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This paper seeks to demonstrate that many of the existing mass-measurement variables proposed for

hadron colliders (mT ,meff ,mT2, missing ~pT , hT ,
ffiffiffi

ŝ
p

min, etc.) are far more closely related to each other than

is widely appreciated, and indeed can all be viewed as a common mass-bound specialized for a variety of

purposes. A consequence of this is that one may understand better the strengths and weaknesses of each

variable, and the circumstances in which each can be used to best effect. In order to achieve this, we find it

necessary first to revisit the seemingly empty and infertile wilderness populated by the subscript ‘‘T’’

(as in ‘‘p6 T’’) in order to remind ourselves what this process of transversification actually means. We note

that, far from being simple, transversification can mean quite different things to different people. Those

readers who manage to battle through the barrage of transverse notation distinguishing ‘‘>’’ from ‘‘_’’ or
from ‘‘�,’’ and ‘‘early projection’’ from ‘‘late projection,’’ will find their efforts rewarded towards the end

of the paper with (i) a better understanding of how collider mass variables fit together, (ii) an appreciation

of how these variables could be generalized to search for things more complicated than supersymmetry,

(iii) will depart with an aversion to thoughtless or naı̈ve use of the so-called transverse methods of any of

the popular computer Lorentz-vector libraries, and (iv) will take care in their subsequent papers to be

explicit about which of the 61 identified variants of the ‘‘transverse mass’’ they are employing.

DOI: 10.1103/PhysRevD.84.095031 PACS numbers: 14.80.Ly, 11.80.Cr, 12.60.Jv

I. INTRODUCTION

Almost every analysis of data from hadron colliders uses
at some point a variable which represents a ‘‘projection’’ of
an energy or momentum into the plane transverse to the
beams. The typical reason for performing these projections
is that one does not wish the analysis to be sensitive to the
unknown momentum—along the direction of the beams—
of the quarks or gluons which collide in the ‘‘hard’’ inter-
action. Given the widespread use of such variables it is
perhaps surprising that many collider physicists are proba-
bly unaware that there exist at least two commonly-used
ways of projecting of a Lorentz energy–momentum vector
into the transverse plane, and that these two different
methods have very different properties when the mass is
nonzero (see Sec. III below). Furthermore, as explained
later in Sec. V, for each of those transverse projections,
there are at least two inequivalent ways that transverse
vectors can be ‘‘added together,’’ each of which has bene-
fits and weaknesses. A careful definition of what we mean
by a transverse projection forms the first part of this paper.

The later part of the paper (Secs. VI, VII, VIII, IX, X,
and XI) deals with mass-scale (or energy-scale) variables, a
variety of which have been proposed in the run-up to the
LHC data-taking.1 Though some of these variables have
been constructed from careful consideration of the Lorentz

symmetries of space-time, others have been created in a
somewhat ad-hoc process, after simulations demonstrate
that they provide good signal-to-background discrimina-
tion, or that they are highly correlated with the mass of
some particle or particles. The main aim of this part of the
paper is to demonstrate that many of these seemingly ad-
hoc definitions are in fact not only well-motivated from the
kinematical perspective, but also that the associated vari-
ables are more closely related than one might have thought.
Figure 1 illustrates some of the variables that are found

to be connected in ways that are not widely appreciated.

One might argue that we add little to the sum total of

human knowledge by merely showing the relationships

between existing variables which are already known to

work well in particular roles. However, careful study of

their similarities and differences not only gives insights

into why (and under what circumstances) these choices are

appropriate, it also fits them into a common framework—

from which it is straightforward to make generalizations to

more complex decay topologies.
The paper is organized as follows; first, we carefully

define our notation for Lorentz 1þ 3 vectors and their
transverse projections in Sec. II. Then in Sec. III, we
describe the two common but inequivalent transverse
projections, which we shall denote by subscripts > or _.
We also introduce the special case of a ‘‘massless’’ trans-
verse projection, denoted by �. In Sec. IV, we compare
the results from the three different types of projections:1For a recent review, see [1].
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>,_ and �. In Sec. V, we highlight the differences between
projecting into the transverse plane before or after forming
composite objects. Sec. VI describes the general event
topology targeted by new physics searches in channels
with missing momentum.

All of those ingredients are put to work in Secs. VII
through X, which contain the main results of this paper. In
Sec. VII we introduce the general class of mass-
constraining variables which can be usefully applied for
studying events containing invisible particles. The set of
possible transverse mass variables is extended in Sec. VIII,
where we consider additionally projected one-dimensional
objects. Some mathematical properties of these mass-
constraining variables are discussed in Sec. IX. Some of
the variables have previously appeared elsewhere in the
literature and we clarify the corresponding connections in
Sec. X. In Sec. XI, we illustrate the use of these variables
with two simple examples: an s-channel resonant produc-
tion process, for which we take inclusive Higgs boson
production pp ! h ! WþW� ! ‘þ‘� þ 6ET , and a
pair-production process represented by top quark produc-
tion pp ! t�t ! b �b‘þ‘� þ 6ET . Sec. XII contains a short
summary and conclusions.

Appendix A contains a short guide to the currently
existing computer libraries and codes which can be used
for computing some of the variables described in the main
body of the paper. Appendix B provides derivations of
extremal mass-bound results and other general mathemati-
cal proofs which are used elsewhere in the paper.

II. NOTATION AND CONVENTIONS

A. Labeling momenta and their components

In general, capital letters (P, Q, M, E, etc.) will refer to
genuine 1þ 3 dimensional vectors, while lowercase letters

(p, q, m, e, etc.) will refer to ‘‘less than 1þ 3’’ dimen-
sional constructs. Lower indices i; j; . . . label individual
final state particles, while lower indices a; b; . . . are used
for parent particles and the corresponding collections of
final state particles defined below in Sec. VI. We also use
upper indices �; �; . . . to label the components of 1þ 3
vectors, and upper indices�;�; . . . to label the components
of the projected 1þ 2 dimensional transverse ‘‘vectors’’ of
the types defined in Sec. III. The 1þ 3 metric g�� is

diagð1;�1;�1;�1Þ and the 1þ 2 dimensional metric
g�� is diagð1;�1;�1Þ. Thus, the 1þ 3 energy-momentum

vector for some particle is written P� ¼ ðE; ~PÞ and the
corresponding mass denoted by a capital M:

M2 ¼ P�P� ¼ E2 � ~P2: (1)

As illustrated in Fig. 2, any 3-dimensional vector ~P can
be trivially decomposed into a transverse and a longitudi-
nal component:

~P � ð ~pT; pzÞ: (2)

The transverse momentum ~pT ¼ ðpx; pyÞ of the particle is,
of course, 2-dimensional, so it has a lowercase ‘‘p.’’
Similarly, the longitudinal momentum pz is 1-dimensional,
and is also lowercase. By contrast, the energy E measured
in the detector is a component of a ‘‘1þ 3 dimensional
thing,’’ since it is given in terms of the 1þ 3 dimensional

mass M and the 3-dimensional momentum ~P:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ ~P2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ ~p2
T þ p2

z

q

: (3)

When it comes to projecting geometric 3-vectors like ~P,
the decomposition shown in Eq. (2) and Fig. 2 is unambig-
uous. One has no other choice—the very definition of the
transverse plane requires one simply to dispose of the
z-component to arrive at ~pT ¼ ðpx; pyÞ. All the transverse
projections considered in this paper (and any others that
one might invent) must share this property, or else they
cannot justify being so named.

FIG. 2 (color online). The standard geometry of a collider
experiment. The z axis (in blue online) is oriented along the
beam, while the x and y axes (in red online) define the transverse
plane. Any 3-dimensional vector ~P can be uniquely decomposed
into a longitudinal component pz and a transverse component ~pT .

FIG. 1 (color online). The stretched, webbed limbs of the
Glaucomys volans have been adapted by generations of natural
selection to provide an ideal visual illustration of the various
different, yet related, transverse mass variables (and incidentally
provide an appropriate aerodynamic shape for gliding flight).
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However, ‘‘projecting’’ the timelike component E is not,
in itself, a well-defined operation. What does it mean?
There is not a single correct answer, but rather a number
of different answers, each with different properties and
motivations. How one should (and even whether one
should) project timelike components of 1þ 3 Lorentz
vectors is dependent on what one is trying to achieve.

B. Labeling transverse projections

In the particle physics literature, one can find evidence
of at least three different types of ‘‘transverse projection’’
being applied to (1þ 3)-Lorentz vectors—although this
diversity is not obvious at first glance, as the majority of
papers do not explicitly state which projection they are
using.2 Even those papers which define the projection
explicitly, usually neither comment on why the particular
choice was made nor comment on what would happen
were another projection to have been used.

One of the main objectives of this paper is to place these
three main types of projection side-by-side so that their
differences, the things that they share, and their respective
uses can be directly compared. Before we describe them in
more detail, we make some remarks about notation.

In the literature,allof the types of projection are labeled by
the same symbol: the letter ‘‘T.’’ Since in this document we
need to clearly distinguish the three types of projection, it is
necessary for us to create our own notation for each—andwe
use the three symbols ‘‘>’’, ‘‘_,’’ and ‘‘�’’ for that purpose.

We will continue to use the letter ‘‘T’’ to indicate
‘‘generic’’ transverse quantities, i.e., quantities which are
either common to all projections (e.g., the transverse mo-
mentum (2)-vector ~pT already commented upon, the miss-
ing tranverse momentum vector ~pT , or the transverse
upstream visible momentum vector ~uT defined below in
Sec. VIA) or for quantities which for historical reasons
carry a transverse subscript, but which may not be tied to
one type of projection to the exclusion of others (e.g., hT).
Note that certain quantities, such as the so-called ‘‘trans-

verse energy’’ and ‘‘transverse mass,’’ are different in each
of the projections. For this reason, the symbol ‘‘eT’’ is
effectively meaningless, and should appear nowhere in this
document (outside this sentence) unlike e>, e_ and e�
(which are all different and all well-defined). Similarly, mT

is also ambiguous, and should be specified as beingm>,m_
orm�. In contrast, ‘‘ ~pT’’ is perfectly legitimate, and indeed
(as we have already noted) is equivalent to ~p>, ~p_, and ~p�:

~p T � ~p> � ~p_ � ~p�: (4)

III. TRANSVERSE PROJECTIONS

In this section, we describe the three different types of
projections ‘‘>,’’ ‘‘_,’’ and ‘‘�.’’While reading this and the
following sections, the reader may find it helpful to refer to
Table I for notational reference, and also to see how the
results for each projection compare to those of the others.

A. The mass-preserving ‘‘>’’ projection

The first approach we will describe, which will be
denoted by a ‘‘>’’ subscript, is the most common in the

TABLE I. A comparison of the three transversification methods introduced in Sec. III.

Transverse projection method

Quantity Mass-preserving ‘‘>’’ Speed-preserving ‘‘_’’ Massless ‘‘�’’
Original (4)-momentum P� ¼ ðE; ~pT; pzÞ
(1þ 3)-mass invariant M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � ~p2
T � p2

z

q

Transverse momentum ~pT � ðpx; pyÞ
(1þ 2)-vectors p�

> � ðe>; ~p>Þ p�_ � ðe_; ~p_Þ p�� � ðe�; ~p�Þ
Transverse momentum

under the projection
~p> � ~pT ~p_ � ~pT ~p� � ~pT

Transverse energy under

the projection
e> �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ ~p2
T

q

e_ � Ej sin�j ¼ j ~pT j=V e� � j ~pT j

Transverse mass under

the projection
m2

> ¼ e2> � ~p2
> m2_ � e2_ � ~p2_ m2� � e2� � ~p2� ¼ 0

Relationship between transverse

quantity and its (1þ 3) analogue

m> ¼ M m_ ¼ Mj sin�j m� ¼ 0

1
v>

¼ 1
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1� V2Þ p2
z

p2
T

r

v_ ¼ V v� ¼ 1

Equivalence classes

under ð1þ 3Þ�projð1þ 2Þ
All P� with the same

px, py and M
All P� with the same

px, py and V
All P� with the

same px and py

2This may be because all forms turn out to be equivalent for
massless particles.
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mass-measurement literature. For example, it is found in
the early literature on the transverse mass when it was used
to measure the W mass [2–6] and in the generalization of
the transverse mass to pair-production, namely, MT2 (the
stransverse mass) [7–29], as well as in literature relating to
MCT [30–35], and in reviews of the field [1].

In the > projection, one defines the 1þ 2 dimensional
transverse energy3 e> and transverse momentum ~p> in
terms of the 1þ 3 dimensional mass M and 1þ 3 dimen-
sional components according to

e> �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ ~p2
T

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � p2
z

q

; (5)

~p> � ~pT; (6)

m> � M: (7)

In this case, the components of the 1þ 2 dimensional
quantity

p�
> � ðe>; ~p>Þ (8)

satisfy the mass-shell condition

e2> � ~p2
> ¼ m2

> ¼ M2 (9)

with the 1þ 3 dimensional mass M.
The equivalence class for this projection function—the

set of 1þ 3 vectors which map to the same 1þ 2 projected
vector under >—consists of the set of 1þ 3 vectors with
the same ~pT and M:

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ p2
T þ p2

z

q

; ~pT; pz

�

�
> �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ p2
T

q

; ~pT

�

: (10)

The fact that all members of the equivalence class share the
same mass is what motivates us to call this the ‘‘mass-
preserving’’ > projection.

Given its dominant use in the literature, it is something
of a surprise that the nomenclature of the > projection is
not adopted in the commonly used high-energy physics
computer libraries such as CLHEP [36] or ROOT [37]
which instead implement the alternative _ projection in-
troduced below in Sec. III B. The> projection is, however,
used in the ‘‘Oxbridge stransverse mass library’’ [38] and
the U. C. Davis MT2 library [39]. See Appendix A and
Table VII in it for a summary of library conventions.

