data from
Refs. [59,60] (I ¼ 1, J ¼ 1) and [61,62] (I ¼ 2, J ¼ 0) are also displayed. In the isoscalar-scalar (I ¼ 0, J ¼ 0) channel, the used
average of the results of Refs. [57,58] is shown, as well.

15Bear in mind that in the I ¼ J ¼ 0 sector we do not fit
directly the Roy equation results of Ref. [57], used in the work
of Caprini et al., but rather we take an average of these results
with those obtained by Yndurain and collaborators in Ref. [58].
The recent reanalysis [44] provides errors fully compatible with
this assumption.
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reason why we have proposed the fit B.1-2, with the
intention of testing to what extent the dependence on NC

of the �-resonance properties is determined by the exis-
tence of this possible artifact.16 In the fit B.1-2, where the
scale�RS

V is fixed to the result of fit B.1 and the value ofmS

is adjusted to the data, the second scalar resonance shows
up above 1 GeV, and as we will discuss below, it leads to
qualitatively the same NC dependence of the f0ð600Þ mass
and width as the fit B.2 does. Nevertheless, we should point
out that the exact position and properties of the second
scalar pole is not of much relevance for the present work,
and we have little control on them, since they might be
affected by higher energy effects (coupled channel dynam-
ics, for instance) not considered here. However, what is
relevant is that as we will show in the next section, its mere
existence influences the properties of the f0ð600Þ reso-
nance, when NC deviates from 3.

V. RESULTS FOR NC > 3

We extrapolate the amplitudes to NC > 3, by means of
the NC dependence

ASRAþChPTðs; t; uÞjNC
3

¼ 3

NC

ASRAðs; t; uÞjNC¼3

þ
�
3

NC

�
2
�
AChPTðs; t; uÞ � ASRA

4 ðs; t; uÞ
�								NC¼3

; (35)

and the scaling law of Eq. (30).NC > 3 results are depicted
in Figs. 3–5.

In what the � meson properties concerns, we observe
that for all five fits examined here (Fig. 3), both mass
and width behave as expected from a q �q picture. Thus
m�, that did not deviate at NC ¼ 3 much from mV , quickly

approaches to mV , while �� decreases like 1=NC, as the

number of colors increases. This is not by any means a new
result, and in the past other authors have already reached,
within an unitarized ChPT scheme, this conclusion [6,22].
Indeed, in a previous work [23], the same result was
obtained starting from the one-loop SU(2) ChPTamplitude
for massless pions and using, as in Refs. [6,22], the IAM to
restore elastic unitarity. However, results here are more
robust, because in previous works the leading 1=NC terms
appearing beyond Oðp4Þ [6,23] orOðp6Þ [22] were simply
ignored. Note that the constraint mV ¼ mS þOð1=NCÞ,
deduced in Ref. [23] when the one-loop unitarized ��
amplitude was required to be consistent with the SRA,
does no longer necessarily hold here, and we could still
have both parameters to be independent (fits A, B.1, B.2,

and B.1-2). Though this could be because we keep here all
1=NC terms at all chiral orders, it might also happen that
the above constraint was just an artifact of the IAM used in
[23] to unitarize the amplitudes. Nevertheless, we should
note that fit B.3, where the constraintmV ¼ mS is enforced,
leads to phenomenologically acceptable results as well.
Let us move on, and discuss now the scalar-isoscalar

channel. For sufficiently large NC, and since unitarization
corrections are subleading, we should end up with just the
unique resonance (of mass mS) included in the SRA irre-
ducible amplitude, while the effects of the second reso-
nance must disappear. We see in Figs. 4 and 5 that this is
effectively the case. However, now it is difficult to draw
robust conclusions and the resonance that survives depends
on the fit procedure.
In the case of the fits A, B.1, and B.3, we see that the

