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We investigate the method for constructing the invariant mass using the MT2-assisted on-shell (MAOS)

approximation to the invisible particle momenta in the cascade decays of a new particle resonance

produced at hadron colliders. We note that the MAOS reconstruction can be defined in several different

ways, while keeping the efficiency of approximation at a similar level, and one of them provides a unique

solution for each event. It is shown that the invariant mass distribution constructed with the MAOS

momenta exhibits a peak at the heavy resonance mass, regardless of the chosen MAOS scheme and the

detailed mass spectrum of the particles in the cascade. We stress that the MAOS invariant mass can

be used as a clean signal of new particle resonance produced at the Large Hadron Collider, as well as

a model-independent method to measure the masses of new particles involved in the event.
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I. INTRODUCTION

The naturalness principle predicts that there is new
physics beyond the standard model (SM) at TeV scale,
which is the scale of the Large Hadron Collider (LHC)
experiment running now at CERN. It has also been claimed
that one of the most important ingredients for the new
physics model is the existence of a viable dark matter
candidate, which is usually a weakly interacting massive
particle (WIMP). In large classes of the new physics sce-
narios, the WIMP is often stabilized by a discrete parity,
which consequently yields a generic collider signature with
the missing particles always in pairs. Well-known ex-
amples such as supersymmetric (SUSY), little Higgs, and
extra-dimensional models include a WIMP, which is the
lightest new particle stabilized by a Z2 parity [1–3]. The
typical collider signature of the new physics model with
conserved Z2 parity is the production of a new particle pair,
decaying to some visible SM particles (multiple leptons
and/or jets) plus invisible WIMPs in the final state.

To uncover the underlying physics, one needs the infor-
mation of the particle properties such as mass and spin,
which can be revealed from the reconstruction of the signal
events. However, in hadron colliders, it is generically
impossible because the center-of-mass frame of the par-
tonic collision is unknown and there are two invisible
WIMPs in each event. Still, it has been proposed that the
new particle masses might be determined by various kine-
matic variables such as the end points of the invariant mass
distributions, transverse variables, and the techniques using
the on-shell mass constraints in various new physics pro-
cesses with the pair-produced new particles [4].

In this paper, we consider a new physics event,1

ppð �pÞ ! XþU ! Y1Y2 þU

! V1ðpÞ�1ðkÞV2ðqÞ�2ðlÞ þUðuÞ; (1)

where X, Yi, and �i (i ¼ 1; 2) are new particles with a
priori unknown mass, andU stands for visible particles not
associated with the decay of X such as jets from the initial
state radiation. We assume that X has even Z2 parity, while
Yi and �i have odd Z2 parity. Consequently, X can be
resonantly produced and decay into a parity-odd particle
pair. Vi’s denote visible particles and �i’s invisible ones,
which yield the missing transverse momentum of the event,

6p T ¼ �pT � qT � uT ¼ kT þ lT: (2)

A similar event topology has recently received a lot of
attention. It describes the dilepton channel of the top-pair
produced in the s-channel mediation of the color sextet
bosons [6], or axigluon [7] at hadron colliders. In this case,
the eight unknown components of two neutrino four-
momenta can be solved from the six on-shell mass con-
ditions on the top quarks, W bosons, and neutrinos in
addition to the two constraints from the missing transverse
momentum measurements, up to four possible solutions,
as well as two combinations due to the charge ambiguity
on b quarks [8]. In fact, the event topology (1) is one of
the typical signatures of the new physics model with the
WIMP stabilized by Z2-parity, for instance, the heavy
neutral SUSY Higgs boson (H=A) decaying to a pair of
neutralinos (~�0

i ) [9,10] or the n ¼ 2 Kaluza-Klein (KK) Z

boson (Zð2Þ) decaying to a pair of n ¼ 1 KK leptons (lð1Þ)
[11], producing the final state of several visible SM parti-
cles þ WIMPs. The masses of the new particles involved
in the decay chain are generically unknown, and the num-
ber of decays in the chain might be too short to constrain
the unknown masses and invisible momenta in many new
physics scenarios unlike the aforementioned top-pair
process.