B. The speed-preserving ‘‘_’’ projection
Alternatively, one can follow the method of the

CLHEP [36] and ROOT [37] libraries and ‘‘project’’ the
energy on the transverse plane, using the same angle
� as for the momentum vector. As already seen in
Fig. 2, the magnitude pT of the transverse momentum
~pT is related to the magnitude P of the 3-dimensional

momentum ~P by

pT ¼ P sin�; (11)

with

tan� � pT

pz

: (12)

Thus by analogy with (11), one can define the transverse
energy in terms of its 1þ 3 dimensional counterpart
E as

e_ � E sin�: (13)

Then, for any individual 1þ 3 momentum vector, we
have the _ version of the transverse components

e_ � E sin� ¼ pT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ p2

z

q
E; (14)

~p _ � ~pT; (15)

m_ � M sin� ¼ pT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ p2

z

q
M: (16)

We can take the angle � to be defined in ð0; �Þ, so that e_
and m_ are always nonnegative.
In this _ method of projection, we can also introduce

1þ 2 vectors which now have components

p�_ � ðe_; ~p_Þ: (17)

The _ projected components obey a different mass-shell
relation than the > projected components in (9):

e2_ � p2_ ¼ m2_ � M2; (18)

with the 1þ 2 dimensional _ projected mass m_.
Just as an aside, one could also define the ‘‘longitudinal’’

components in complete analogy to (14)–(16)

ez � Ej cos�j ¼ jpzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ p2

z

q
E; (19)

pz � pz; (20)

mz � Mj cos�j ¼ jpzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ p2

z

q
M; (21)

although in what follows we shall not be making
any use of those. The connection between the 1þ 3
dimensional quantities and the _ 1þ 2 dimensional com-
ponents is

3Note that in Eq. (5), it is the middle expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ ~p2
T

q

that we use to justify our ‘‘calling’’ the LHS a (transverse)
‘‘energy’’—since it is square root of a ‘‘mass squared plus a
transverse momentum squared.’’ Someone who saw the right-

hand expression first,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � p2
z

q

, could argue differently, and

might reasonably expect us to call the whole quantity a ‘‘longi-
tudinal mass’’—since it is a square root of an ‘‘energy squared
minus a longitudinal momentum squared.’’ All this really goes to
show is that the ‘‘name’’ of the quantity is to some extent a
matter of convention rather than physics.
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E2 ¼ e2_ þ e2z ; (22)

M2 ¼ m2_ þm2
z : (23)

For massive vectors,4 the equivalence classes of the _
projection are different from those of the> projection. The
mass-shell relation (18) implies that all the 1þ 3 vectors
which map to the same 1þ 2 vector under the _ projection
share the same value of m_ ¼ M sin� and thus generally
do not preserve the usual invariant massM, since m_ � M
for any � � �

2 .

A more physical picture of the equivalence class of
vectors for the _ projection can be found by considering
the 3-speed of the particle

V � P

E
: (24)

After the _ projection, the corresponding 2-speed is given
by

v_ � p_
e_

¼ pT

e_
¼ P sin�

E sin�
¼ P

E
: (25)

Equations (24) and (25) reveal that the _ projection is
‘‘speed-preserving’’, i.e.,

v_ ¼ V; (26)

which justifies our choice of subscript notation for this kind
of transverse projection. The equivalence class for the _
projection therefore consists of all 1þ 3 vectors with the
same ~pT and speed V:

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þ p2

z

q

V
; ~pT; pz

1

C

A�
_ �

pT

V
; ~pT

�

: (27)

Note that members belonging to the same equivalence
class under the _ projection (27) have the same speed,
but different masses, while members of the same equiva-
lence class under the > projection (10) have the same
mass, but different speeds.

C. The massless ‘‘�’’ projection
The massless ‘‘�’’ projection defines components

e� � j ~pTj; (28)

~p � � ~pT (29)

and thereby defines a massless 1þ 2 vector of the form

p�� ¼ ðj ~pTj; ~pTÞ: (30)

The main feature of this projection is that the 1þ 2 vector
p�� always has a null invariant

g��p
��p

�
� � m2� ¼ 0: (31)

It should be noted that p�
> and p�_ have 3 degrees of

freedom (fe>; px; pyg and fe_; px; pyg, correspondingly).
Therefore their equivalence classes are one-dimensional,
and can be parameterized by the coordinate pz, as indi-
cated in (10) and (27). In contrast, our ‘‘�’’ projected
vector p�� has only two degrees of freedom, px and py—

the timelike component being fully specified from px and
py through e� ¼ j ~pTj. The equivalence class of any p��
vector is therefore also a 4� 2 ¼ 2-dimensional object,
parameterized by, say, pz and E:

ðE; ~pT; pzÞ�� ðj ~pTj; ~pTÞ: (32)

IV. COMPARISON OF THE DIFFERENT
TRANSVERSE PROJECTIONS

The three different projections discussed in Sec. III are
pictorially represented in Fig. 3. For a given fixed value of
pT , the white (online) region in the figure depicts all
possible allowed values of the energy E and the longitu-
dinal momentum pz. (The yellow-shaded (online) region
E2<p2

Tþp2
z is forbidden because it corresponds to a

tachyonic particle with M2 < 0, traveling with superlumi-
nal speed.) In this figure, we consider the plane of energy
squared versus momentum squared, and in order to retain
the information about the sign of the longitudinal mo-
mentum component, we plot signðpzÞp2

z , so that the map-
ping from the ðE; pzÞ-plane to the ðE2; signðpzÞp2

zÞ-plane
is one-to-one.

FIG. 3 (color online). A pictorial representation of the three
transverse projections discussed in Sec. III. The colored (online)
arrows represent the mappings under the>, _ and � projections.
The blue and green (online) dotted lines represent the equiva-
lence classes of the projected points under the > and _ projec-
tions, respectively.4See Sec. IVB for comments concerning the massless case.
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Each of the three transverse projections maps a point
with some given5 values of E and pz onto the pz ¼ 0 axis
as shown. In the case of>, the projection is along a line of
constant mass M and results in transverse energy squared
e2> ¼ M2 þ p2

T . In the ðE2; signðpzÞp2
zÞ-plane, lines of

constant M are straight lines, which explains our choice
of quadratic power scale on the axes. Figure 3 illustrates
that the equivalence class of vectors under the> projection
is one-dimensional: it is represented by the two blue (on-
line) dotted straight lines, which can be simply parameter-
ized by the value of pz.

The_ projection, on the other hand, projects along a line
of constant speed V, as indicated in Fig. 3. In the
ðE2; signðpzÞp2

zÞ-plane, lines of constant V are also straight
lines, albeit with a different slope. The resulting value of
the transverse energy is e_ ¼ pT=V. The corresponding
equivalence class of vectors is given by the two green
(online) dotted lines, and can also be parameterized in
terms of a single parameter, say pz.

Finally, the massless ‘‘�’’ projection maps any allowed
point in the ðE; pzÞ-plane to the massless 1þ 2 vector with
transverse energy e� ¼ pT . The equivalence class of vec-
tors in this case is two-dimensional, and is represented by
the whole white shaded region in Fig. 3.

All of the previous discussion can be recast in the
language of the ðM2; signðpzÞp2

zÞ-plane, as shown in
Fig. 4. In this case, the whole M2 � 0 half-plane is al-
lowed, and the > projection projects horizontally onto the
pz ¼ 0 axis, following the blue arrow. The _ projection is
also done along a straight line, following the green arrow.
As before, the equivalence classes for the > and _ opera-
tions are straight lines, while the equivalence class for the
‘‘�’’ case is given by the whole M2 � 0 half-plane.

A. A hierarchy among projections

As illustrated in Fig. 4, the definition of each projection
imposes a hierarchy among the projected masses of the
form:

M ¼ m> � m_ � m� ¼ 0: (33)

We draw attention to this hierarchy here as it will have very
close analogues in the more complicated experimental
mass-bounds derived from each type of projection in the
later sections.

Given the mass hierarchy (33), Eqs. (9), (18), and (28)
imply that a similar hierarchy exists for the projected
energies:

E � e> � e_ � e� ¼ pT; (34)

which is illustrated in Fig. 3.

B. Equivalence in the massless limit

We note that in the special (but common) case in which
the original four-vector is massless (M ¼ 0) all projections
are equivalent since

lim
M!0

e> ¼ lim
M!0

e_ ¼ e� ¼ j ~pTj (35)

and thus

lim
M!0

p�
> ¼ lim

M!0
p�_ ¼ p�� ¼ ðj ~pTj; ~pTÞ: (36)

Clearly the projections are not equivalent for massive
particles, nor for collections of massless particles (unless
they be collinear) since collections of massless particles
can have large total invariant mass—the equivalence ex-
tends only to application to individual massless particles.
In practice, the statement above may also be taken as

saying that all the projections are equivalent in the high-
energy limit—i.e., the limit in which the momentum of a
particle is much greater than its mass—again only at the
level of individual high-energy particles.
Since all the projections are equivalent in the above

limits, and since most individual reconstructed particles in
high-energy physics experiments satisfy one of those limits
due to the small masses of the leptons and light quarks, one
might wonder what all the fuss is about. However, the
importance of the distinctions will be seen to arise and
become very large when we consider composite particles,
i.e., collections of massless ‘‘daughter’’ particles.6

Composite particles are expected to have non-negligible
masses, even when they consist of sums of (approximately)
massless particles. As we already learned from the simple

FIG. 4 (color online). The same as Fig. 3, but plotted in the
ðM2; signðpzÞp2

zÞ-plane.

5For definiteness, in Fig. 3 we have chosen an illustration point
with pz < 0.

6The need for considering composite particles arises when
dealing with short-lived heavy resonances, which decay
promptly to a certain collection of daughter particles, which in
turn are seen in the detector. The energy and momentum of the
parent resonance are correspondingly obtained by summing the
measured energies and momenta of the daughter particles.
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example considered in Figs. 3 and 4, not only do these
composite particles generate very different projected 1þ 2
vectors, but the classes of equivalent four-vectors associ-
ated with those projections are very different as well.

V. SUMMING AND PROJECTING:
EARLY VERSUS LATE PROJECTIONS

In forming transverse kinematic variables for composite
particles, one needs to perform two separate operations:
summation of the momentum vectors of the daughter
particles, and projecting into the transverse plane. The
order of these operations does not matter for the two
spacelike vector components:

X

i

~pi> ¼
�

X

i

~Pi

�

>
; (37)

X

i

~pi_ ¼
�

X

i

~Pi

�

_
; (38)

X

i

~pi� ¼
�

X

i

~Pi

�

�
; (39)

where we use an index i to label the momenta of the
individual daughter particles and the sums run over all
such daughter particles.7

However, projecting before or after the sum can make a
very significant difference to the value of the timelike
(e>, e_ or e�) component of the final 1þ 2 vector—and
therefore the operations of projecting and summing do not
generally commute:

X

i

ei> �

�

X

i

Ei

�

>
; (40)

X

i

ei_ �

�

X

i

Ei

�

_
; (41)

X

i

ei� �

�

X

i

Ei

�

�
: (42)

One can see clearly how the order makes a difference if
one considers an extreme case consisting of a pair of
massless daughter particles traveling in opposite directions
along the beam pipe, i.e., with 1þ 3 momenta

P�
1 ¼ ðE; 0; 0;þEÞ; (43)

P
�
2 ¼ ðE; 0; 0;�EÞ: (44)

If one were to project these 1þ 3 momenta into the trans-
verse plane before summing (a combined operation
hereafter called early projection), one would find that the
resulting 1þ 2 dimensional vector

X

i

p�
i> ¼ p�

1> þ p�
2> (45a)

¼ ðE; 0; 0; EÞ> þ ðE; 0; 0;�EÞ> (45b)

¼ ð0; 0; 0Þ þ ð0; 0; 0Þ (45c)

¼ ð0; 0; 0Þ (45d)

is null. A null sum would also be obtained if we had used
the _ or � projections.8 However, if one were first to sum
the Lorentz 1þ 3 vectors P�

i and then later project into the
transverse plane (hereafter denoted late projection), one
would find that

�

X

i

P�
i

�

>
¼ ðP�

1 þ P�
2 Þ> (46a)

¼ ððE; 0; 0; EÞ þ ðE; 0; 0;�EÞÞ> (46b)

¼ ð2E; 0; 0; 0Þ> (46c)

¼ ð2E; 0; 0Þ; (46d)

which is clearly not the same as was found in (45d). This
extreme case shows that while projecting early has the
effect of reducing dependence on longitudinal momenta,
projecting late means that the resultant projected compos-
ite retains much more sensitivity to the original relative
momenta along the beam directions.
This concludes this section, whose main purpose was

simply to highlight the difference between the ‘‘early’’ and
the ‘‘late’’ transverse projection. It also underscores the
need to develop the proper notation to distinguish between
these two types of transverse projections, which we shall
do below in Sec. VIC. The differences between the two
projections will be further illustrated with the physics
examples considered in the later sections. One may rea-
sonably wonder which one of the two projections is more
appropriate and should be used. In principle, the answer to
this question will depend on the analysis being performed.
If one is initially building a composite particle from two
leptons, e.g., from a Z-boson decay Z ! eþe�, then the
relative longitudinal momentum of the positron and the
electron is probably a safe quantity to retain full sensitivity
to in one’s calculations. However, in cases where jets at
large rapidity j�j are concerned, the probability of QCD
radiation grows rapidly as one gets closer and closer to the
beam direction. One will often prefer not to have the high-
energy end of the composite-particle spectrum dominated
by combinations of low jpTj, high-energy forward-going
jets with other low jpTj, high-energy backward-going jets,
so in this latter case, early projection would probably be
appropriate. Nevertheless, giving a universal prescription
for selecting the ‘‘correct’’ transverse projection for
collections of particles is beyond the scope of this paper.
The best method will depend on nonkinematic factors,

7Recall our convention that lowercase letters refer to 1þ 2
dimensional quantities and capital letters refer to 1þ 3 dimen-
sional quantities. Thus in the left-hand sides of Eqs. (37)–(39),
we are adding 2-dimensional transverse vectors, while in the
right-hand sides we are first adding the corresponding 3-vectors,
then projecting their sum onto the transverse plane.