resonance identified as the f0ð600Þ for NC ¼ 3 becomes
the SRA pole, with mass mS when NC is sufficiently large.
There is a first transition region for values of NC close to 3,
where both the mass and width increase with NC, but above
NC ¼ 6–8 the resonance width starts decreasing like 1=NC,
and the mass approaches to the limiting mS value. The
behavior showed in the two upper panels of Fig. 4 is almost
identical to that of the right upper panel of Fig. 1 in the two-
loop analysis of [22]. The authors of this latter reference
conclude that in the case of the � resonance, there exists a
mixing with a q �q subdominant component, arising as loop
diagrams becomemore suppressed at largeNC. The nature of
the � resonance in the real world (NC ¼ 3) would be totally
different to that of the � meson, being it is mostly governed
by chiral logarithms stemming from unitarity and crossing
symmetry [23], justifying thewidely accepted nature of the�
as a dynamically-generated meson. However, within this
scenario, for sufficiently large NC > 10, the structure of
both (� and �) resonances is similar. As pointed out recently
in Ref. [31], this solves the seeming paradox of how a
distinctive nature for the � and � at NC ¼ 3 is reconciled
with semilocal duality at larger values of NC. Semilocal
duality requires the contribution of these two resonances to
the �þ�� elastic cross section to cancel17 ‘‘on average,’’
since this process is purely isospin 2 in the t-channel, and
there are no isotensor resonances at low energies.
In what respects to the second resonance found in the

scalar-isoscalar channel, we see in Fig. 5 that for fits A, B.1,
and B.3, it follows a totally different pattern with increas-
ing NC. Indeed, it becomes wider and wider and from one
value of NC on, the pole sscl turns out to be located in the
third quadrant, though

ffiffiffiffiffiffiffi
sscl

p
still lies in the fourth quadrant,

with Re s < 0 (where the path integral for the resonance
field would not be well defined) and its effects on the

16The minimization procedure, involving also the election of
the parameters which are fitted to data, is not completely unique,
and there exist obviously different local minima. Some of them
might not have a proper physical interpretation. Bearing this in
mind, we can not discard the existence of artifacts.

17Note however, that such a statement requires an extrapolation
of the Regge behavior to somehow low energies. For that end,
the authors of Ref. [31] use Regge trajectories for the variable
(
� 2m2

� � t=2) to ensure that the imaginary part of the ex-
trapolated Regge amplitude vanishes at threshold.
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scattering disappear. We would like to mention that in
Ref. [30] poles in the SRS are being searched in the
variable

ffiffiffi
s

p
. That could be inappropriate as we pointed

out in Ref. [23], and we reiterate here. This is because, as
mentioned above, there are situations where

ffiffiffiffiffi
sR

p
lies on the

fourth quadrant of the SRS, but however sR has passed to
the third quadrant and thus its meaning becomes unclear.
This phenomenon, which can only happen for broad

resonances, was also illustrated in Fig. 1 of [23], and it is
precisely what happens for the � meson case in Ref. [30]
(see the Fig. 10 in that reference). The conclusion of
Ref. [30] that the � meson moves far away in the complex
plane for large NC overlooks the fact that it does so in the
third quadrant of the complex plane.
The recent work of Ref. [66] might contradict the find-

ings for the � resonance deduced from fits A, B.1, and B.3,

FIG. 3 (color online). NC dependence of the � pole position for the various fits described in the text. Empty [filled] triangles stand for
Re

ffiffiffiffiffi
s�

p
[� 2 Im

ffiffiffiffiffi
s�

p
] in units of the NC ¼ 3 values (M3 and �3), with s� the SRS pole position (located in the fourth quadrant) for the

different NC values.
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which in turn seem compatible with those obtained in the
two-loop analysis of Ref. [22]. In [66], instead, emerges a
picture more consistent with that outlined in the one-loop
analysis of Ref. [6]. Within the unitarized quark model
proposed by Törnqvist [67], the authors of [66] find that the
whole low-energy scalar spectrum below 2 GeV, except for
a possible glueball f0ð1710Þ, could be described in one
consistent picture, with the bare ‘‘q �q seeds’’ dressed by the
hadron loops. In this model, the � resonance is generated

as a pole of the S matrix and has no correspondence with
any of the bare q �q seeds included in the scheme. Indeed,
the � resonance runs away from the real axis on the
complex s plane when NC increases. However, following
Ref. [31], this scenario might not be compatible with semi-
local duality, when the number of colors is sufficiently
high. Besides, we should note that, in sharp contrast with
the work here, it is not clear whether the �� amplitudes
used in Ref. [66] contain or not all the leading 1=NC