1The event topology is the same as the ‘‘antler’’ diagram,
which was studied in [5]. However, here we assume that mX is
unknown a priori.
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It has been claimed in the literature that it might be
possible to measure the particle masses by constructing the
transverse mass variables even if there are several invisible
particles in the final state [12–14]. However, we note that
the end-point position of the transverse mass distribution
depends on the existence of kinematic configurations,
which might be forbidden in some models. On the other
hand, it has been recently found that the MT2-assisted on-
shell (MAOS) method [15], which was introduced to ap-
proximate the invisible particle momenta in the physics
processes with conserved Z2 parity, can be used to measure
the SM Higgs boson mass in the dileptonic WW process
[16]. We show that the MAOS method can be adopted to
construct the invariant mass in the case of the event topol-
ogy (1), thus enabling one to measure the resonance mass
in a model-independent way.

This paper is organized as follows. In Sec. II, we discuss
the features of the transverse mass variable for the full
system, focusing on the behavior of its end point. Then,
in Sec. III, we describe the definition and the types of
solutions for the MT2 variable, which is an integral part
of constructing the MAOS momenta, as well as known to
be useful for measuring the masses of the intermediate on-
shell states and the WIMP. For each type of the MT2

solution, the MAOS momenta have distinctive features,
which lead to proposing various schemes of the MAOS
reconstruction, as discussed in Sec. IV, where the construc-
tion of the invariant mass using the MAOSmomenta is also
described. The comparison between the MAOS schemes
and the features of the MAOS invariant mass are shown
by performing a Monte Carlo (MC) study in Sec. V. We
summarize our conclusions in Sec. VI.

II. TRANSVERSE MASS OF
THE FULL SYSTEM: MT

In this section, we discuss some features of the transverse
mass for the event topology (1). The impossibility of con-
structing the invariant mass of the decay system due to the
existence of invisible particles in the final state leads to the
proposal of a transverse mass variable, which does not use
the unknown longitudinal component of the momenta [17].
The transverse mass for the event type (1) can be written as

M2
TðY1Y2Þ ¼ m2

V1V2
þm2

�1�2
þ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpV1V2

T j2 þm2
V1V2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp�1�2

T j2 þm2
�1�2

q
� pV1V2

T � p�1�2

T Þ; (3)

where m� and p�
T denote the invariant mass and the trans-

verse momentum, respectively, of � ¼ V1V2, �1�2. It is
then obvious thatMTðY1Y2Þ is bounded from above bymX,
thus making the determination of mX possible ifMTðY1Y2Þ
is correctly constructed event by event. It is, however,
generally impossible to determine m�1�2

event by event,

even though the lower bound might be deduced from the
knowledge of the event topology and m�i

values in some

cases, e.g., the SM Higgs boson which decays into two
leptonically decaying W bosons (h ! WW ! l�l0�0). If
the lower bound of m�1�2

is determined, it must be always

true that

MTðY1Y2Þjm�1�2
¼mmin

�1�2
�MTðY1Y2Þjm�1�2

¼mtrue
�1�2

�mX; (4)

since MTðY1Y2Þ is a monotonically increasing function
of m�1�2

. This fact unties us from ignorance of the event-

by-event values of m�1�2
, and consequently allows us to

construct the transverse mass, which can be used to extract
the information of mX [12,13]. For the sake of discussion
from now on, we focus on the symmetric decay chains,
i.e. mY1

¼ mY2
¼ mY and m�1

¼ m�2
¼ m�. However, we

notice that the arguments below can be generalized to the
case of asymmetric decay chains.
If m� is unknown and there is no viable theoretical

assumption on the lower bound of m��, the best choice

will be

M2
Tð0Þ � M2

TðY1Y2Þjm�1�2
¼0

¼ m2
V1V2

þ 2j 6pTj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpT þ qTj2 þm2

V1V2

q
� 2ðpT þ qTÞ � 6pT; (5)

then Mmax
T ð0Þ ¼ mX if and only if mmin

�1�2
¼ 0. The maxi-

mum of MTð0Þ occurs when �i’s are moving parallel to
each other in the X rest frame, and the invariant mass of the
visible particles is minimized. Consequently, the analytic
expression of the Mmax

T ð0Þ is obtained as [13]

Mmax
T ð0Þ ¼ mX

2m2
Y

ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4m2

Yðmmin
V Þ2

q
Þ; (6)

where ��m2
Y�m2

�þðmmin
V Þ2 and mmin

V � minfmV1
; mV2

g
for all the events. If mmin

V ¼ 0,

Mmax
T ð0Þ ¼ mX

�
1�m2

�

m2
Y

�
; (7)

which shows that the MTð0Þ distribution can never reach
mX if �i is massive. The MTð0Þ variable was found to be
useful for measuring the SM Higgs boson mass in dilep-
tonic WW decay mode [12].
On the other hand, in many new physics scenarios, m�

is likely to be determined by the other kinematic vari-
ables such as the MT2 kink, which will be described in
Sec. III, or possibly the combinations of the invariant mass
end points from various other decay processes. In such
cases, the more plausible choice of the mmin