8In fact for this example we have chosen massless vectors for
which the ‘‘>,’’ ‘‘_,’’ and ‘‘�’’ projections are identical.
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such as the size of any backgrounds, the detector resolu-
tion, and other factors that will vary from case to case.

VI. INTERPRETING EVENTS

A. Characterizing an event

Analysis of an event is a game. The aim of the game is to
interpret the available information within a particular
framework or hypothesis. In this paper, we wish to employ
a very general framework that will be useful for searches
and mass measurements at hadron colliders (pp, p �p, or
even �p �p for that matter). Specializations of this framework
will then be useful in a wide variety of different contexts.
The general layout of an event is represented in Fig. 5. The
figure comprises two incoming objects, denoted by the
proton lines on the left-hand side; an interaction, repre-
sented by an oval ‘‘blob’’; and some final-state objects,
contained within the rectangles on the right-hand side.
Since it is the final-state objects that provide the kinematic
information about the event, we now take some time to
explain rather carefully what we mean by them.

We define final-state objects of two types. A visible final-
state object is one that leaves a signal in the detector that
betrays its presence. Those signals may then be recon-
structed and interpreted as an individual particle—for
example as photon, electron, or muon—or the signals
may be indicative of a composite object, such as a QCD
or tau jet. The ‘‘visible object’’ category is deliberately
allowed to be sufficiently broad as to permit the inclusion
of very heavy, visibly decaying, composite objects such as
Z, W, or top quarks. The classification of a final-state
object as ‘‘visible’’ here implies not only that a signal
consistent with the presence of some particle has been
observed, but also that the full Lorentz energy-momentum
vector of that particle can be reconstructed from the
observed signal (to within some experimental precision).
For most heavy visible objects (jets,W, Z, H, bosons, . . .),

the four-momentum of the visible object must be calcu-
lated from the vector sum of its constituents.
By contrast, an invisible final-state object is one that

leaves no direct signal, but the existence of which is
demanded by the interpretation of the event being imposed
by the analyst. The numbers, types, and masses of any
invisible final-state particles form part of the interpretation
of the event. The 3-momentum vectors of all invisible
particles are a priori unknown, and are constrained only
by conservation of the total momentum of the event in the
plane transverse to the beam. The general framework can
accommodate a final-state hypothesis in which invisible
particles have particular known (or rather assumed)
masses, but it can also be applied when some or indeed
all of those invisible particles have unknown masses.
As illustrated in Fig. 5, the next step in interpreting the

event is to partition the combined set of all final-state
objects (visible and invisible) into subsets, which are rep-
resented by rectangles in the figure. Each final-state object
must be found in one and only one such subset. There is
one subset per parent plus one further subset, the latter
being labeled ‘‘upstream visible momentum’’ in the figure.
In our interpretation, a parent is any short-lived object

that is believed to have decayed to produce the visible and
invisible final-state objects in its associated set. The term
‘‘parent’’ is usually associated with a short-lived heavy
state, most often a reasonably narrow resonance (whether
produced directly in the ‘‘hard scatter’’ or from decays of
even heavier objects).
The general framework presented permits a variety of

different interpretations for any given event. For any par-
ticular interpretation, there is a corresponding partitioning
of the final state into subsets. For example, an event which
contains evidence of an electron and a positron, and which
is hypothesized to also contain a neutrino and an antineu-
trino, could be partitioned into parent/daughter combina-
tions:Wþ ! feþ; �eg andW� ! fe�; ��eg for one analysis;
however, another analysis might find it more appropriate to
partition those objects according to the interpretation Z0 !
feþ; e�g and Z0 ! f�e; ��eg.
The subset corresponding to any parent may contain any

number (including zero) of visible particles and any num-
ber (including zero) of invisible particles—though it is not
meaningful to have a totally empty set of daughters. The
framework is very general, in that the number of parents
can be arbitrary, and the nature, mass, and decay mode of
any parent need not be related to those of any other. There
is therefore a great deal of freedom in performing the
partition into subsets. We shall later be constraining the
masses of the parents so the subsets should be chosen to
correspond to the descendants of the parents whose invari-
ant masses we are interested in.
Figure 5 also shows the one special (non-‘‘parent’’) subset

intowhich visible final-state particlesmaybe allocated.That
set is labeled ‘‘upstream visible momentum (UVM),’’ and is
designed to be a ‘‘catch-all’’ that will accommodate any

FIG. 5 (color online). The event topology for new physics
searches and measurements used in this paper.
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visible particle not allocated to any of the parent sets. This is
a special set in the following senses: first, it is permitted to
contain (by assertion) only visible objects; and second, and
crucially, final-state objects allocated to this set are not used
directly to constrain the mass of any parent. Objects in this
set are only used to keep track of overall energy-momentum
conservation. We do not specify the elements found in this
UVM set, but in practical applications it almost always
contains some contribution from ‘‘soft’’ particles that are
unallocated to any parent. Such soft components usually
include calorimeter energy found outside of jets, and low
energy jets from multiple parton interactions, and perhaps
from initial state radiation (ISR). As well as these soft
components, one must include any other visible objects
not associated with any parent. The UVM set will often
contain more than just ‘‘soft’’ activity—since any type of
visible particle can end up therein—possibly including de-
cay products (of heavy progenitor particles) that the analyst
chose not to allocate to any parent. In practice, every hadron-
collider event has some amount of UVM. Furthermore, as
discussed in [10,12,21,24–26,34], the presence of a signifi-
cant amount of UVM can in fact be beneficial in mass
reconstruction studies.

Apart from the reconstructed physics objects, another
important experimental quantity is the missing transverse
momentum in the event. This quantity is the experimental
collaboration’s best estimate of the amount (and direction)
of momentum in any particular event that has been carried
away in the plane transverse to the beam by invisible
particles. It is an important quantity insofar as we will
wish to apply the constraint that the missing momentum
in an event is entirely due to the invisible final-state objects.

B. Notation used to characterize events

We require considerable amount of notation to describe
events and the hypotheses and interpretations that we layer
on top of them. We have summarized the notation we have
adopted in Table II—and we recommend that readers
immediately compare the first section of that table with
any of the three small concrete examples provided in
Figs. 6–8 in order to follow later sections. For the simplest
pieces of notation, Table II serves as the primary definition.
Notation that requires more explanation will be described
in more detail either below or at first point of use.

The N parents are labeled Pa, ða ¼ 1; 2; . . . ; NÞ. The set
of observed visible (hypothesized invisible) daughters as-
sociated with Pa is labeled V a (Ia). Since no visible or
invisible particle has more than one parent, we have
V a

T

V b ¼ 0 and Ia

T

Ib ¼ 0 when a � b, and so the
number of visible (invisible) particles may either be written
as the sum of the number of visible (invisible) daughters of
each parentNV ¼ PN

a¼1 jV aj, (NI ¼ PN
a¼1 jIaj) or as the

number of elements from the set of all visible (invisible)
daughters NV ¼ jV j (NI ¼ jI j) where V ¼ S

N
a¼1 V a

(I ¼ S

N
a¼1 Ia).

As seen in Table II, in our conventions the letter ‘‘P’’
(‘‘p’’) will be used to denote measured momenta, and the
letter ‘‘Q’’ (‘‘q’’) will be used for the momenta of any
invisible or hypothesized particles. Correspondingly, the
individual 4-momenta P�

i , (i 2 V ), of the visible daugh-
ters are measured and known, while the individual
4-momenta Q�

i , (i 2 I), of the invisible daughters are
not measured and remain unknown. We denote the masses
of the visible final state particles by Mi and those of the
hypothesized invisible final state particles by ~Mi.
Similarly, we will find it convenient to denote the 3-speeds
of the visible final state particles as Vi and the 3-speeds of
the hypothesized invisible final state particles by ~Vi. In
some places, wewill need to refer to sets of these masses or
speeds, and so we define: (i) the set consisting of the
hypothesized masses of all invisible particles:

~� ¼ f ~Miji 2 Ig; (47)

(ii) the set containing only the hypothesized masses of the
invisible particles associated with parent Pa:

~�a ¼ f ~Miji 2 Iag; (48)

(iii) the set consisting of the hypothesized 3-speeds of all
invisible particles:

~v ¼ f ~Viji 2 Ig; (49)

and (iv) the set containing only the hypothesized 3-speeds
of the invisible particles associated with parent Pa:

~v a ¼ f ~Viji 2 Iag: (50)

We denote the missing transverse momentum two-vector

by the symbol9 ~P6 and its magnitude thus ~P6 . Note that some
authors use variants of the symbol ‘‘ 6ET’’ to denote the
missing transverse momentum,10 but the distinction is nec-
essary in this paper as we shall (as others should) make
important distinctions between energy and momentum.
We wish to apply the constraint that the missing momen-

tum in an event is entirely due to the NI invisible particles
with momenta Q

�
i , rather than to jet mismeasurement,

9Note that due to its status as an experimentally measurable
quantity, for the missing transverse momentum ~p6 T , we use the
letter ‘‘p’’ as opposed to ‘‘q’’ even though at high values ~p6 T is
interpreted as the total transverse momentum of invisible particles.
10By right, since its meaning is derived from conservation of
momentum in the transverse plane, the missing transverse mo-
mentum ought universally to be known as ~p6 T . Alas, much of the
hadron-collider literature, especially that from the experimental
collaborations, calls the missing transverse momentum the
‘‘missing energy’’ or ‘‘missing transverse energy’’ and denotes
its magnitude ‘‘ 6ET’’ and its two-vector by some variant of
‘‘ ~6ET .’’ This is perhaps a result of history (a relic from eþe� or
LEP terminology where the collision of point-particles from
monoenergetic beams meant that one really could talk about
missing energy) and the fact that ~p6 T is often reconstructed, at
least in part, from calorimetric energy deposits under the as-
sumption they were produced by massless physics objects.
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for example. In other words, we use the relationships ex-
pressed in:

X

NI

i¼1

~qiT ¼ ~p6 T � � ~uT �X

NV

i¼1

~piT: (51)

in which the first equality represents our desire to constrain
the momenta of the invisible particles (and only those
particles) using ~p6 T , while the second equality reminds
us of our assumptions of how ~p6 T is constructed as an

experimentally measurable quantity. These relationships
also remind us that we have assumed (i) that there are no
sources of invisible momentum other than those coming
from the parent decays, and (ii) that we have defined the
‘‘Upstream visible momentum’’ to contain all visible mo-
mentum deposits which did not originate from the decay of
any parent.
When considering the decay of a single-parent Pa

P a ! V a [ Ia: (52)

TABLE II. Notation used in the description of events.

Symbol Meaning See also

objects

and sets

jAj Cardinal number (number of elements) of any finite set A.

Figs. 6–8

Pa ath parent (a 2 f1; 2; . . . ; Ng)
P Set of all parents P � fP1;P2; . . . ;PNg
V a Set of visible final state objects associated with the ath parent

Ia Set of invisible final state objects associated with the ath parent

V � S

aV a Set of all visible final state objects (V � fV1;V2; . . . ;VNV
g)

I � S

aIa Set of all invisible final state objects (I � fI1; I2; . . . ; INI
g)

N � jP j Number of parents assumed for the interpretation being applied

NV � jV j Total number of visible final state objects

NI � jI j Total number of invisible final state objects

indices

8

>

>

>

<

>

>

>

:

For notational purposes, indices are used interchangably with the

names of the particles they identify. For example “V a” and “V Pa
” are

equivalent; “i 2 V ” and “i 2 f1; 2; . . . ; NV g” are equivalent; “a 2 P ”

and “a 2 f1; 2; . . . ; Ng” are equivalent, etc.