FIG. 4 (color online). Same as Fig. 3, but for the � pole. In addition, the horizontal line indicates the mass of the scalar resonance
included in the SRA amplitude (1 GeV for fits A, B.1 and B.2, 0.739 GeV for the fit B.3 and 1.295 GeV in the case of the fit B.1-2). For
values of NC located at the right of the vertical line in the B.2 and B.1-2 panels, the pole s� appears in the third quadrant, instead of in
the fourth one, and thus the singularity does not have a clear physical interpretation.
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contributions, and thus the analysis of the behavior of the
resonance properties when NC is larger than 3 is not fully
meaningful.

The qualitativeNC behavior of the two resonances found
in the scalar-isoscalar sector is substantially different when
one looks into the results of the fits B.2 and B.1-2 (middle
panels of Figs. 4 and 5). There, the role played by the
NC ¼ 3 � and scl resonances is interchanged. Thus, the q �q
component of the � seems to be absent, and the f0ð600Þ
pole becomes wider and moves into the third quadrant

above NC > 5. Indeed, now the behavior showed by this
pole is quite similar to that displayed for the � in the right
panel of Fig. 4 of Ref. [66]. On the other hand, as can be
appreciated in the middle panels of Fig. 5, the second
I ¼ J ¼ 0 resonance now becomes the scalar SRA pole
included in our amplitudes. Presumably, at high NC it
would become more delta-function-like, as the � pole
would, and it would likely provide the needed cancella-
tions with the contribution of this latter resonance in the
elastic �þ�� amplitude [31].

FIG. 5 (color online). Same as Fig. 3, but for the scl pole. Now, poles appear in the third quadrant for fits A, B.1 and B.3.
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A recent study [68] describes an accidental symmetry of
the full Regge tower of radially excited 0þþ states, M2 ¼
anþm2

�. Remarkably, the states generating doublets with
excited pion states are f0ð600Þ $ �0ð140Þ, f0ð1370Þ $
�0ð1300Þ, f0ð1710Þ $ �0ð1800Þ, f0ð2100Þ $ �0ð2070Þ
and f0ð2330Þ $ �0ð2360Þ, whereas the other scalar states
f0ð980Þ, f0ð1500Þ, f0ð2020Þ and f0ð2200Þ are not degen-
erate with other mesons with light u and d quarks.
Arguments have been put forward to identify the f0ð980Þ
as a would-be glueball in the large-NC limit. As it is well
known, glueballs are more weakly coupled to mesons,
Oð1=NCÞ, than other mesons, Oð1= ffiffiffiffiffiffiffi

NC

p Þ. This is sup-
ported by the rather small width ratio which yields
�f=�� � ðg2f��m3

fÞ=ðg2���m3
�Þ � 1=NC, and for m� �

0:8 GeV a ratio g���=gf�� � ffiffiffiffiffiffiffi
NC

p
is obtained.

Our analysis can be improved along several lines. First,
one might extend the chiral analysis to include two-loop
results. Secondly, our conclusions might be modified when
coupled channels incorporating �KK effects are taken into
account. We have given arguments why we do not expect
that this might be important as long as we remain in the
subthreshold region, where all �KK effects should be in-
cluded as 1=NC corrections to the counterterms.

VI. CONCLUDING REMARKS

We summarize the conclusions of this work. First, we
have constructed �� amplitudes that fulfill exact elastic
unitarity, account for one-loop ChPT contributions and
include all leading terms, within the SRA, in the 1=NC

expansion. These amplitudes have been successfully fitted
to I ¼ J ¼ 0, I ¼ 2, J ¼ 0 and I ¼ J ¼ 1 phase shifts.
Next, we have looked for poles in the SRS of the ampli-
tudes, and discussed their properties. Since all leading
1=NC terms are taken into account, this scheme is much
more appropriated to discuss the NC dependence of the �
and � masses and widths than previous ones, where the
leading 1=NC terms appearing beyond Oðp4Þ [6,23] or
Oðp6Þ [22] were neglected. The recent work of Ref. [30]
does not identify correctly the leading 1=NC term, and
hence the conclusions of this reference in the large-NC