�1�2
value will

be 2m�ð¼ m�1
þm�2

Þ as
M2

Tð2m�Þ ¼ m2
V1V2

þ 4m2
�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpT þ qTj2 þm2

V1V2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j 6pTj2 þ 4m2

�

q
� 2ðpT þ qTÞ � 6pT: (8)
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But still, the knowledge of m� does not guarantee the

saturation of the bound on mX. If there is no kinematic
configuration in which m�1�2

¼ 2m� is achieved, the

MTð2m�Þ distribution will not reach mX, because

MTðY1Y2Þjm��¼2m�
<MTðY1Y2Þjm��¼mmin

��

� MTðY1Y2Þjm��¼mtrue
��

� mX: (9)

The condition for the existence of the kinematic configu-
ration saturating the bound of MTð2m�Þ up to mX depends

on the mass pattern of the involved particles in the decay
channel, and has been derived in [13]

mX � m2
Y þm2

� � ðmmin
V Þ2

m�

: (10)

One can see that it may be impossible to satisfy the above
condition if X is too heavy, compared with the mass scale
of its decay products. In case the condition (10) is not
satisfied, mX is above the upper bound ofMTð2m�Þ, which
depends on the possible range of mV1V2

,

Mmax
T ð2m�Þ¼2m�þmmax

V1V2

¼2m�þ mX

2m2
Y

�
�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

Y

m2
X

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�4m2

Yðmmin
V Þ2

q �
: (11)

In order to check the properties of MTð2m�Þ discussed
above, we have generated MC event samples of heavy
neutral Higgs bosons (H=A) for two SUSY benchmark

points. In this model, the heavy Higgs boson decays to a
pair of next-to-lightest neutralinos (~�0

2), producing the final

state of four charged leptons and a lightest neutralino (~�0
1)

pair via a three-body process, ~�0
2 ! lþl� ~�0

1. The detailed
description of the chosen model is given in Sec. V. In
Fig. 1, we exhibit theMTð2m�Þ distribution for benchmark

points with relatively light (left panel) and heavy (right
panel)H=A. One finds that the condition (10) is satisfied in
the case of a relatively light H=A scenario, such that the
Mmax

T ð2m�Þ corresponds to mH=A. However, it is not sat-

isfied in the heavyH=A case, thusMmax
T ð2m�Þ is lower than

mH=A. This observation shows that theMT method depends

highly on the underlying model, i.e. the mass splitting of
the on-shell states involved in the event. Hence, one needs
accurate knowledge of mY and possibly the range of mV as
well as m� to determine mX.

III. ALTERNATIVE TRANSVERSE MASS: MT2

In a situation where there are two invisible particles
in the event, one may exploit the event variableMT2, which
was proposed to measure the particle masses in an event
topology such as Y1Y2 ! V1ðpÞ�1ðkÞV2ðqÞ�2ðlÞ, which is,
for instance, the typical collider event of pair-produced
SUSY particles [18]. Not only is the MT2 useful for mea-
suring the new particle masses even in the event topo-
logy (1), but it is also an integral part of the definition of
the MAOS momenta, which will be described in the next
section. MT2 can also be defined in the asymmetric decay
event withmY1

� mY2
andm�1

� m�2
[19]. However, here

we consider only the event type with the symmetric decay
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FIG. 1. Comparison plot of the MTð2m�Þ distributions of the SUSY process H=A ! ~�0
2 ~�

0
2 ! lþl� ~�0

1l
þl� ~�0

1. The mass parameters
are ðm~�0

2
; m~�0

1
Þ ’ ð110; 61Þ GeV for both plots, and mH=A ¼ 252ð433Þ GeV for the left (right) panel. See Sec. V for a detailed

description of the model and its simulation.
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chains as in the previous section. The MT2 variable is
defined as

MT2 � min
~kTþ~lT¼6pT

½maxfMð1Þ
T ðpT; ~kT; ~m�Þ;Mð2Þ

T ðqT;~lT; ~m�Þg�;
(12)

whereMð1Þ
T andMð2Þ

T are the transverse masses of the Y1 and
Y2 systems, respectively,

ðMð1Þ
T Þ2 ¼ m2

V1
þ ~m2

� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpTj2 þm2

V1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kTj2 þ ~m2

�

q
� 2pT � ~kT;