9

>

>

>

=

>

>

>

;

1þ 3
momenta

P�
i ¼ ðEi; ~piT; pizÞ� 1þ 3 momentum components of the ith final state visible object (i 2 V )

Q
�
i ¼ ð ~Ei; ~qiT; qizÞ� Hypothesized 1þ 3 momentum components of the ith final state invisible (i 2 I)
P
�
a � P

i2V a
P
�
i Sum of 1þ 3 momentum components of visible objects belonging to parent Pa (53)

Q
�
a � P

i2Ia
Q

�
i Sum of 1þ 3 momentum components of invisible objects belonging to parent Pa (57)

U� � ðU0; ~uT; uzÞ� Total 1þ 3 momentum components of the ‘‘UVM’’ set (51)

derived

quantities

~p6 T Missing transverse momentum two-vector (magnitude j ~p6 T j ¼ p6 T) (51)

Ma � MPa
Mass of the ath parent (a 2 P )

Mi � MVi
Mass of the ith visible final state object (i 2 V )

~Mi � MIi Hypothesized mass of the ith invisible (i 2 I)
~�a � f ~Miji 2 Iag Set of hypothesized masses of the invisibles associated with parent Pa

~� � S

a ~�a Set of the hypothesized masses of all invisibles

Ma Hypothesized 1þ 3 dim invariant mass of the composite parent particle Pa (62)

Ma 1þ 3 dim invariant mass of the visibles in V a (63)
~Ma 1þ 3 dim invariant mass of the invisibles in Ia (64)

Vi 3-speed of the ith visible (i 2 V )
~Vi Hypothesized 3-speed of the ith invisible (i 2 I)

~va � f ~Viji 2 Iag Hypothesized 3-speeds of the invisibles associated with parent Pa (50)

~v � S

a~va Set of hypothesized 3-speeds of all the invisibles (49)

Ma � P

i2Ia
½ ~Mi� Sum of the masses of those invisibles associated with parent Pa (93)

M � fMaja 2 P g Set of all ‘‘invisible particle mass-sum parameters’’ (94)

Va � maxi2Ia
½ ~Vi� Largest hypothesized 3-speed of any invisible associated with parent Pa (117)

V � fVaja 2 P g Set of all ‘maximum invisible 3-speed parameters’ (118)

1þ 2d
p�
iT ¼ ðeiT; ~piTÞ� 1þ 2 dim projected energy-momentum vector for the ith visible

Sec. IIIq�iT ¼ ð~eiT; ~aiTÞ� Hypothesized 1þ 2 dim projected energy-momentum vector for the ith invisible

BARR et al. PHYSICAL REVIEW D 84, 095031 (2011)

095031-10



it is useful to have notation that can refer to composite
quantities, e.g., the total four-momentum possessed by the
visible daughters of Pa, or the total invariant mass of that
collection of visible daughters. Accordingly, as illustrated
in Figs. 6–8, we denote by P

�
a the total (1þ 3)-momentum

of the visible daughters of parent Pa:

P
�
a � ðEa; ~paT;pazÞ �

X

i2V a

P
�
i ; (53)

or in components

~p aT � X

i2V a

~piT; (54)

p az �
X

i2V a

piz; (55)

Ea ¼
X

i2V a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
i þ ~p2

iT þ p2
iz

q

(56a)

¼ X

i2V a

j ~Pij
Vi

¼ X

i2V a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2
iT þ p2

iz

q

Vi

; (56b)

where the former (latter) expression forEa will be relevant
later on for> ( _ ) transverse projections since it is written
in a form which depends explicitly on the masses (speeds)
of the visible particles.
Similarly, we denote the total hypothesized (1þ 3)-

momentum of the invisible daughters of parent Pa by

Q �
a � ð~Ea; ~qaT;qazÞ �

X

i2Ia

Q�
i ; (57)

or in components

~q aT � X

i2Ia

~qiT; (58)

q az �
X

i2Ia

qiz; (59)

~Ea ¼
X

i2Ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~M2
i þ ~q2iT þ q2iz

q

; (60a)

¼ X

i2Ia

j ~Qij
~Vi

¼ X

i2Ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~q2iT þ q2iz

q

~Vi

; (60b)

where again the former (latter) expression for ~Ea will be
relevant for> (_) transverse projections since it is written
in a form which depends explicitly on the masses (speeds)
of the invisible particles.

FIG. 8 (color online). This figure is provided for the benefit of
readers unable to imagine an even simpler version of Fig. 6 than
was shown in Fig. 7. (Readers finding this figure helpful are
advised to seek gainful employment in some other field.) The
figure shows a hypothesis in which two (NV ¼ 2) visible
physics objects V ¼ fV1;V2g and two (NI ¼ 2) invisible phys-
ics objects I ¼ fI1; I2g have been assigned to one (N ¼ 1) parent
P ¼ fP1g according to the assignments V 1 ¼ fV1;V2g and
I1 ¼ fI1; I2g. For completeness, we note jV 1j ¼ jI1j ¼ 2. An
explicit physics example corresponding to this figure is dis-
cussed in Sec. XIA.

FIG. 7 (color online). This figure is provided for the benefit of
readers unable to imagine a simpler version of Fig. 6. (Readers
finding this figure helpful need not admit this to close friends,
relatives, or colleagues.) The figure shows a hypothesis in which
four (NV ¼ 4) visible physics objectsV ¼ fV1;V2;V3;V4g and
two (NI ¼ 2) invisible physics objects I ¼ fI1; I2g have been
assigned to two (N ¼ 2) parents P ¼ fP1;P2g according to the
assignments V 1 ¼ fV1;V3g, V 2 ¼ fV2;V4g, I1 ¼ fI1g, and
I2 ¼ fI2g. The number of visible physics objects assigned to
each parent in turn are therefore jV 1j ¼ 2, jV 2j ¼ 2 and the
number of invisible physics objects assigned to each parent in
turn are jI1j ¼ 1, jI2j ¼ 1. An explicit physics example corre-
sponding to this figure is discussed in Sec. XIB.

FIG. 6 (color online). This figure illustrates the notation used
to label physics objects and their assignments to parent hypoth-
eses. The figure shows a hypothesis in which six (NV ¼ 6)
visible physics objects V ¼ fV1;V2;V3;V4;V5;V6g and five
(NI ¼ 5) invisible physics objects I ¼ fI1; I2; I3; I4; I5g have
been assigned to three (N ¼ 3) parents P ¼ fP1;P2;P3g ac-
cording to the assignments V 1 ¼ fV2;V4g, V 2 ¼ fV3g, V 3 ¼
fV1;V5;V6g, I1 ¼ fI1g, I2 ¼ fI2; I3g, and I3 ¼ fI4; I5g. The
number of visible physics objects assigned to each parent in
turn are therefore jV 1j ¼ 2, jV 2j ¼ 1, and jV 3j ¼ 3 and the
number of invisible physics objects assigned to each parent in
turn are jI1j ¼ 1, jI2j ¼ 2, and jI3j ¼ 2.
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As already indicated in Eqs. (53)–(60), we shall use
bold-face script to label ‘‘composite’’ momenta. Each
parent is thus also treated as a composite particle, which
has (1þ 3) momentum

P �
a þQ�

a (61)

with (a priori unknown) (1þ 3) dimensional invariant
mass

M a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��ðPa þQaÞ�ðPa þQaÞ�
q

: (62)

The important distinction between the bold-face notation
for composite momenta and the ordinary notation for the
momenta of individual particles is pictorially illustrated in
Figs. 6–8.

Note that ~Ea in (57) (whose tilde is necessary to distin-
guish it from the energyEa of the visible composite daugh-
ter of parent a) might legitimately be termed the missing
energy11 of the parent Pa. We also introduce masses for the
respective composite daughter objects as follows:

M a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
a � ~p2

aT � p2
az

q

; (63)

~M aðQ�
i Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~E2
a � ~q2

aT � q2
az

q

; (64)

where again a tilde refers to the invisible object. Note that
the invariant mass (64) of any composite invisible daughter
is not ‘‘constant’’ or a fixed function of measured momenta.
It depends on the hypothesized invisible momenta Q�

i and
so is part of the event hypothesis.

C. Notation for early and late transverse projections

When forming transverse kinematic variables corre-
sponding to composite parent or daughter objects, one
needs to construct the transverse 1þ 2 dim. analogues of
(53) and (57). In doing so, one inevitably has to face the
issue discussed in Sec. V—whether the agglomeration of
individual particles into a composite object is done before
or after projecting into the transverse plane. As we already
saw in Sec. V, the two outcomes are generally quite differ-
ent, since the composite object is usually massive. This is
why we shall need to develop some additional notation to
help us keep track of the order in which those operations
are performed. Correspondingly, for the remainder of this
paper we shall adopt the following principle: in forming
transverse quantities for composite objects, the order in
which the various operations of agglomeration and pro-
jection are taken will be specified by the order (from left to
right) of the corresponding subscript indices.

Let us illustrate this principle with a few relevant
examples. The ‘‘late-projected’’ (or ‘‘early-partitioned’’)
version of the composite visible momentum (53) is denoted
by p�

aT

p �
aT � ðeaT; ~paTÞ (65)

while the alternative ‘‘early-projected’’ (or ‘‘late-
partitioned’’) version is denoted by p�

Ta:

p �
Ta � ðeTa; ~pTaÞ: (66)

We remind the reader that the generic index ‘‘T’’ in (65)
and (66) stands for either ‘‘>,’’ ‘‘_,’’ or ‘‘�,’’ as discussed
in Sec. III.
We already saw in Sec. V [Eqs. (37)–(39)] that the

spacelike components of (65) and (66) are equivalent for
any choice of ‘‘T’’:

~p aT � ~pTa ¼
X

i2V a

~piT; (67)

but the timelike components eaT and eTa are generally
different. For example, in the case of T ¼ >, the late-
projected (early-partitioned) transverse energy ea> is
given by

ea> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
a þ ~p2

aT

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
a � p2

az

q

(68a)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

X

i2V a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
i þ ~p2

iT þ p2
iz

q

�

2 �
�

X

i2V a

piz

�

2
v

u

u

t ; (68b)

while the early-projected (late-partitioned) transverse en-
ergy e>a is given by

e>a ¼ X

i2V a

ei> ¼ X

i2V a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
i þ ~p2

iT

q

: (69)

In the case of T ¼ _ projections, the corresponding trans-
verse energies are given by

e a_ ¼ paT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
aT þ p2

az

q
Ea; (70)

e _a ¼
X

i2V a

ei_ ¼ X

i2V a

piT

Vi

: (71)

Finally, for T ¼ �, the two transverse energies are

e a� ¼
�

�

�

�

�

�

�

�

X

i2V a

~piT

�

�

�

�

�

�

�

�

; (72)

e �a ¼
X

i2V a

piT: (73)

The same conventions apply to the transverse pro-
jections of the composite momentum of a collection
of invisible daughter particles: the ‘‘late-projected’’
(or ‘‘early-partitioned’’) version of the composite invisible
momentum (57) is denoted by q�

aT

q �
aT � ð~eaT; ~qaTÞ; (74)

while the alternative ‘‘early-projected’’ (or ‘‘late-
partitioned’’) version is denoted by q�

Ta:
11Really the missing energy rather than the missing momentum!
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q �
Ta � ð~eTa; ~qTaÞ: (75)

Again, the spacelike components of (74) and (75) are the
same:

~q aT � ~qTa ¼ X

i2Ia

~qiT; (76)

but the timelike components are not. Altogether, there are
6 different possibilities:

~ea> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~M2
a þ ~q2

aT

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~E2
a � q2

az

q

(77a)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

X

i2Ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~M2
i þ ~q2iT þ q2iz

q

�

2 �
�

X

i2Ia

qiz

�

2
v

u

u

t ; (77b)

~e>a ¼
X

i2Ia

~ei> ¼ X

i2Ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~M2
i þ ~q2iT

q

; (78)

~ea_ ¼ qaT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
aT þ q2

az

q

~Ea (79a)

¼
j P
i2Ia

~qiTj P
i2Ia

ffiffiffiffiffiffiffiffiffiffiffiffi

q2iTþq2iz

p
~Vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð P
i2Ia

~qiTÞ2 þ ð P
i2Ia

qizÞ2
r

; (79b)

~e _a ¼
X

i2Ia

~ei_ ¼ X

i2Ia

qiT
~Vi

; (80)

~e a� ¼
�

�

�

�

�

�

�

�

X

i2Ia

~qiT

�

�

�

�

�

�

�

�

; (81)

~e �a ¼
X

i2Ia

qiT: (82)

In general, our principle of index ordering will extend to
any transverse invariant mass or transverse energy vari-
able. For example, in analogy to (68)–(73) and (77)–(82),
there will be six different versions of the transverse masses
of the composite parent particles and they will be denoted
by MaT or MTa, with T 2 f>;_;�g.

D. Comments on the characterization framework

Note that we do not place any a priori restrictions on the
values of N, NI or on the way invisible particles are
partitioned into the subsets Ia. In contrast, many studies
on supersymmetry (SUSY) or Universal Extra Dimensions
(UED) in the hadron-collider literature are predicated on
the following assumptions:

(i) N ¼ 2. This assumption is motivated if the new
particles are charged under a conserved Z2 parity,
like R-parity in supersymmetry or KK-parity in

UED. However, other discrete symmetries are also
possible, e.g., Z3 [42,43] and higher [44,45], which
could in principle allow for N > 2. Even in models
with a Z2 parity, one could still consider the produc-
tion of any even number of parents, e.g., N ¼ 4,
N ¼ 6, etc.

(ii) jIaj ¼ 1 for all a. In the conventional models with
conserved Z2 parity, this assumption implies that the
decay of each parent generates one and only one
massive invisible particle, excluding the possibility
of any neutrinos appearing among the invisible par-
ticles. However, this assumption is not guaranteed—
even in the conventional SUSY models with
conserved R-parity, SM neutrinos can easily appear
among the decay products of charginos, sleptons,
W-bosons, heavy flavor quarks (especially top),
taus, etc. Furthermore, R-parity conservation only
guarantees that a given SUSY parent must decay into
an odd (not necessarily 1) number of SUSY parti-
cles. Finally, a Z3 symmetry could allow two mas-
sive invisible particles per parent, see e.g., [46,47].

Because of all these caveats, we prefer to keep our dis-
cussion as general as possible, and first define our invariant
mass variables below in Sec. VII for any N and NI , before
specializing to N ¼ 1 and N ¼ 2 for illustration purposes
only.
One might ask whether the methods proposed here can

be usefully applied to events with ‘‘the wrong’’ value of N.
The answer to this question is ‘‘yes,’’ and we shall dem-
onstrate this explicitly below in Sec. XI B (see, in particu-
lar, Fig. 12) where we shall apply N ¼ 1 variables in an
example where not one, but two parents were produced in
the hard scatter. That study will show that one can
sometimes obtain useful information from variables with
‘‘the wrong’’ value of the parent number N.