limit need some revision.
Robust conclusions are drawn in the case to the �

resonance, and we confirm here that it is a stable meson
in the large-NC limit, as pointed out by other authors in the
past. In the scalar-isoscalar sector, the overall scenario
looks somehow less predictive, since we cannot firmly
conclude whether or not the NC ¼ 3 f0ð600Þ resonance
completely disappears at large NC or if it has a subdomi-
nant component in its structure, which would become
dominant when the number of colors gets sufficiently
high. Unfortunately, this depends on the chosen procedure
(A, B.1 and B.3 or B.2 and B.1-2) to fit the phase-shift data.
However, it becomes clear the predominant di-pion com-
ponent of this pole for NC ¼ 3, and that the SRA delta-
function-like pole, that always appears in the NC � 1

limit, might help to keep the whole scheme compatible
with semilocal duality. Nevertheless, this needs to be
quantitatively checked elsewhere.
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APPENDIX A: GENERAL FEATURES
OF �� SCATTERING

A comprehensive presentation of �� scattering can be
seen at the textbook level [69] and more recently in [70].
We summarize here some relevant formulae to provide a
proper perspective of our analysis merging largeNC, ChPT
and unitarity considerations.
With the conventions used in this work, the optical

theorem reads

�IðsÞ ¼ � 1

s�ðsÞ ImTIðs; 0; 4m2
� � sÞ ¼ X

J

�IJðsÞ; (A1)

where the partial-wave total cross section is defined as

�IJðsÞ ¼ 16�
ð2J þ 1Þ
s� 4m2

�

�
�IJsin

2�IJ þ 1

2
ð1� �IJÞ

�

� 8�ð2J þ 1Þ 1þ �IJ

s� 4m2
�

: (A2)

The contribution of a resonance state, with spin J and
isospin I, to the partial cross section in the narrow-width
limit and assuming m2

IJ � 4m2
�, reads

�IJðsÞ ¼ ð2J þ 1Þ 16�
2�IJ

mIJ

�ðs�m2
IJÞ: (A3)

Of course, one may think that such a limit does not apply to
a broad state as the �. Within a Breit-Wigner model, the
finite width correction effectively corresponds to a reduc-
tion � ! �½1� �=ð�mÞ�, which even for the extreme case
� ¼ m yields to a moderate 30% correction.
Up to

ffiffiffi
s

p � 1:4 GeV, the S0, P, and D0 waves play an
outstanding role [44] featuring the appearance of the
f0ð600Þ, �1ð770Þ, f0ð980Þ and f2ð1270Þ resonances, while
below the �KK production threshold, s �KK ¼ 4m2

K, only S0
and P are essential.
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1. Crossing and forward dispersion relations

In the (crossed) t-channel, the amplitudes read

TIt¼0ðs; t;uÞ
TIt¼1ðs; t;uÞ
TIt¼2ðs; t;uÞ

0
BB@

1
CCA¼

1
3 1 5

3

1
3

1
2 �5

6

1
3 �1

2
1
6

0
BBB@

1
CCCA

TIs¼0ðs; t;uÞ
TIs¼1ðs; t;uÞ
TIs¼2ðs; t;uÞ

0
BB@

1
CCA; (A4)

where It and Is are the corresponding isospins in the t- and
s-channels, respectively.

The rigorous Froissart bound from axiomatic field the-
ory requires that in the forward direction (t ¼ 0) these am-
plitudes, up to logarithmic corrections, are asymptotically
polynomially bound by a single power of s. Actually, in
terms of the crossing-odd variable 
¼ðs�uÞ=2, the am-
plitude TItð
;tÞ�TItð
þ2m2

�� t=2; t;�
þ2m2
�� t=2Þ

satisfies TItð�
; tÞ ¼ ð�ÞItTItð
; tÞ ! 
nIt , with nIt � 1

when 
 ! 1. This means that a forward (t ¼ 0) once-
subtracted dispersion relation is fulfilled, by considering
a closed contour excluding the cuts �1< 
<�2m2