ðMð2Þ
T Þ2 ¼ m2

V2
þ ~m2

� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqTj2 þm2

V2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~lTj2 þ ~m2

�

q
� 2qT �~lT: (13)

Here, ~m�, ~kT , and ~lT are input trial values of the mass

and transverse momenta of the invisible particles. They are
hypothesized values that parametrize our ignorance of
the allocation of missing transverse momenta into the
invisible particle momenta in each event, in addition to
the true value of m�. The momentum constraint in the

minimization automatically guarantees that the sum of
the hypothesized momenta is equal to that of the true
momenta, which can be determined event by event.
When the input trial mass ~m� equal the true mass m�,

Mmax
T2 ð ~m� ¼ m�Þ ¼ mY; (14)

provided that the parent particles Yi are on shell.
The MT2 solution for the hypothesized momenta can be

classified into two configurations, unbalanced and bal-

anced. The value of MT2 is given by Mð1Þ
T ¼ Mð2Þ

T in the
balanced configuration, while the unbalanced MT2 solu-
tion is achieved when the condition for the balanced
configuration, which will be shown shortly, is not valid.
The type of the MT2 solution can be deduced from the

value of MðiÞ
T at the hypothesized momenta which give the

global minimum of MðjÞ
T (i � j). The global minimum of

Mð1Þ
T (Mð2Þ

T ) corresponds to the stationary point for given
values of mV1

(mV2
) and ~m�,

ðMð1Þ
T Þmin¼mV1

þ ~m�; ðMð2Þ
T Þmin¼mV2

þ ~m�; (15)

when ~kT ¼ ð ~m�=mV1
ÞpT and ~lT ¼ ð ~m�=mV2

ÞqT , respec-

tively. The MT2 value of the event will be obtained from
the balanced configuration when

MðiÞ
T � ðMðjÞ

T Þmin ði � jÞ (16)

is satisfied at the stationary points. [See the left panel of
Fig. 2 for illustration.] For events in which the condition
(16) is not satisfied, the MT2 is given by the larger value

between global minima of MðiÞ
T at the stationary points,

MUB
T2 ¼ maxfðMð1Þ

T Þmin; ðMð2Þ
T Þming

¼
(
mV1

þ ~m� if Mð1Þ
T >Mð2Þ

T ;

mV2
þ ~m� if Mð1Þ

T <Mð2Þ
T :

(17)

On the other hand, the solution for the balanced configu-
ration needs some nontrivial consideration. The analytic
expression of MT2 was first derived in [20], then further
simplified in [21], by considering the event types with
vanishing upstream transverse momentum (UTM), i.e.
uT ¼ 0 in (2).2 It is given by

FIG. 2. A schematic picture of the balanced (left panel) and the unbalanced (right panel) MT2 solutions.

2Recently, the analytic expression of MT2 has been derived for
some special kinematic configurations. See Ref. [22].
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ðMB
T2Þ2 ¼ ðMð1Þ

T Þ2 ¼ ðMð2Þ
T Þ2

¼ ~m2
� þ AT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 4 ~m2

�

2AT �m2
V1

�m2
V2

�
ðA2

T �m2
V1
m2

V2
Þ

vuut ;

(18)

where

AT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpTj2 þm2

V1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqTj2 þm2

V2

q
þ pT � qT; (19)

which is invariant under the back-to-back transverse boost.
This quantity is closely related to the MCT in [23], which
has been further generalized to theMCT2 in the case of two
invisible particles in the event [24].

The investigation of theMT2 from the above expressions
showed that the end-point position of theMT2 distribution,
Mmax

T2 , as a function of the ~m� has a kink structure at

~m� ¼ m� if the invariant mass of the visible particles is

not fixed, but has a certain range in each decay chain [21].
It was also noticed that the kink structure ofMmax

T2 ð ~m�Þwill
appear when there is a sizable amount of UTM in the
events [25]. The MT2-kink method makes it possible to
measurem� andmY simultaneously even if the decay chain

is not long enough to constrain all the unknowns in the
event. This observation suggests that theMT2-kink method
might also be very useful to measure mY and m� in the

event topology (1), specifically, if Vi is a set of more than
two visible particles and/or the full system of Y1Y2 is
boosted by the UTM.

If ~m� ¼ mV1
¼ mV2

¼ 0, Eq. (18) becomes even sim-

pler as

ðMT2Þ2j ~m�¼0 ¼ 2AT ¼ 2ðjpTjjqTj þ pT � qTÞ: (20)

Interestingly, the authors of [16] have recently claimed that
the MT2 method can be applied to measure the mass of the
SM Higgs boson in dileptonicWW mode, which is also the
event type (1), and used as an event selection cut to
efficiently suppress the background processes.