E. Choosing the partitioning

In conclusion of this section, one more comment regard-
ing the partitioning is in order. One may wonder how one
should decide whether a given visible particle should be
counted among the set of visible daughters or whether it
should be included in the ‘‘Upstream visible momentum’’
category. The answer to this question depends on the
particular case at hand. There are simple cases of final
states where the outgoing particles can be unambiguously
associated with the particle sets V a that match the ex-
pected decay products of an assumed parent. For example,
a high pT , isolated reconstructed lepton is unlikely to have
come from the typical sources of UVM such as initial state
radiation (ISR), multiple parton-parton interactions (MPI),
multiple hadron-hadron interactions (pileup) etc., and
can probably be safely counted as a visible daughter. On
the other hand, there are also cases (typically involving
jets of hadrons) where the correct partitioning is not
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obvious at all. In such cases, one possible approach is to
consider all possible partitions, see e.g., [9]. Another pos-
sible approach would be to devise a certain set of cuts,
using the generic differences between the kinematics of
ISR jets and jets from heavy parent decays [28,48–50].
Examples of choices for particular physical examples can
be found in Sec. X.

VII. THE MASS-BOUND VARIABLES

A. Guiding principles

The guiding principle we employ for creating useful
hadron-collider event variables, is that: we should place
the best possible bounds on any Lorentz invariants of
interest, such as parent masses or the center-of-mass en-

ergy ŝ1=2, in any cases where it is not possible to determine
the actual values of those Lorentz invariants due to incom-
plete event information. Such incomplete information
could take the form of lack of knowledge of the longitudi-
nal momentum of the primary collision, or lack of knowl-
edge of the 4-momenta of individual invisible particles, or
lack of knowledge of the number of invisible particles
which were present, etc.

We contrast this principle with the alternative approach
that is used to motivate event variables without any explicit
regard to whether they have an interpretation as an optimal
bound of a Lorentz-invariant. This alternative approach
tends to recommend the use of variables that are somewhat
ad hoc, but by construction possess useful invariances
(such as invariance under longitudinal boosts) which are
designed to remove sensitivity to quantities that are un-
known. One example of this latter class of variables, which
are usually considered to be simply ‘‘made up’’ without
reference to our guiding principle, would include the
missing transverse momentum ~p6 T (already seen in (51))
obtained by adding all transverse visible momenta vecto-
rially. Another would be the so-called hT variable12 which
is defined as the scalar sum of the transverse momenta of
some class of visible objects (typically jets) in the event:

hT � X

NV

i¼1

piT: (83)

Another example is the sum of these two variables:

meff � hT þ p6 T; (84)

a quantity which can be traced back to the original litera-
ture [51] and has become known as an ‘‘effective mass,’’
even though it is not a mass.13

The main disadvantage of variables like hT and meff , is
that they do not utilize all the information available, for
example, they are completely insensitive to all angles in the
transverse plane. This is why here we would like to con-
struct a more optimal class of variables, to wit, those which
bound the invariants of interest. These too must be invari-
ant under global longitudinal boosts since a bound cannot
depend on unknown quantities. However, by explict con-
struction we can ensure that they also make best use of any
available kinematic information.

B. Construction of mass-bounding variables

We are now ready to define the general procedure that
can be used to construct the mass-bound variables. In fact,
we shall describe a broad class of such variables, where
each individual variable Mfindicesg will be labeled by a

certain set of indices {indices} indicative of the way the
particular variable was constructed, namely:
(i) Since we are targeting the general event topology of

Fig. 5, where we imagine the inclusive production of
N parents, each one of our variables will necessarily
carry a corresponding index N. In the process
of constructing such a variable, we will have to
partition (and then agglomerate) the observed
visible particles in the event into N groups V a,
(a¼1;2;...;N), as already explained in Sec. VIA.
We will then form the 1þ 3 dimensional invariant
mass of each parent Pa

M a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��ðP�
a þQ�

a ÞðP�
a þQ�

aÞ
q

; (85)

which is constructed out of the 1þ 3 momenta P�
a

and Q�
a of the respective composite daughter parti-

cles (see Sec. VI B).
(ii) Optionally, instead of the 1þ 3 dimensional parent

mass (85), we may choose to consider the corre-
sponding early-partitioned (late-projected) trans-
verse mass

M aT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��ðp�
aT þ q�

aTÞðp�
aT þ q�

aTÞ
q

; (86)

or the late-partitioned (early-projected) transverse
mass

M Ta �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��ðp�
Ta þ q�

TaÞðp�
Ta þ q�

TaÞ
q

; (87)

12Note that the definition of hT in the literature is not well
standardized. Indeed, even one LHC experiment has managed to
define it in three different and inequivalent ways in the space of
just a few years, and sometimes even inconsistently in a single
document (see Section 2 of [1] for further details). The definition
we adopt in Eq. (83) is the definition which appears, at present,
to be the most widely used in the literature. We note that a
conceivable consequence of this paper might be that purists will
in the future settle on a definition in which hT is defined as a sum
of transverse energies eT instead of transverse momenta,
whereby three different variants would be possible: h>, h_,
and h� (though these three definitions will be almost equivalent
under most practical experimental conditions, where the visible
particles are approximately massless).

13In keeping with our conventions from Sec. II, we use lower-
case letters for both hT and meff , since they are not 1þ 3
dimensional quantities.
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where p�
aT , p

�
Ta, q

�
aT and q�

Ta are the 1þ 2 dimen-
sional momentum vectors defined in (65), (66), (74),
and (75), correspondingly, and the index T takes
values in f>;_;�g, as explained in Sec. III.14

(iii) The last step is to consider the largest hypothesized
parent mass (max½Ma�, max½MaT�, or
max½MTa� as appropriate) and minimize it over
all possible values of the unknown invisible mo-
menta consistent with the constraints. This minimi-
zation is always a well-defined, unambiguous
operation, which yields a unique numerical answer
[52], which we shall denote as

MN � min
P

~qiT¼p~T

½max
a

½Ma��; (88)

MNT � min
P

~qiT¼p~T

½max
a

½MaT��; (89)

MTN � min
P

~qiT¼p~T

½max
a

½MTa��; (90)

as indicated in Table III. The minimization over the
unknown parameter is performed in order to guar-
antee that the resultant variable cannot be larger
than the mass of the heaviest parent, resulting in an
event-by-event lower bound on the mass of the
heaviest parent.

These are the basic steps, leading to the variables dis-
played in Table III. This basic set of variables will be
further extended in Sec. VIII below, by considering a
second level of projections within the transverse plane.
For the remainder of this section, however, we shall stick
to the basic procedures above and focus on the simplest
classes of variables displayed in Table III, namely, the
‘‘unprojected’’ MN and the ‘‘singly projected’’ MNT and
MTN variables.

C. The variables: MN, MNT and MTN

In this subsection, we provide analytic formulas (where
available) for calculating each of the basic mass-bound
variables from Table III on an event-by-event basis.

1. The usual (unprojected) invariant mass: MN

Here, we work directly with the usual (1þ 3)-
dimensional invariantmassesMa of the parent particlesPa:

M2
aðPa;Qa; ~�aÞ� ðPaþQaÞ2 (91a)

¼ðEaþ ~EaÞ2�ð ~paTþ ~qaTÞ2
�ðpazþqazÞ2: (91b)

TABLE III. Method of constructing the mass-bound variables and corresponding notation. The Table lists the sequence of operations
performed in the calculation of each variable. ‘‘Partitioning’’ refers to the operations discussed in Secs. VIA and VI Bof partitioning
the final state particles into daughter sets and then adding the momenta in each set to form corresponding composite daughter particles.
‘‘Minimization’’ implies minimizing the largest (suitably projected) parent mass with respect to (the relevant components of) the
missing momenta of all invisible particles; while the remaining operations involve the different types of transverse projections defined
and discussed in Sec. III.

Type of variables

Operations

NotationFirst Second Third

Unprojected Partitioning Minimization � � � MN

Early-partitioned (late-projected) MNT

Partitioning T ¼ > projection Minimization MN>
Partitioning T ¼ _ projection Minimization MN_
Partitioning T ¼ � projection Minimization MN�

Late-partitioned (early-projected) MTN

T ¼ > projection Partitioning Minimization M>N

T ¼ _ projection Partitioning Minimization M_N
T ¼ � projection Partitioning Minimization M�N

14We should point out that the projection specification T 2
f>;_;�g refers to operations on the visible particles. One should
keep in mind that the visible and the invisible composite parti-
cles are a priori independent and so could, in principle, be
treated differently, both in terms of the order of the operations,
as well as regarding the type of transverse projections. For
example, consider the MNT class of variables, where one first
forms composite visible particles and transversifies later. In
principle, for the invisible particles, one could perform those
operations in the opposite order and instead of (86) consider

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��ðp�
aT þ q�

TaÞðp�
aT þ q�

TaÞ
q

instead. Furthermore, one could choose a different type of
transverse projection for the invisibles than for the visible sector,
e.g.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��ðp�
a> þ q�

a_Þðp�
a> þ q�

a_Þ
q

and so on. One might therefore wonder whether projected
variables need to carry additional indices indicating how the
invisible sector is being handled. In the following, for simplicity,
we shall assume that the invisible particles are always projected
in exactly the same way as the corresponding visible particles, so
that the transversification indices uniquely describe the trans-
verse projections of both visible and invisible daughters. Those
readers who are curious about the remaining cases (when the
visibles and the invisibles are projected differently) can easily
infer the corresponding results from the formulas given below.
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The unprojected invariant mass variable MN is defined
by the right-hand side of

MNðMÞ � min
P

~qiT¼p~T

�

max
a

½MaðPa;Qa; ~�aÞ�
�

; (92)

where the minimization needs to be performed over 3NI
degrees of freedom ( ~qiT and qiz for i ¼ 1; 2; . . . ; NI ), sub-
ject to the two scalar constraints (51) supplied by trans-
verse momentum conservation. The invisible particle
momenta ~qiT and qiz are fixed by the minimization and
MN does not depend on them.

Note that we have emphasized in the left-hand side of
(92) that MN turns out not to be a function of the NI
individual invisible mass hypotheses ~Mi in ~� ¼ S

a ~�a,
but instead turns out (see proof in Sec. IXA) to be a
function of the set

M ¼ fMaja 2 P g: (93)

containing the N ‘‘invisible mass-sum parameters, Ma’’
defined by

Ma �
X

i2Ia

~Mi: (94)

These mass parameters are simple arithmetic sums of the
hypothesized masses of the individual invisible particles
associated with any given parent Pa.

Notice the simplification in going from the individual
parent masses Ma to the variable MN . The individual
parent masses Ma collectively depend on all invisible
particle masses ~Mi, (a total of NI parameters), while
the invariant mass variable MN defined in (92) only de-
pends on the N summed-invisible-mass parameters Ma,
(a ¼ 1; 2; . . . ; N), which are simply related to the individ-
ual particle masses ~Mi via (94). In the most common cases
of N ¼ 1 or N ¼ 2, we will therefore have to deal with
only one or two unknown invisible mass-sum parameters.
A similar reduction in complexity will be found when we
consider the _ projected variables, but there the mass-
bound will end up depending on a speed-related parameter
for each parent. We see that from now on the index N can
be interpreted not only as the number of parents, but also as
the number of relevant independent mass inputs character-
izing the invisible sector.

The preceding discussion is best illustrated with a spe-
cific example. Let us consider the simplest case of N ¼ 1.
The minimization of the corresponding variable M1 with
respect to ~qiT and qiz is straightforward. One finds that the
minimum is located at [52]

~q iT ¼ ~p6 T

~Mi

M1

; (95)

qiz ¼ p1z

~Mi

M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

M2
1 þ p2

1T

s

; (96)

and its value (see [48]) is given by

M2
1ðM1Þ �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p2

1T

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

q

�

2 � u2T (97)

in which, to save space, we have slightly abused our
notation by writing M2

1ðM1Þ in place of M2
1ðfM1gÞ—a

convention we will adopt throughout this document wher-
ever N ¼ 1. We remind the reader thatM1 is the measured
(1þ 3)-mass of the (single) visible composite daughter
[see also Eq. (63)]

M1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
1 � ~p2

1T � p2
1z

q

; (98)

while M1 is the only invisible mass parameter needed15

defined in (94)

M1 �
X

NI

i¼1

~Mi: (99)

In Ref. [48], the quantity M1ðM1Þ defined in (97) was

labeled
ffiffiffi

ŝ
p ðsubÞ

min :

M1ðM1Þ �
ffiffiffi

ŝ
p ðsubÞ

min ðM1Þ; (100)

since it provides a lower bound on the parton-level center-
of-mass energy of the parent subsystem V 1 � I1, not
counting the uninteresting upstream visible momentum
U�. In the special case of a vanishing upstreammomentum

(uT ¼ 0), M1ðM1Þ reduces to the global variable
ffiffiffi

ŝ
p

min

from [52]:

lim
uT!0

M1ðM1Þ ¼
ffiffiffi

ŝ
p

minðM1Þ: (101)

We will not consider the next simplest example (M2)
until Sec. XH, as simple analytic (as opposed to numerical
or iterative) formulas for it are only known to exist in
certain special cases [53], such as when M1 ¼ M2 ¼
M1 ¼ M2 ¼ 0, or when the upstream visible momentum
~uT is either zero or (anti-)parallel to the missing transverse
momentum ~p6 T .