�

and 2m2
� < 
 <þ1, where Tð
þi0þÞ�Tð
�i0þÞ¼

2iImTð
þi0þÞ�2iImTð
Þ. The subtraction constant can
be fixed at low energies, and more specifically at 
 ¼ 0 or
equivalently s ¼ 2m2

�, i.e. below threshold. Thus, at t ¼ 0,
we get the forward dispersion relations (FDRs):

TIt¼0ð
; 0Þ ¼ TIt¼0ð0; 0Þ þ 2
2

�

Z 1

2m2
�

d
0


0
ImTIt¼0ð
0; 0Þ


02 � 
2
;

TIt¼1ð
; 0Þ



¼ lim

0!0

TIt¼1ð
0; 0Þ

0

þ 2
2

�

Z 1

2m2
�

d
0


02

� ImTIt¼1ð
0; 0Þ

02 � 
2

;

TIt¼2ð
; 0Þ ¼ TIt¼2ð0; 0Þ þ 2
2

�

Z 1

2m2
�

d
0


0
ImTIt¼2ð
0; 0Þ


02 � 
2
:

(A5)

The absorptive part of the amplitude can be written as an
optical theorem in the 
 variable:

ImTItð
; 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 4m4

�

q
�Itð
Þ; (A6)

where one goes from It to Is with the same s-t crossing
matrix as for the amplitudes, see Eq. (A4). The FDRs
converge, provided jImTItð
; 0Þj< 
a with a < 2, for large

values of 
. Results for �It are presented in Fig. 6, up toffiffiffi
s

p ¼ 1:42 GeV, using the UFD parameterization of
Ref. [44] for the partial S, P, D, and F waves

These general constraints are obeyed for any Quantum
Field Theory and by QCD, in particular. On the other hand,
for t � 0, and sufficiently large 
, say 
 > 
h, one has the
phenomenologically successful Regge behavior given by18

ImTItð
; tÞ ! �2�2
X

�ItðtÞ
�




0

�
�It ðtÞ

; (A7)

where
P

indicates summation over several Regge trajec-
tories, which for small t are given by �ItðtÞ ¼ �Itð0Þ þ
t�0

It
þ . . . The slope parameter, �0

It
ð0Þ � 1=ð2m2

�Þ ¼
0:9GeV�2 is nearly universal and the leading trajectory
intercepts are �0ð0Þ � 1, �1ð0Þ � 1=2, and �2ð0Þ � 0 (for
a review within a modern�� context see e.g. Refs. [71,72]
and references therein). We also show in Fig. 6 the Regge
behavior used in the construction of the partial waves via
FDRs, Roy and GKPY equations.19 As we see, there is
some mismatch between the partial waves and the
Regge behavior. This is somewhat expected, since Regge
behavior provides an average of the oscillating resonance
contribution in the high-energy region. The region

ffiffiffi
s

p
<

1:42 GeV is well described by S, P, D, and F waves, since
the exchanged � meson in the t-channel corresponds to
longest range 1=m� and hence Jmax �

ffiffiffi
s

p
=m�.

2. Finite energy sum rules

Separating the Regge tail in the dispersive integral, cor-
responding to the integration region 
0 > 
h, we have for
It ¼ 0, 2, in the limit 
 ! þ1 and assuming �Itð0Þ< 2,

0.5 1.0 1.5 2.0 2.5
200

100

0

100

200

300

400

s GeV2

It
G

eV
2

FIG. 6 (color online). The It ¼ 0, 1, 2 total cross sections, as a
function of the s variable, including S, P, D, and F waves belowffiffiffi
s

p ¼ 1:42 GeV (solid lines) and the corresponding Regge be-
havior starting at

ffiffiffi
s

p ¼ 1:42 GeV (dashed lines) used in the
solutions of Ref. [44]. It ¼ 0 (Red), It ¼ 1 (Blue) and It ¼ 2
(Black).

18Our amplitude and that used (Fð
; tÞ) in Ref. [44] are related
by Tð
; tÞ ¼ �2�2Fð
; tÞ.