IV. CONSTRUCTION OF THE INVARIANT
MASS USING MAOS MOMENTA

After discussing the transverse mass variables, we deal
with the construction method of the invariant mass. In
Ref. [15], the authors introduced a systematic approxima-
tion to the invisible momenta by combining the MT2 solu-
tion with the on-shell relations for generic events like
Y1Y2 ! V1ðpÞ�1ðkÞV2ðqÞ�2ðlÞ. The MAOS momenta was
originally proposed to determine the spin of new particles
produced at hadron colliders [15,26,27], but it was later
realized that it might also be very useful for the mass
measurement [16,28].

The definition of MAOS momenta is composed of
two parts, the transverse and the longitudinal components.

The transverse components of the invisible momenta are
set by the trial momenta which give the value of MT2,

kmaos
T ¼ ~kT; lmaos

T ¼ ~lT; (21)

where ~kT and ~lT are determined once we minimize

maxfMð1Þ
T ;Mð2Þ

T g in (12), among all possible trial ~kT and
~lT satisfying ~kT þ~lT ¼ 6pT . The longitudinal and energy
components are then calculated by the on-shell relations
for both �i and Yi,

ðkmaosÞ2 ¼ ~m2
�1
; ðlmaosÞ2 ¼ ~m2

�2
; (22)

ðpþ kmaosÞ2 ¼ ~m2
Y1
; ðqþ lmaosÞ2 ¼ ~m2

Y2
; (23)

where ~m�i
and ~mYi

(i ¼ 1; 2) are input trial masses of the

invisible and the parent particles, respectively. The longi-
tudinal components of the MAOS momenta are then
given by

kmaos
L ¼ 1

E2
TðpÞ

½ApL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
LþE2

TðpÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2�E2
TðpÞE2

TðkÞ
q

�;

lmaos
L ¼ 1

E2
TðqÞ

½BqL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2LþE2

TðqÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2�E2
TðqÞE2

TðlÞ
q

�;
(24)

where

A ¼ 1

2
ð ~m2

Y1
� ~m2

�1
�m2

V1
Þ þ pT � kmaos

T ;

B ¼ 1

2
ð ~m2

Y2
� ~m2

�2
�m2

V2
Þ þ qT � lmaos

T ;

ETðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpTj2 þm2

V1

q
;

ETðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqTj2 þm2

V2

q
;

ETðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkmaos

T j2 þ ~m2
�1

q
;

ETðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlmaos
T j2 þ ~m2

�2

q
:

(25)

From the above expressions, it is obvious that both kmaos
L

and lmaos
L are real if and only if

jAj � ETðpÞETðkÞ; jBj � ETðqÞETðlÞ;
or equivalently

~mY1
� Mð1Þ

T ; ~mY2
� Mð2Þ

T ; (26)

where Mð1Þ
T and Mð2Þ

T are the transverse masses defined in

(13) for ~kT ¼ kmaos
T ,~lT ¼ lmaos

T , and the trial masses ~m�i
. If

the decay chain is symmetric, i.e. ~m�1
¼ ~m�2

¼ ~m� and

~mY1
¼ ~mY2

¼ ~mY , the above condition reduces to

~mY � maxfMð1Þ
T ;Mð2Þ

T g; (27)

so that the MAOS momenta are always real if the value of
Mmax

T2 ð ~m�Þ is chosen as the trial mass of the parent particle
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for a given ~m�. Note that the true mass values mY

and m� automatically satisfy the condition (27) because

Mmax
T2 ð ~m� ¼ m�Þ ¼ mY . For the end-point events of the

balanced MT2, one has Mð1Þ
T ¼ Mð2Þ

T ¼ ~mY , and thus kmaos

and lmaos correspond to the unique solution of the con-
straints (2), (22), and (23). In this case, since the true
invisible momenta also satisfy the same conditions, they
must be equal to the unique solution when the true mass
values m� and mY are inserted in Eqs. (22) and (23),

kmaos ¼ ktrue; lmaos ¼ ltrue: (28)