2. The early-partitioned, >-projected
invariant mass: MN>

Here, the momenta P�
a and Q�

a of the composite parti-
cles are first formed in 1þ 3 dimensions, as in (53) and
(57), then afterwards are projected on the transverse plane
according to the mass-preserving > method defined in
Eq. (8) of Sec. III A. This results in transverse masses of
the parents given by

15Note the analogy between ~p6 T and M1. ~p6 T measures the total
transverse momentum of the whole collection of missing parti-
cles. Similarly, M1 measures the total mass of the whole
collection of missing particles. Both ~p6 T and M1 are given by
simple sums of the corresponding quantities ~qiT and ~Mi of the
individual missing particles, compare (51) and (99).
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M2
a>ðp�

a>;q
�
a>; ~�aÞ � ðpa> þ qa>Þ2 (102a)

� ðea> þ ~ea>Þ2
� ð ~paT þ ~qaTÞ2; (102b)

where the transverse momenta ~paT and ~qaT are given by
(54) and (58), while the transverse energies ea> and ~ea>
are given by (68) and (77).

Then, the ‘‘early-partitioned, >-projected’’ variable
MN> is defined in a manner very similar to (92)

MN>ðMÞ � min
P

~qiT¼ ~p6 T

�

max
a

½Ma>ðp�
a>;q

�
a>; ~�aÞ�

�

: (103)

Just like MN, this variable also depends only16 on the N
summed-invisible-mass parameters Ma within M as op-
posed to the NI individual invisible masses ~Mi within ~�.
Equation (103) again represents a constrained minimiza-
tion problem for the 3NI variables ~qiT and qiz. Note that in
spite of its transverse index, MN> still depends on the
longitudinal momenta qiz through the transverse energy
~ea>, see (77b).
In order to gain some intuition, let us again consider the

simplest case of N ¼ 1. The minimization of (103) is once
again straightforward and the minimum is found at

~qiT ¼ ~p6 T

~Mi

M1

; (104)

qiz ¼ q1z

~Mi

M1

; (105)

with an arbitrary choice of q1z. This leads to

M2
1>ðM1Þ �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p2

1T

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

q

�

2 � u2T: (106)

Comparing (106) to (97), we see that

M1> ¼ M1: (107)

This is in fact a special case of the more general mathe-
matical identity

MN> ¼ MN; (108)

for which a proof is provided in the appendix—see
Eq. (B49). This identity reveals that transverse quantities
do not necessarily ‘‘forget’’ about relative longitudinal
momenta. In particular, (108) teaches us that whenever
the composite particles are formed before the transverse
projection, the information about the relative longitudinal
momenta is retained, and the result is the same as if every-
thing was done in 1þ 3 dimensions throughout. As a
result, MN> automatically inherits all the advantages and
disadvantages of its 1þ 3 cousin MN .

3. The late-partitioned,>-projected invariant mass:M>N

This is the first example of an ‘‘early-projected,’’ ‘‘late-
partitioned’’ variable. We follow the procedure of the
previous Sec. VII C 2, only this time we switch the order
of the operations, and we first>-project the momentum of
each individual particle on the transverse plane, before
forming composite particles. The transverse invariant
mass of each composite parent is then given by

M2
>aðp�

>a;q
�
>a; ~�aÞ � ðp>a þ q>aÞ2 (109a)

� ðe>a þ ~e>aÞ2
� ð ~paT þ ~qaTÞ2; (109b)

with ~paT and ~qaT still given by (54) and (58), while the
composite transverse energies e>a and ~e>a are given by
(69) and (78), correspondingly. Notice that these expres-
sions do not contain the longitudinal momenta piz and qiz.
This is in contrast to the ‘‘early partitioned’’ case repre-
sented by (68) and (77), where the longitudinal momenta
appear explicitly. The comparison between (68) and (77)
on the one hand, and (69) and (78) on the other, nicely
illustrates the main point of Sec. V—that by adding the
momenta before the projection, one retains sensitivity to
the relative longitudinal momenta. Conversely, when the
operations are performed in reverse order and the trans-
verse projection is done first, the longitudinal momenta
completely drop out of the game.
Now we are ready to apply the usual definition and

obtain

M>NðMÞ � min
P

~qiT¼p~T

fmax
a

½M>aðp�
>a;q

�
>a; ~�aÞ�g: (110)

Let us again investigate the simplest case of N ¼ 1.
With the help of the transverse momentum conservation
constraint (51), Eq. (110) reduces to

M2
>1 ¼ min

P

~qiT¼p~T

��

X

NV

i¼1

ei> þX

NI

i¼1

~ei>
�

2 � u2T

�

¼
�

X

NV

i¼1

ei> þ min
P

~qiT¼p~T

�

X

NI

i¼1

~ei>
��

2 � u2T:

The minimum is once again found at (104) and we get

16At this point, readers who are familiar with the Cambridge
mT2 variable [7,8] have probably recognized that for the special
case of N ¼ 2, the MN> variable (103) recovers the Cambridge
mT2. Note that the original literature [8] on the Cambridge mT2
variable also defined more general variables mTX, e.g., mT3, mT4,
etc. However, we caution readers to make the distinction be-
tween the index ‘‘N’’ in MN>, which refers to the number of
hypothesized parents, and the index ‘‘X’’ in the Cambridge mTX,
which stood for the total number of invisible particles (in this
paper denoted by NI ). For example, the index ‘‘2’’ in the
Cambridge mT2 notation implies the presence of exactly two
invisible particles, the number of parents already being implicitly
assumed to be two. In contrast, the variableM2> defined in (103)
does not imply any particular number of invisible particles, and
in this sense is equivalent to the whole class of mTX for any X.
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M2
>1ðM1Þ ¼

�

X

NV

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
i þ ~p2

iT

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

q

�

2 � u2T: (111)

As expected, this result differs from (106), although the
two formulas follow a similar pattern. The difference is
only in the term corresponding to the visible sector, where
the transverse energy of the composite visible particle is
computed differently, compare (68a) and (69).

An interesting result emerges if we consider the further
simplification that all visible particles are massless, i.e.,
Mi ¼ 0,8i. This, in fact, is a very good approximation for
the leptons and quarks/gluons of the SM, whose masses
can be safely neglected. SettingMi ¼ 0 in (111) and using
(83), we get

lim
Mi!0

M2
>1ðM1Þ ¼

�

hT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

q

�

2 � u2T: (112)

This result is quite interesting. It allows us to reinterpret the
usual hT variable in terms of a bona fide invariant mass
variable like M>1, properly accounting for the effects of
upstream visible momentum uT and the total mass M1 of
the invisible particles present in the event. We shall return
to this point in Sec. IX.

Another interesting result follows from Eq. (112) in the
special case when we set M1 ¼ 0. Using (84), we get

lim
Mi!0

M2
>1ðM1¼0Þ¼ ðhTþp6 TÞ2�u2T ¼m2

eff�u2T; (113)

providing a connection between the ‘‘effective mass’’ meff

and M>1ð0Þ.

4. The late-partitioned, _-projected mass: M_N
This is the second example of an ‘‘early-projected’’

variable, only this time we use the speed-preserving _
projection described in Sec. III B. Correspondingly, the
individual visible (invisible) particles will be characterized
by their 3-speeds Vi ( ~Vi) instead of their masses Mi ( ~Mi)
and so we remind the reader of the notation introduced in
(49) and (50).

The 1þ 2momentum vectors of the individual particles
after the _ projection are obtained from (17)

p�
i_ � ðei_; ~pi_Þ ¼

�

piT

Vi

; ~piT

�

; (114)

q�i_ � ð~ei_; ~qi_Þ ¼
�

qiT
~Vi

; ~qiT

�

: (115)

Then, we form composite particles with _ projected 1þ 2
momenta p�_a and q�_a given by (66) and (75), respectively.

The transverse parent masses are now formed in terms of
p�_a and q�_a as follows

M2_aðp�_a;q�_a; ~vaÞ� ðp_aþq_aÞ2 (116a)

�ðe_aþ~e_aÞ2�ð ~paTþ ~qaTÞ2; (116b)

where the transverse energies e_a and ~e_a are specified by
(71) and (80) and the transverse momenta ~paT and ~qaT are
given by (54) and (58).
This is a convenient place to introduce another two small

pieces of notation.17 First, we will need to define a ‘‘maxi-
mum invisible velocity parameter’’ Va for each parent Pa

according to

Va � max
i2Ia

½ ~Vi�: (117)

Then, we would like to denote by V the set of all the above
velocity parameters, i.e.,

V ¼ fVaja 2 P g: (118)

Now, we are in a position to state (see proof in Sec. IXA)
that the only dependence of the ‘‘late-partitioned’’,
_-projected mass variableM_N on the velocity parameters
of the invisible particles is through V, i.e.,:

M_NðVÞ � min
P

~qiT¼ ~p6 T

½max
a

½M_aðp�_a;q�_a; ~vaÞ��: (119)

Once again, it is instructive to consider the special case
of N ¼ 1. With the help of (51), Eq. (119) becomes

M2_1ðV1Þ ¼ min
P

~qiT¼p~T

��

X

NV

i¼1

ei_ þX

NI

i¼1

~ei_
�

2 � u2T

�

¼
�

X

NV

i¼1

ei_ þ min
P

~qiT¼p~T

�

X

NI

i¼1

~ei_
��

2 � u2T

¼
�

X

NV

i¼1

ei_ þ min
P

~qiT¼p~T

�

X

NI

i¼1

qiT
~Vi

��

2 � u2T:

The minimization selects the invisible particle with the
largest speed, whose transverse momentum becomes ~p6 T ,
while all other invisible particles have qiT ¼ 0. This con-
figuration leads to the final answer

M2
_1ðV1Þ ¼

�

X

NV

i¼1

piT

Vi

þ p6 T

V1

�

2 � u2T: (120)

When we make the approximation that all visible parti-
cles are massless (Vi ¼ 1), we again obtain a relation to hT :

lim
Vi!1

M2_1ðV1Þ ¼
�

hT þ p6 T

V1

�

2 � u2T; (121)

which is the analogue of (112) for the case of _ transverse
projections. But note that unlike (112), here the unknown
parameter characterizing the invisible sector is the maxi-
mum speed parameter V1 instead of the summed-invisible-
mass parameter M1.
Finally, if in addition, we also assume that all invisible

particles are massless as well, then

17Contrast with the definition of Ma in Eq. (94) and the
definition of M in Eq. (93).
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~V i ¼ 1; 8i ) V1 ¼ 1;

so that

lim
Vi!1

M2
_1ðV1¼1Þ¼ ðhTþp6 TÞ2�u2T ¼m2

eff�u2T; (122)

which is the analogue of (113). The fact that (113) and
(122) are the same should not come as a surprise: recall
from Sec. IVB that the two transverse projections> and _
are equivalent in the massless limit.

5. The early-partitioned, _-projected mass: MN_
Here, we follow a procedure analogous to that of

Sec. VII C 2, where the composite momenta P
�
a and Q

�
a

are first formed in 1þ 3 dimensions, before being pro-
jected on the transverse plane, only this time we use the _
projection for this purpose:

X

i2V a

P�
i ! P�

a!_ p�
a_ ¼ ðea_; ~pa_Þ; (123)

X

i2Ia

Q�
i ! Q�

a!_ q�
a_ ¼ ð~ea_; ~qa_Þ: (124)

The transverse parent masses are now formed in terms of
p�
a_ and q�

a_ as usual

M2
a_ðp�

a_;q�
a_; ~vaÞ� ðpa_þqa_Þ2 (125a)

�ðea_þ~ea_Þ2�ð ~paTþ ~qaTÞ2: (125b)

Here, the composite transverse momenta ~pa_ and ~qa_ are
still given by (54) and (58), while the transverse energies
ea_ and ~ea_ are given by (70) and (79), correspondingly.

Then, the early-partitioned, _-projected variable is de-
fined as usual:

MN_ðVÞ � min
P

~qiT¼p~T

½max
a

½Ma_ðp�
a_;q�

a_; ~vaÞ��: (126)

Once again, let us specify this to the case of N ¼ 1.
Using (51), we get

M1_ ¼ min
P

~qiT¼p~T

½ðe1_ þ ~e1_Þ2 � u2T� (127a)

¼ ðe1_ þ min
P

~qiT¼p~T

½~e1_�Þ2 � u2T: (127b)

The minimization is performed over the 3NI variables ~qiT
and qiz, i ¼ 1; 2; . . . ; NI and the result is

M1_ðV1Þ ¼
�

e1_ þ p6 T

V1

�

2 � u2T (128a)

¼
0

B

@

p1T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
1T þ p2

1z

q
E1 þ p6 T

V1

1

C

A

2

� u2T; (128b)

which is similar, but not equivalent to (120).