19For our purposes we need the following Regge tails [44],
valid for s > sh ¼ ð1:42 GeVÞ2:
ImTIt¼0ð
; 0Þ ¼ �2�2½bPð
=
0Þ þ bP0 ð
=
0ÞaP0 �;
ImTIt¼1ð
; 0Þ ¼ �2�2b1ð
=
0Þa1 ;
ImTIt¼2ð
; 0Þ ¼ �2�2b2ð
=
0Þa2 :

(A8)

The numerical values of the parameters are given in Sec. 8 of
Appendix A of Ref. [44].
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TItð
; 0ÞjRegge �
2
2

�

Z 1


h

d
0


0

� ½�2�2
P

�Itð0Þð
0=
0Þ�It ð0Þ�

02 � 
2 � i�

¼ 2�2
X �Itð0Þ

sinð�It ð0Þ�
2 Þ

e�i�It ð0Þ�=2
�




0

�
�It ð0Þ

� 4�
X�Itð0Þ

�Itð0Þ
�

h


0

�
�It ð0Þ þOð
0=
Þ

(A9)

and similarly for It ¼ 1,

TIt¼1ð
; 0Þ



jRegge

� 2
2

�

Z 1


h

d
0


02
½�2�2

P
�It¼1ð0Þð
0=
0Þ�It¼1ð0Þ�

02 � 
2 � i�

¼
�
2�2

X�It¼1ð0Þ
sinð�̂�2 Þ

e�i�̂�=2

�




0

�
�̂

� 4�
X�It¼1ð0Þ

�̂

�

h


0

�
�̂
�
1


0

þOð1=
Þ; (A10)

with �̂ ¼ �It¼1ð0Þ � 1. Note that the last term in both

Eqs. (A9) and (A10) is a constant subleading contribution.
We will denote this constant term as�RIt . Requiring

TItð
; 0Þ ! 2�2
X �Itð0Þ

sinð�It ð0Þ�
2 Þ

e�i�It ð0Þ�=2
�




0

�
�It ð0Þ

;

It ¼ 0; 2; (A11)

TIt¼1ð
; 0Þ



! 2�2


0

X�It¼1ð0Þ
sinð�̂�2 Þ

e�i�̂�=2

�




0

�
�̂
; (A12)

in the 
 ! þ1 limit, we get the finite energy sum rules

TIt¼0ð0Þ¼� 2

�

Z 
h

2m2
�

d


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m4

�


2

s
�It¼0ð
ÞþRIt¼0;

T0
It¼1ð0Þ¼� 2

�

Z 
h

2m2
�

d





ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m4

�


2

s
�It¼1ð
ÞþR0

It¼1;

TIt¼2ð0Þ¼� 2

�

Z 
h

2m2
�

d


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m4

�


2

s
�It¼2ð
ÞþRIt¼2;

(A13)

where

RIt¼0 ¼ 4�bP

�

h


0

�
þ 4�

bP0

aP0

�

h


0

�
aP0

;

R0
It¼1 ¼

4�b1
a1 � 1

1


h

�

h


0

�
a1
;

RIt¼2 ¼ 4�
b2
a2

�

h


0

�
a2
:

(A14)

For
ffiffiffiffiffi
sh

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h þ 2m2

�

p ¼ 1:42 GeV, we get the val-

ues TIt¼0ð0Þ ¼ �121:8þ 64:3ðPÞ þ 28:2ðP0Þ ¼ �29:3,

T0
It¼1ð0Þ ¼ �105:2 � 19:4ð�Þ GeV�2 ¼ �124:6 GeV�2

and TIt¼2ð0Þ ¼ �12:25þ RIt¼2. Indeed, in the windowffiffiffiffiffiffi

h

p 2 ð1; 1:42Þ GeV, we observe a smooth 
h dependence

of both the integral and the RIt contributions.
20 Moreover,

the total sum itself remains fairly independent of
h, aswell.
Being more quantitative, the right-hand side of Eqs. (A13)
changes at the level of 10% and 4% for the It ¼ 0 and 1
cases, respectively, when