On the other hand, this is not true for the end-point events

of the unbalancedMT2 becauseM
ð1Þ
T � Mð2Þ

T , which means
that only one side of the MAOS momenta corresponds to
the true invisible momenta. This argument indicates that
the accuracy of the MAOS momenta can be controlled by
imposing a suitable MT2 cut, which selects the subset of
events near the MT2 end point. Even if m� or mY were

poorly measured, it was shown that the MAOS momenta
would provide a good approximation to the true invisible
momenta by setting ~m� ¼ 0 and ~mY ¼ Mmax

T2 ð ~m� ¼ 0Þ
[15]. One inevitable problem in this definition is that there
is generically a four-fold ambiguity on the longitudinal and
energy components as can be seen in Eqs. (24). In the
absence of any extra constraints or viable assumptions on
the kinematic structure of the event, it is clear that there
should be no preference of one solution to the others. We
label this scheme of obtaining the solution of the invisible
momenta as the first kind of MAOS or MAOS1 to distin-
guish it from the other schemes in what follows.

In addition to the ambiguity of the solutions, a serious
problem will arise when one or both parent particles Yi are
off shell. The on-shell conditions (23) can be adopted only
if the parent particles are on shell, such that the mass values
are fixed for all the events. To make the MAOS method
applicable to the situation where the on-shell conditions
are not valid, one may consider modifying the on-shell
relations. One possible scheme is to substitute the event
variable MT2, instead of the fixed value ~mY , by

ðpþ kmaosÞ2 ¼ M2
T2; ðqþ lmaosÞ2 ¼ M2

T2: (29)

Then, for the events of the balanced MT2, one has M
ð1Þ
T ¼

Mð2Þ
T ¼ MT2, and thus kmaos

L and lmaos
L become unique

(MAOS2). This is the scheme which was used to measure
the SM Higgs boson mass in [16], for both mh � 2mW and
mh < 2mW cases.3 On the other hand, for the events of the

unbalanced MT2, i.e. M
ð1Þ
T � Mð2Þ

T , a two-fold ambiguity
still remains on one side of the longitudinal components.

The only possible way to obtain the unique solution of
the longitudinal and energy components for all the events
is to take

ðpþ kmaosÞ2 ¼ ðMð1Þ
T Þ2; ðqþ lmaosÞ2 ¼ ðMð2Þ

T Þ2: (30)

Adopting the above new scheme, the longitudinal compo-
nents are given by

kmaos
L ¼ ETðkÞ

ETðpÞpL; lmoas
L ¼ ETðlÞ

ETðqÞqL; (31)

which are uniquely defined in the events for both balanced
and unbalanced MT2 (MAOS3). Note that if the true mass
m� is chosen as the input, the MAOS momenta will be

equal to the true invisible momenta for the end-point events

of the balanced MT2 because M
ð1Þ
T ¼ Mð2Þ

T ¼ Mmax
T2 ðm�Þ ¼

mY corresponds to the true parent particle mass. Although
it is not true for the events of the unbalanced MT2,

one side of the MAOS momenta (kmaos if Mð1Þ
T ¼ Mmax

T2 ¼
mY >Mð2Þ

T ) still gives the true momenta if the end-point
events of MT2 were selected. Accordingly, one finds that
the accuracy of the MAOS momenta can be still controlled
by theMT2 cut, which might also be useful for suppressing
the SM backgrounds in the search for a new physics signal
at the LHC [29].
Applying the MAOSmethod to the event topology (1), it

is possible to construct the invariant mass of the Y1Y2

system,

ðpþ qþ kmaos þ lmaosÞ2 � ðmmaos
X Þ2: (32)

Then, the successful reconstruction of the invisible mo-
menta by the MAOS method ensures that the MAOS
invariant mass (mmaos

X ) distribution has a peak at the true
mass mX, which will also be confirmed by the numerical
simulation in the next section. The distinctive feature of the
MAOS method is that it is less model dependent than
transverse mass variables since the latter highly depends
on the mass gaps in the model. Even when the resonance
particle X is too heavy, the peak position of the MAOS
invariant mass distribution corresponds tomX, which might
be beyond the transverse mass distribution. The requisites
for constructing the MAOS invariant mass are the assump-
tion of the event topology (1) and the knowledge of m�,

which are also essential for constructing MTð2m�Þ in

Sec. II. We also note that the MAOS invariant mass is
distinguished by the peak structure, and it is generally less
vulnerable to the background and momentum smearing
effects. The clear peak structure of the MAOS invariant
mass can be viewed as the smoking-gun signal of the heavy
resonance produced at hadron colliders.