6. The late-partitioned, �-projected mass: M�N
Here, we follow the procedure of Secs. VII C 3 and

VII C 4only this time we use the � transverse projection
from Sec. III C. One first forms the 1þ 2 momenta of the
individual particles

p�
i� � ðei�; ~pi�Þ ¼ ðpiT; ~piTÞ; (129)

q�i� � ð~ei�; ~qi�Þ ¼ ðqiT; ~qiTÞ; (130)

then the composite momenta

p ��a � ðe�a; ~p�aÞ ¼
�

X

i2V a

piT;
X

i2V a

~piT

�

; (131)

q ��a � ð~e�a; ~q�aÞ ¼
�

X

i2V a

qiT;
X

i2V a

~qiT

�

: (132)

The transverse parent masses are now formed in terms of
p��a and q��a as usual:

M2�aðp��a;q��aÞ � ðp�a þ q�aÞ2; (133a)

� ðe�a þ ~e�aÞ2 � ð ~paT þ ~qaTÞ2; (133b)

and the ‘‘late-partitioned’’, �-projected mass variableM�N
is defined as before:

M�N � min
P

~qiT¼p~T

fmax
a

½M�aðp��a;q��aÞ�g: (134)

Notice that the M�N variables do not depend on any
unknown parameters related to the invisible sector
(i.e., we need no ‘‘O’’ where previously we needed an M
or a V) and so can be uniquely computed in terms of the
measured momenta of the visible particles and the missing
transverse momentum alone.
Specializing (134) to the simplest case of N ¼ 1, we get

M2
�1 ¼ min

P

~qiT¼p~T

��

X

NV

i¼1

ei� þX

NI

i¼1

~ei�
�

2 � u2T

�

¼
�

X

NV

i¼1

ei� þ min
P

~qiT¼p~T

�

X

NI

i¼1

~ei�
��

2 � u2T

¼
�

X

NV

i¼1

piT þ min
P

~qiT¼p~T

�

X

NI

i¼1

qiT

��

2 � u2T:

The minimization over the 2NI variables ~qiT is straightfor-
ward and we obtain several equivalent expressions for the
answer

M2
�1 ¼

�

X

NV

i¼1

piT þ p6 T

�

2 � u2T (135a)

¼ ðhT þ p6 TÞ2 � u2T; (135b)

¼ m2
eff � u2T: (135c)

showing the close connection between M�1 and the usual
hT and meff variables. We see that in the absence of any
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upstream visible momentum ( ~uT ¼ 0), the variable M�1
itself is nothing but the effective massmeff . However, these
two variables differ if (as is typically the case) the event
also has some nonzero upstream momentum uT . The im-
portance of the result (135c) is that it teaches us how to
properly account for the presence of UVM in such cases:
uT should be subtracted in quadrature frommeff in order to
obtain the proper invariant mass variable (in this
case M�1). Furthermore, it also reveals the physical mean-
ing of the widely used meff variable (see also Sec. XB
below): it is the minimum allowed transverse mass
constructed out of ‘‘�’’-projected momenta, for a semi-
invisibly decaying parent, whenever that parent is pro-
duced exclusively with uT ¼ 0 (i.e., with no additional
upstream momentum in the event).

7. The early-partitioned, �-projected mass: MN�
Finally, we discuss the early-partitioned, �-projected

version MN�, where the composite momenta are first
formed in 1þ 3 dimensions, then transversified via the
‘‘�’’ projection:

X

i2V a

P
�
i ! P

�
a !� p�

a� ¼ ðea�; ~pa�Þ; (136)

X

i2Ia

Q�
i ! Q�

a !� q�
a� ¼ ð~ea�; ~qa�Þ; (137)

where in light of (72) and (81)

p �
a� ¼ ðea�; ~pa�Þ ¼

�
�

�

�

�

�

�

�

�

X

i2V a

~piT

�

�

�

�

�

�

�

�

;
X

i2V a

~piT

�

; (138)

q �
a� ¼ ð~ea�; ~qa�Þ ¼

�
�

�

�

�

�

�

�

�

X

i2Ia

~qiT

�

�

�

�

�

�

�

�

;
X

i2Ia

~qiT

�

: (139)

These (1þ 2) composite momenta are now used to form
the corresponding transverse parent masses

M2
a�ðp�

a�;q�
a�Þ � ðpa� þ qa�Þ2 (140a)

� ðea� þ ~ea�Þ2 � ð ~paT þ ~qaTÞ2: (140b)

Now the ‘‘early partitioned’’, �-projected mass variable
MN� is defined as before:

MN� � min
P

~qiT¼ ~pT

½max
a

½Ma�ðp�
a�;q�

a�Þ��: (141)

Just like its cousin M�N defined in (137), MN� does not
depend on any unknown parameters like Ma or Va.

Specifying (141) to the simplest case of N ¼ 1, we get

M2
1� ¼ min

P

~qiT¼p~T

½ðe1� þ ~e1�Þ2 � u2T�

¼ ðe1� þ min
P

~qiT¼p~T

½~e1��Þ2 � u2T

¼
�

e1� þ min
P

~qiT¼p~T

�
�

�

�

�

�

�

�

�

X

NI

i¼1

~qiT

�

�

�

�

�

�

�

�

��

2 � u2T:

The minimization over the 2NI variables ~qiT gives

M2
1� ¼

�
�

�

�

�

�

�

�

�

X

NV

i¼1

p~T

�

�

�

�

�

�

�

�

þp6 T

�

2 � u2T (142a)

¼ ðj ~p6 T þ ~uTj þ p6 TÞ2 � u2T (142b)

¼ 2ð ~p6 T � ð ~p6 T þ ~uTÞ þ p6 Tj ~p6 T þ ~uTjÞ; (142c)

providing a connection between our M1� variable and the
usual missing transverse momentum p6 T . In order to see the
physical meaning of p6 T , let us take the ‘‘no upstream
momentum’’ limit uT ! 0 in (142b) or (142c), resulting in

lim
uT!0

M2
1� ¼ 4p6 2

T: (143)

One can thus interpret the variable 2p6 T (and not just
the p6 T) as the minimum allowed ‘‘�’’-projected transverse
mass of a semi-invisibly decaying parent, whenever the
parent is produced exclusively with uT ¼ 0, i.e., with no
additional upstream momentum in the event. However, in
situations when the parent is produced inclusively, with
uT � 0, the relevant variable to consider would be M1� as
given by (142b) or (142c), which properly accounts for the
uT effect (see also Sec. XA below).

VIII. ADDITIONALLY PROJECTED VARIABLES

A. Momentum decompositions with respect to ~uT

An additional level of projection within the plane trans-
verse to the beam has been shown to be useful in certain
circumstances [25,34]. To orient such projections, we note
that the total transverse momentum ~uT of the UVM cate-
gory breaks the rotational symmetry of the transverse plane
and selects two preferred directions Tk (along ~uT) and T?
(transverse to ~uT), as shown in Fig. 9. Having projected the
1þ 3 momentum vectors onto the transverse plane as in
Fig. 2, one may then additionally project the resulting
1þ 2 transverse momentum vectors onto these special
directions, as illustrated in Fig. 9. The corresponding
momentum components resulting from such ‘‘double
transverse’’ projections will carry a ‘‘double transverse’’
index: ‘‘T ?’’ for components along T? and ‘‘T k’’ for
components along Tk (see Fig. 9). For example, the ~p6 T

vector can be decomposed into a T? component ~p6 T?

~p6 T? ¼ 1

u2T
~uT 	 ð ~pT 	 ~uTÞ; (144)
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and a Tk component ~p6 Tk

~p6 Tk ¼ ~p6 T � ~p6 T? ¼ 1

u2T
ð ~p6 T � ~uTÞ ~uT: (145)

By definition, the upstream transverse momentum vector
~uT has only a Tk component, i.e.,

~u Tk ¼ ~uT; (146)

~u T? ¼ 0: (147)

In view of (51) and (147), momentum conservation in the
T? direction reads

X

NI

i¼1

~qiT? ¼ ~p6 T? ¼ �X

NV

i¼1

~piT?: (148)

It is precisely the absence of a ~uT? term in this equation
which allows one to derive exact analytical formulas for the
T? doubly-projected variables defined next in Sec. VIIIB.

B. Doubly-projected mass-bound variables

1. Homogeneously-doubly-projected
mass-bound variables

For our purposes, the additional projections in Fig. 9
allow us to extend the original set of mass-bound variables
from Table III by considering the ‘‘doubly-projected’’
variables shown in Table IV.18 The benefit of such addi-
tionally projected varibles has been noted and discussed in
[25,34]. For example, the shapes and the kinematic end
points of the distributions of T?-projected variables can be
independent of the value of uT . Therefore, such distribu-
tions can be constructed from the whole event sample,
without any loss in statistics due to a specific uT selection.
Furthermore, the relation (147) leads to significant simpli-
fications in the analytical treatment of T? doubly-projected
variables. For example, for singly projected variables, the
case of N ¼ 2 is untractable by analytical means, and
(apart from some special cases [53]) has to be treated

numerically [38,39]. In contrast, one can derive exact
analytical formulas for calculating N ¼ 2, T? doubly-
projected mass-bound variables on an event-per-event ba-
sis, without any need for numerical minimizations [25,34].
In general, the variables in Table IV are independent,

with one exception:

MN�? � M�N?: (149)

Later on in Sec. XIB (see, in particular, Fig. 13(b)], we
shall consider a specific example illustrating some of the
homogeneously-doubly-projected variables from Table IV.

2. Heterogeneously-doubly-projected
mass-bound variables

Notice that in defining the mass-bound variables in
Table IV, we have chosen the second level of projection
(along T?) to be performed with the same type of trans-
verse projection (‘‘>’’, ‘‘_’’ or ‘‘�’’) which was used to
project into the transverse plane. Of course, this does not
have to be the case—and by allowing for different types of
transverse projections for T and for T?, one would obtain
18 additional variables with ‘‘mixed’’ transverse projec-
tions. These heterogeneously-doubly-projected variables
are listed in Table V, where the additional subindex on ?
specifies the type of T? projection as being of the ‘‘>’’,
‘‘_’’ or ‘‘�’’ type.19 As usual, the sequence of indices in
both Tables IV and V represents the order in which the
operations are to be performed. For example, M�N?>
means
(i) project all objects using the massless ‘‘�’’ projection,

then
(ii) partition and agglomerate into N parents, then
(iii) project into the direction perpendicular to ~uT using

the mass-preserving ‘‘>’’ projection, then, as ever,
(iv) minimize over all values of the unknown momenta

that satisfy the constraints.
Interestingly, most of the ‘‘?�’’ heterogeneously-

doubly-projected variables turn out to be related to each
other and to the corresponding homogeneously-doubly-
projected variables from Table IV. For example:

MN�? � MN�?� ¼ MN>?� ¼ MN�?> ¼ M>N?� ; (150)

M�?N � M�?�N ¼ M�?>N ¼ M>?�N; (151)

M�N? � M�N?� ¼ MN>?� ¼ MN�?> ¼ M>N?� ; (152)

where the last line (152) follows from (149) and (150). The
one remaining variable M�N?> is rather similar to

M>N?> � M>N?, since the difference between them

may arise only due to nonzero masses (Mi � 0) of the
individual visible particles.

FIG. 9 (color online). Transverse vector decomposition onto
the direction Tk specified by the UVM transverse momentum

vector ~uT and the direction T? orthogonal to it [25,34]. All
vectors shown are in the plane perpendicular to the beam axis.

18To save space, Table IV lists only T? projected variables. An
analogous set of Tk projected variables is obtained by replacing
the T? projection in Table IV with a Tk projection.

19Another set of 18 additional variables can be trivially ob-
tained from Table V by considering a Tk type of projection at the
second level instead.
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IX. PROPERTIES OF THE
MASS-BOUND VARIABLES

We should stress that proliferating the number of kine-
matic variables in the literature is certainly not among the
goals of this paper—on the contrary, we emphasize that
these variables are different implementations of the general
principle described in Sec. VII A. What’s more, we will
soon begin to reveal further connections of these variables
to each other (in Sec. IXC) and to existing proposals
(in Sec. X). But before we proceed, perhaps now is a
good time to summarize what we have accomplished so far.

The previous discussion has hopefully convinced the
reader that, once the decision on the targeted event topol-
ogy (Fig. 5) is made, the choice of relevant invariant mass
variables is straightforward and rather unambiguous.
Following the general recipe outlined in Sec. VII B, one
is able to overcome the two main obstacles in any analysis
involving missing momentum:

(i) The fact that the momenta of the invisible particles
are unknown. To construct a bound, this problem is
solved by performing a minimization over all pos-
sible values of the invisible momenta, consistent
with the measured ~p6 T . The minimization fixes the
values of the invisible momenta (e.g., as in (95) and
(96)) and from that point on, one works with fully
specified kinematics in the event. Of course, the
momenta found in the process of minimization, are
not equal to the actual momenta of the invisible
particles in the event, although in some cases they
can be close, see [19].

(ii) The fact that the total number and the masses of the
invisible particles are unknown. This problem is
also resolved through the minimization—as we
have seen in the explicit N ¼ 1 examples discussed
in Sec. VII C, the mass-bound resulting from the
minimization turned out to be a function which
depends only on a set of N summed-mass parame-
ters (93) or a set of N 3-speeds (118), and is in-
sensitive to the number of invisible particles or to

the fine structure of the individual masses ~Ma or
3-speeds ~Va connected to parent Pa. We set out a
general proof for general N in Sec. IXA below.

It should be recognized that for any practical applica-
tion, there is no need to consider every one of the variables
in Tables III and IV, since some will be better suited than
others to the particular task at hand.
For example, we have seen that the ‘‘_’’-projected

quantities assume knowledge of the ~pT and the speed of
the particle, but leave the mass and pz undetermined. This
means that all of the ‘‘_’’-projected variables in Tables III
and IV should be considered appropriate only for experi-
mental situations in which the pT and speed of the particles
are known, but nothing is known about their masses or
longitudinal momenta. Such situations may exist—for ex-
ample if pT can be determined from the particles’ bending
radii in a solenoidal magnetic field and speed can be
inferred from time-of-flight information or from the char-
acteristic angle of any emitted Čerenkov radiation.
However, such cases are the exception, rather than the
norm in current experiments.20 In what follows, we shall
therefore give greater attention to the remaining three
classes of variables: unprojected, ‘‘>’’-projected, and
‘‘�’’-projected.
We shall denote a generic mass-bound variable as MF ,

where the composite index F is made up from (any
number of) objects taken from the set fN;>;_;�g. There
are seven such possibilities21:

F 2 fN;N>;>N;N�;�N;N_;_Ng: (153)

TABLE IV. An extended version of Table III, containing the additional variables found by including the option of a T? projection
shown in Fig. 9. An analogous set of variables is obtained by considering a Tk projection instead.