ffiffiffiffiffiffi

h

p
varies in the interval

(1,1.42) GeV. For the case It ¼ 1, R0
It¼1 amounts, at ener-

gies as small as 1 GeV, to around 25% of the total, and
decreases with increasing 
h, as deduced from its Regge
behavior. For the case of It ¼ 2, the integral contribution
shows amore pronounced dependence on
h, and it changes
sign at around half of the (1,1.42) GeV interval. How-
ever, this contribution in size is just at maximum around
one third of that of RIt¼2, which is almost constant, because

of the smallness of the Regge intercept, a2. Furthermore,
the sign of RIt¼2 depends on the sign of a2 and actually the

finite energy sum rule becomes ambiguous for a2 ¼ 0,
since the amplitude would show a logarithmic growth
� logð�
2=
2

hÞ instead of a Regge behavior. For a diverg-

ing/converging amplitude we have a positive/negative con-
tribution to the sum rule. These ambiguous signs appear in
the CFD and UFD solutions of Ref. [44], from where one
gets RIt¼2 ¼ �30ð30Þ and RIt¼2 ¼ 20ð40Þ, respectively,
both results compatible with zero.

3. Adler and � sum rules

If R0
It¼1 and RIt¼2 are neglected in Eqs. (A13), as

suggested by the numerical values obtained from the fits
performed in Ref. [44], and T0

It¼1ð0Þ and TIt¼2ð0Þ are

approximated by the lowest-order result in ChPT, see
Eq. (A15) below, the so-called Adler and � sum rules
(see e.g. [69] for a discussion based on current algebra
and PCAC) are obtained when in addition 
h ! 121

20We use the UFD parameterization of Ref. [44].
21The corresponding 
 ¼ 0 t-channel forward scattering am-
plitudes at one loop are given by

TIt¼0ð0Þ¼ m2
�

2f2�
þm4

�ð�72�l1�48�l2þ45�l3þ36�l4þ39��101Þ
576�2f4�

þOðp6Þ;

T0
It¼1ð0Þ¼� 1

f2�
þð�48�l4þ9��10Þm2

�

384�2f4�
þOðp6Þ;

TIt¼2ð0Þ¼�m2
�

f2�
þð�48�l2þ18�l3�72�l4þ21�þ10Þm4

�

576�2f4�

þOðp6Þ: (A15)
The Oðp4Þ corrections are at the 10–20% level of the lowest-
order ones in the Adler and � sum rules.
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f2�
¼ 2

�

Z 1

2m2
�

d





ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m4

�


2

s �
1

3
�0ð
Þþ1

2
�1ð
Þ�5

6
�2ð
Þ

�
;

(A16)

m2
�

f2�
¼ 2

�

Z 1

2m2
�

d


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m4

�


2

s �
1

3
�0ð
Þ�1

2
�1ð
Þþ1

6
�2ð
Þ

�
;

(A17)

Using the GKPRY parameterizations [44], one finds that the
contribution of the region 
 > 1:42 GeV, for which Regge

behavior is assumed, is quite small. This is because�Itð
Þ !
4�2�Itð0Þ
�It ð0Þ�1. In addition, we would like to point out

(i) It ¼ 1: Following the discussion of the previous sec-
tion, neglecting the contribution to the sum rule aris-
ing from the region

ffiffiffi



p 2 ð1; 1:4Þ GeVmight induce
variations of order 20%, which we expect to be of the
same order as those stemming from Oðp4Þ ChPT
terms neglected in the left-hand side of the sum rule.
TheAdler sum rule is satisfied to 5% (see also [73]) in
the partial-wave plus Regge representation.

(ii) It ¼ 2: This sum rule converges if �It¼2ð0Þ< 0 and

is the � sum rule derived in [69] on the basis of
PCAC. The � sum rule is already approximately
satisfied for an upper limit of the integration aroundffiffiffi
s

p
< 1:26 GeV. The contribution above this upper

limit tends to cancel and shows an oscillating be-
havior as a function of the upper limit of the inte-
gration. This is closely linked with having a value of
b2 compatible with zero and a not well-defined sign
for the ratio b2=a2 appearing in RIt¼2. For an upper

limit of
ffiffiffi
s

p
< 1:26, the truncated Adler sum rule

also provides a rather reasonable value of 89 MeV
for f�. This result is certainly more reasonable if
one bears in mind that the left-hand side of the sum
rule has been computed at lowest order in ChPT
only. This observation suggests a kind of supercon-
vergent dispersion relation which will be important
to set up our model below.