V. MONTE CARLO STUDY: HEAVY SUSY
HIGGS BOSONS

In this section, we illustrate the discussion of the pre-
vious section by performing a MC study for the decay
signal of heavy SUSY Higgs bosons H=A into a pair
of next-to-lightest neutralino, ~�0

2, followed by the decay

3Note that there is only balanced configuration for the SM
Higgs decay events, h ! WW ! l�l0�0.
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~�0
2 ! lþl� ~�0

1 (l ¼ e, �). This process results in a four-
lepton plus missing transverse energy final state,

H=A ! ~�0
2 ~�

0
2 ! lþl�lþl� þ 6ET: (33)

As a specific example, we examined two benchmark points
in the minimal supergravity scenario chosen in [10]. The
superparticle mass spectrum has been calculated with
SOFTSUSY [30], and is given by

(i) point A:mH=A ¼ 252 GeV,m~�0
2
¼ 110 GeV,m~�0

1
¼

61 GeV; and
(ii) point B: mH=A ¼ 433 GeV, m~�0

2
¼ 112 GeV,

m~�0
1
¼ 62 GeV.

We used PYTHIA 6.4 to generate the MC events in the LHC
beam condition with the proton-proton center-of-mass en-
ergy of 14 TeV [31]. For the simple illustrative study, we
have not considered the detector effects such as the mo-
mentum smearing effect and the identification efficiency of
the leptons. The integrated luminosity is assumed to be
large enough to measure the particle spectra. The main
background process from the SM will be ZZ	=�	 with four
leptons in the final state. This can be eliminated by requir-
ing large missing energy and imposing a Z-veto cut, which
rejects events of a dilepton pair with the invariant mass
near mZ. The dominant source of the background in the
SUSY process is the production of leptons from the decays
of neutralinos and charginos, produced by squarks and
gluinos. In this case, however, the leptons are produced

in association with jets, so that a jet-veto cut should be
imposed to suppress this type of background. The direct
production of a neutralino pair via the Drell-Yan processes
could be challenging because it has the same final state.
See Ref. [10] and Chap. 11 of [32] for a detailed study of
the signature including the backgrounds at detector level.
Here, we do not consider the background effect and the
event selection cuts except the MT2 cut.
In the above benchmark points, ~�0

2 decays to ~�0
1 and two

charged leptons via three-body process with an off-shell
intermediate Z boson or slepton (m~lR

¼ 141 and 406 GeV

for points A and B, respectively), such that 0 � mlþl� �
m~�0

2
�m~�0

1
. The main difference between the benchmark

points is the mass of H=A, which is relatively light in
point A and heavier in point B. One can easily find that
the condition (10) is not satisfied in point B, whereas it is
satisfied in point A. This results in the position of
Mmax

T ð2m�Þ being lower than mH=A, as can be seen in the

right panel of Fig. 1.
To see the characteristic feature of the MAOS momenta,

in Fig. 3 we show the difference between the reconstructed
and the true momenta of ~�0

1 for point A. The left panel

includes the distributions of the full event set for the
process (33) generated at the LHC condition, while the
right panel shows the distributions of the top 10% subset
events near the end point of MT2. By definition, each
MAOS scheme gives the same transverse MAOSmomenta.
For kmaos

L � ktrueL in the MAOS1 and MAOS2 schemes, we
construct their distributions using all the possible solutions
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FIG. 3 (color online). The distributions of kmaos
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L � ktrueL for the full event set (left panel), and top 10% end-point

events ofMT2 (right panel) with the input mass ~m� ¼ m~�0
1
for the model point A. For the MAOS1 scheme, the input mass for the parent

particle ~mY is set to m~�0
2
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in each event. The result shows that the MAOS1 scheme is
slightly better than the others if one considers the full event
set. However, all the schemes provide a similar perform-
ance if one employs a suitable MT2 cut. This observation
and the fact that the MAOS1 scheme cannot be adopted
when one or both parent particles are off shell suggest that
the MAOS2 or MAOS3 schemes can be used safely with-
out a big loss of efficiency and regardless of whether the
parent particles are on shell or not. The efficiency of the
MAOS momenta will also vary as the detail of the matter
content and the decay process in the model. It depends not
only on the mass spectrum, but also on the coupling
structure of the particles involved in the cascade decay.
The mass gap of the decaying particles typically affects the
size of the momentum of the visible particles, and their
particular momentum direction might be forbidden by the
helicity correlations. These consequently give rise to the
different shape of the MT2 distribution, i.e., how populous
are the events near the end point. In any case, as pointed out
in the previous section, the accuracy of the MAOS mo-
menta can be controlled by theMT2 cut. Although the study
of the detailed model dependence regarding the efficiency
of the MAOS reconstruction is beyond our scope here, we
stress that it is worthwhile to study before the application
to the experiments.