Given the above discussion, one finds reasons to saturate
the sum rules with the lowest-lying resonances below
1 GeV. In addition, we already mentioned that the It ¼ 0
sum rule in Eq. (A13) is saturated also, with great accuracy,
at 1 GeV (integral and R contributions tend to cancel above
1 GeV). All this, gives support to the scenarios assumed in
this work, where we have taken into account only the
lowest-lying resonance degrees of freedom. Yet, we will
make use of theAdler and� sum rules, saturated at energies
of about 1 GeV, to find out short-distance constraints that
will make more predictive the R�T approach adopted here.

APPENDIX B: SU(2) AND SU(3)
CHPT �� SCATTERING

For the sake of completeness, we recall here the relation
between the LECs �li and the most common SU(3) parame-
ters Lr

i ð�Þ [12,13]:

�l i ¼ 32�2

i

lri ð�Þ � logðm2
�=�

2Þ; 1 ¼ 1

3
;

2 ¼ 2

3
; 3 ¼ � 1

2
; 4 ¼ 2

(B1)

lr1 ¼ 4Lr
1 þ 2L3 � 
K

24
; lr2 ¼ 4Lr

2 �

K

12
;

lr3 ¼ �8Lr
4 � 4Lr

5 þ 16Lr
6 þ 8Lr

8 �

�

18
;

lr4 ¼ 8Lr
4 þ 4Lr

5 �

K

2
;

(B2)

with 32�2
K;� ¼ 1þ logðm̂2
K;�=�

2Þ, m̂� ¼ 4m̂K=3 and

m̂K � 468 GeV the kaon mass in the limit mu ¼ md ¼ 0.
The renormalized coupling constants lri ð�Þ and Lr

i ð�Þ
depend logarithmically on the dimensional regularization
scale �:

Lr
i ð�2Þ ¼ Lr

i ð�1Þ þ �i

16�2
log

�
�1

�2

�
; (B3)

where �1 ¼ 3=32, �2 ¼ 3=16, �3 ¼ 0, �4 ¼ 1=8, �5 ¼
3=8, �6 ¼ 11=144, �8 ¼ 5=48.
On the other hand, ASRA

4 in Eq. (23) can be rewritten as

ASRA
4 ðs; t; uÞ ¼ m2

� � s

f2�
� 4

f4�

�
ð2LSRA

1 þ LSRA
3 Þðs� 2m2

�Þ2

þ LSRA
2 ½ðt� 2m2

�Þ2 þ ðu� 2m2
�Þ2�

�

� 8m2
�

f4�

�
ð2LSRA

4 þ LSRA
5 Þs

þ ð4LSRA
6 þ 2LSRA

8 � 4LSRA
4 � 2LSRA

5 Þm2
�

�
:

(B4)

From Eqs. (23) and (17), one trivially finds

2LSRA
1 ¼ LSRA

2 ¼ f2�
8m2

V

; LSRA
3 ¼ � 3f2�

8m2
V

þ f2�
8m2

S

;

LSRA
4 ¼ 0; LSRA

5 ¼ f2�
4m2

S

; LSRA
6 ¼ 0;

LSRA
8 ¼ 3f2�

32m2
S

; (B5)

in full agreement with Ref. [18].22

22If the relation mS ¼ mV is further assumed, one gets purely
geometrical ratios for the nonvanishing LECs:

2LSRA
1 ¼ LSRA

2 ¼ � 1

2
LSRA
3 ¼ 1

2
LSRA
5 ¼ 4

3
LSRA
8 ¼ f2�

8m2
V

:

In chiral quark models with meson dominance built in, one also
has mS ¼ mV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24=NC

p
�f� 781 GeV, for f ¼ 88 GeV [49],

so that the above relations hold with L2 ¼ NC=192�
2 ¼

1:5� 10�3.
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