Next, we proceed to construct the invariant mass ofH=A
using the MAOS momenta following Eq. (32). In Fig. 4,
we show the MAOS invariant mass distributions for the
full event set with the input trial mass ~m� ¼ m~�0

1
while

varying the MAOS scheme. One can see that all the
schemes provide a clear peak structure around mH=A.

This result again indicates that the performance of the
MAOS momenta does not depend much on the adopted
scheme. Figure 5 shows the dependency of the MAOS
invariant mass on the input trial mass of the invisible
particle. Although all the distributions have a peak struc-
ture for an arbitrary choice of the input trial mass, the peak
is located at the true resonance mass, mH=A, only when

~m� ¼ m~�0
1
is chosen. In the right panels of Fig. 5, the top

30% near-end-point events of MT2 are used. This shows
that the peak structure of the distributions is very clear for
the subset of the events, while not changing the position of
the peak. Our simulation proves that this feature does not
depend on the MAOS scheme.
In real situations, one should consider the combina-

torial uncertainty regarding the assignment of the visible
particles to each chain. For points A and B, the assignment
is uniquely determined if the event includes two different
pairs of opposite-sign same-flavor leptons. On the other
hand, there are two possible combinations when the
event includes four leptons with the same flavor, i.e.
eþe�eþe�=�þ���þ��. One may select only the former
type of events to reconstruct the invisible momenta while
sacrificing the statistics. In a well-known model like the
SM, one may calculate the likelihood functions of kine-
matic variables based on the model expectations, then
select the combination which gives the most likely solution
[33]. The other straightforward method is to use the value
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of MT2 in the event, as done in [6,34]. For a given event,
one can construct the MT2 of all possible combinations,
then select the combination which gives the smallest value
of the MT2. It is actually the same as the MTGen defined in
[20]. This method can be adopted because the MT2 from
the correct pair will have the end point that is definitely
related to the mass spectrum of the involved particles,
whereas there is no such structure in the MT2 from the
wrong pair, which results in a broad distribution in general.
Our MC study shows that the method is useful for both

points A and B. It selects the correct combination with
68% and 97% efficiency for points A and B, respectively.
The different level of efficiency is caused by the fact that
the decay products are relatively energetic in point B be-
cause of heavier H=A, and thus it makes the MT2 distri-
bution of the wrong pair even broader. In Fig. 6, we pre-
sent the MAOS invariant mass for the true combination
(black solid), and the combination of four leptons with the
smallest value of MT2 (red dotted). If there is only one
combination, i.e. eþe��þ�� in the event, we use the
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combination in the MAOS reconstruction. The result
shows that the overall structure of the distributions remains
unchanged for both points A and B, such that the method of
finding the correct pair using MT2 is successful.

VI. CONCLUSIONS

In this paper, we have examined the possibility of mea-
suring the heavy resonance mass by constructing the in-
variant mass using the MAOS momenta. Regarding the
MAOS reconstruction, we found that various schemes can
be defined in order to obtain the MAOS momenta, in
particular, the longitudinal and the energy components.
The MAOS schemes are classified by the on-shell equa-
tions as summarized in Table I. Although the MAOS
schemes provide different solutions in general, a similar
level of efficiency can be obtained in the subset of the

events near the end point of MT2. We also note that the
MAOS1 scheme is not applicable when one or both parent
particles Yi are off shell, whereas the MAOS2 and MAOS3
schemes do not have such a limitation. Using the MAOS
reconstruction of the invisible momenta, one can construct
the invariant mass of the full system. We have shown that
the peak position of the MAOS invariant mass distribution
always corresponds to the resonance mass, at which the
end point of the transverse mass distribution may fail to
point. This feature may enable one to deduce directly the
mass scale of the heavy resonance even in the stage of early
discovery, and to measure the mass in a model-independent
way. We also expect that the MAOS invariant mass distri-
bution can be used as a smoking-gun signal of the heavy
resonance through its clear peak structure, which is gen-
erally less vulnerable to the background and momentum
smearing effects.
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TABLE I. The definition and the number of solutions of the
MAOS schemes.

Number of solutions

Definition Events of MB
T2 Events of MUB

T2

MAOS1 Eqs. (22) and (23) four-fold four-fold

MAOS2 Eqs. (22) and (29) unique two-fold

MAOS3 Eqs. (22) and (30) unique unique
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