Type of variables

Operations

NotationFirst Second Third Fourth

Early-partitioned Partitioning T ¼ > projection ?¼ > projection on T? Minimization MN>?
Doubly projected Partitioning T ¼ _ projection ?¼ _ projection on T? Minimization MN_?
MNT? Partitioning T ¼ � projection ?¼ � projection on T? Minimization MN�?
Late-partitioned, T ¼ > projection ?¼ > projection on T? Partitioning Minimization M>?N

Doubly projected T ¼ _ projection ?¼ _ projection on T? Partitioning Minimization M_?N

MT?N T ¼ � projection ?¼ � projection on T? Partitioning Minimization M�?N

In-between partitioned, T ¼ > projection Partitioning ?¼ > projection on T? Minimization M>N?
Doubly projected T ¼ _ projection Partitioning ?¼ _ projection on T? Minimization M_N?
MTN? T ¼ � projection Partitioning ?¼ � projection on T? Minimization M�N?

20Even in those cases, it is usual that ~pT is determined from a
measured track, so one would also expect to be able to recon-
struct the polar angle �, from that track, which would permit pz

and hence the full 1þ 3-vector of the particle to be determined.
There would be no need to then restrict oneself to the subset of
that information held by the corresponding ‘‘_’’-projected
quantities.
21The number of possibilities increases to 17 if one allows a
second level of projection, as discussed in Sec. VIII.
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For later convenience, we also introduce the generic nota-
tion F> for the >-projected variables:

F > 2 fN>;>Ng (154)

F _ for their two ‘‘_’’-projected counterparts:

F _ 2 fN_;_Ng; (155)

and F � for the two ‘‘�’’-projected equivalents:

F � 2 fN�;�Ng: (156)

The large multiplicity is partially due to the different
possible ways to transversify the energy-momenta of the

composite daughter particles whose masses Ma and ~Ma

are typically nonzero. First, one can choose whether or not
to project, and then those projections can be of type >, _
or � (see Sec. III). In addition, as emphasized in Sec. V, the
operations of partitioning into composite particles and
transversifying do not commute, so that in general we
obtain nonequivalent variables simply by switching the
order of those operations. As illustrated in Tables III, IV,
and V, we use the ordering of indices on each variable
(from left to right) to indicate the order of the correspond-
ing operations. For example, M2> means that we add the
1þ 3 vectors first to form two composite visible daughter
particles and transversely project later, while M>2 implies
the opposite—make a> transverse projection before form-
ing the composite daughter particles.

A. Dependence of mass-bounds MF on M, V, etc

We have stated that the dependence of the mass-bound
variables, MF , on parameters of the hypothesis is always

confined to a set of N parameters contained withinM or V
etc.We have not yet proved this statement for general values
ofN, or indicatedwhetherwe can demonstrate this to be true
for other classes of projection not already discussed. All we
have proved, so far, are the following statements, which are
specific to N ¼ 1 and consider at most one projection:

(i) That M1 depends only on M ¼ fM1g (see (97))
(ii) That M1> depends only on M ¼ fM1g (see (106))
(iii) That M>1 depends only on M ¼ fM1g (see (111))
(iv) That M_1 depends only on V ¼ fV1g (see (120))
(v) That M1_ depends only on V ¼ fV1g (see (128))
(vi) That M1� depends on no hypothesis parameters,22

(vii) That M�1 depends on no hypothesis parameters.

We now seek to generalize the proofs of the above to all
other values of N, in a manner that does not make specific
requirements on F . Specifically, we would like to prove
that:

“MF depends only on SF ¼ fSF
1 ; . . . ;S

F
N g; ” (157)

where SF is a set of N parameters, of which there is one

(SF
a ) for each parent Pa, and where the nature of SF

a

depends on the type of projection in F (which may be
arbitrary), and on a, but not on the number N of parents in
total. In particular, we have already seen to expect
SF ¼ fM1g when F 2 f1; 1>;>1g, and to expect SF ¼
fV1g when F 2 f1_;_1g, and we are now seeking
to generalize these to results like ‘‘SF ¼ fM1;M2g
when F 2 f2; 2>;>2g’’ or ‘‘SF ¼ fV1;V2;V3g when

F 2 f3_;_3g’’etc.
What we will actually succeed in proving is the margin-

ally less general statement that:

which reminds us that the generality of the desired (but
unattainable) result (157) is constrained (for any particular
projectionF ) by the need to prove the result for the N ¼ 1
case. In other words, though the proof of (158) found
below will be valid for any projection, the desired result
(157) will only be true for projections that experience
simplification in the N ¼ 1 case.
The proof of (158) is astonishingly simple. Consider an

arbitrary mass-bound variable

MF � min
P

~qiT¼p~T

½max
a

½MaðSF
a Þ��: (159)

where each parent mass Ma depends on a corresponding

set of invisible parameters SFi

S F
a � fSFi ji 2 Iag (160)

(compare this to the analogous relations (48) and (50)). Let
us now perform the minimization in (159) in two steps. In
the first step, for each parent, we hold the sum of the
invisible daughters’ momenta constant, and minimize
over the internal partition of invisible momentum between
those daughters:

MF ¼ min
P

~qaT¼p~T

½ min
P

i2Ia

~qiT¼ ~qaT

½max
a

½MaðSF
a Þ���: (161)

Since the internal partitions over the invisible momenta are
done independently for each parent, (161) can be equiv-
alently rewritten as

MF ¼ min
P

~qaT¼p~T

½max
a

½ min
P

i2Ia

~qiT¼ ~qaT

½MaðSF
a Þ���: (162)

Now we use the assertion that for N ¼ 1 (i.e., for any
individual parent) the minimization over internal partitions

yields a function of a single parameter SF
a as opposed to

the whole set of parameters SF
a :

22Note that depending on ‘‘no hypothesis parameters’’ is a
special case of depending on a very dull set of parameters
O ¼ fO1g which contain no information.
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min
P

i2Ia

~qiT¼ ~qaT

½MaðSF
a Þ� � MaðSF

a Þ: (163)

Substituting (163) into (162), we obtain the desired result

MF ðSF Þ ¼ min
P

~qaT¼p~T

½max
a

½MaðSF
a Þ��; (164)

which makes it obvious that MF can only be a function of

the set of parameters SF ¼ fSF
1 ;S

F
2 ; . . . ;S

F
n g.

B. Parental masses and upper kinematic end points

By construction, the mass-bound variables of Table III
are designed to provide an event-by-event lower bound on
the true invariant mass Mmax

P of the heaviest parent

Mmax
P � max

a2P
½Ma�: (165)

Such bounding properties are contingent on us being able
to make appropriate choices when analyzing the events.
We initially restrict our discussion of the bound to the case
where the set of momentum configurations A permitted
under our assumptions is equal to the set of momenta E
sampled by nature. We observe that to ensure A ¼ E we
must (a) correctly reconstruct the event topology (the
number of parents, the number and types of daughters,
and the association of daughters to parents); and
(b) employ the true values of the parameters S used in
constructing of any mF variable—i.e., Vtrue for F _, and
Mtrue for F> or F N . Under A ¼ E conditions, all MF

variables are designed to return values smaller than the
mass of the heaviest parent

MF � Mmax
P ðA ¼ EÞ: (166)

From Eq. (166), it follows directly that, if we were to
consider the differential distribution of the same variable
MF over all events, the upper kinematic end pointMmax

F of

this distribution also satisfies

Mmax
F � max

all events
½MF � � Mmax

P ðA ¼ EÞ; (167)

where we make explicit the requirement that the true values
of the S parameters are used.

There remains the important question as to the circum-
stances under which the inequalities in (166) and (167) are
saturated—i.e., the conditions for which a measurement of
the MF kinematic end point will provide a determination

of (rather than simply a lower bound on) the largest parent
mass Mmax

P .

We observe that when A ¼ E: (i) that for any selected
event � 2 E the minimization picks out some nonempty
subset of momenta K� that satisfy the global minimum;
(ii) that K� 
 A; (iii) we may define for convenience

Mmax
F ðcÞ ¼ maxa2P ½MaF ðcÞ� for any configuration

c 2 A; (iv) that since we minimize over any unknown
momentum components, the value of Mmax

F evaluated for

some minimum configuration k 2 K cannot exceed the
value that would be obtained elsewhere in A (and there-
fore in E); (v) that projections T 2 f>;_;�g do not in-
crease the invariant mass (33); and (vi) that MF can

therefore not exceed the largest parent’s invariant mass
since

MF �Mmax
F ðK�Þ�Mmax

F ð�Þ�Mmax
P ðA¼EÞ: (168)

The necessary and sufficient condition for saturation of
(167) is therefore that there exist some event � for which
two inequalities in (168) simultaneously become
equalities.
Given that Mmax

F � maxa2P ½MaðK�Þ�, it follows from
(168) that a necessary condition for saturation is that

9ð� 2 E; a 2 P Þ½Mað�Þ ¼ Mmax
P �: (169)

There are cases for which (169) is not satisfied, and for
which the inequality in (167) must therefore remain un-
saturated. For example, if the decay of some Pa proceeds
exclusively via an intermediate on-shell resonance, then
the set of physically observed momenta E is further re-
stricted to a subset ofA which need not contain any event
satisfying (169).23

The ‘‘�’’ projection discards all previous information
about the mass of the 1þ 3 vector being projected, and so
calculation of M�N will return the same value that would
be obtained if one were to set both Mi ¼ 0ð8i 2 V Þ and
Ma ¼ 0ð8a 2 P Þ. If all events contain massive invisibles
(or indeed massive visibles) in all daughter sets—as would
be the case for models like R-parity conserving supersym-
metry and UED—then (176) cannot be true for any M�a
and so M�N can only bound from below, rather than
determine, the mass of the heaviest parent. In
Appendix C, we prove the event-by-event inequality
MN� � M�N , so any bound that is unsaturated for M�N
must also be unsaturated for MN�.
Compared to the F � variables, the F> and F ¼ N

variables are subject to less stringent conditions for satu-
ration, because they retain mass information during the
process of (absence of) projection. Some of the necessary
conditions can be inferred from the results of in
Appendix B 1 and B 2. As an example of these less
stringent conditions, if jIaj � 0 8a, then a necessary
condition for saturation will include the existence of events
� 2 E with vanishing relative rapidity between P

�
a andQ

�
a

for some a 2 P .
As discussed in Sec. VII C, some of the widely used

collider variables like hT , meff and p6 T belong to the F �

23The conditions for saturation for an N ¼ 1 example contain-
ing on-shell intermediate particles were explored in [54].
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class of mass-bound variables, and as such can generally
only place a lower bound on the parent mass if nature
produces heavy invisibles. In order to really measure the
mass-scale of the new particles when massive invisible
particles are pervasive, one must work with variables
which retain the dependence on the missing mass
parameters and therefore belong to either the MN or the
MF> class of mass-bound variables. Other than the full

1þ 3 dim invariant mass, other common examples

of such variables include
ffiffiffi

ŝ
p

min [52] (discussed below
in Sec. XC), the transverse mass mT in the form [55]
that accounts for the mass of all daughters (shown in
Sec. XD), and the ‘‘stransverse mass’’ mT2 [7] (shown in
Sec. XH).

Conditions for saturation have been most thoroughly
explored for the N ¼ 1 and N ¼ 2 cases. One might
reasonably ask whether the bounds can still be saturated
for larger N. Saturation is indeed possible for N > 2 top-
ologies with similar kinematical configurations as for the
N ¼ 1 or N ¼ 2 cases. With increasing numbers of invis-
ible final state particles NI (which may or may not be a
result of increasing N) the density of states near the bound-
ary is reduced. Saturation is still possible for anyNI , but as
the multiplicity of invisible particles increases, the number
of events close to the end points becomes small, and
experimentally determining the true end point becomes
increasingly challenging.

Before concluding this subsection, we note that the MF

variables are still useful even when the true values of the
mass M (or speed V) parameters are not known. The most
conservative procedure in these situations of uncertainty is
to minimize MF over the complete physically relevant

range of any unknown parameter. This leads to Ma ! 0
for MN , MF>, and to Va ! 1 for MF � . The resulting,

conservative, MF variables still provide lower bounds on

the mass of the heaviest parent—though those bounds will
generally not be saturated.

A more sophisticated treatment is also possible. For
example, if the ‘‘true’’ value of the summed-mass parame-
ter set Mtrue for the calculation of MNðMÞ or MF>ðMÞ
were not known—then one could still view the set of end-
point measurements for all possible values of Ma as one
constraint among the N þ 1 unknowns Mmax

P and Ma,

(a ¼ 1; 2; . . . ; N). Not only is this valuable information
on its own, the derived functional relationship Mmax

P ðMÞ
is, in addition, often sufficient for determining the individ-
ual mass parameters Ma. The function Mmax

P ðMÞ, when
viewed as an N-dimensional hyper-surface in the (N þ 1)-
dimensional space spanned by Mmax

P and M, exhibits cer-

tain ridge or crease features, which commonly originate
from the point marking the set of true values of Mtrue

[24,26]. (The one-dimensional version of this phenomenon
was originally discussed in [10–13,21] and is known as the
mT2 ‘‘kink.’’ Also see [56] for algebraic singularity in
relation to the kink.)

C. Relations among the mass-bound variables

Some of the variables in Table III are related to each
other, either in general24

MN>ðMÞ ¼ MNðMÞ; (170)

MN�? ¼ M�N? ¼ MN>?� ¼ MN�?> ¼ M>N?� ; (171)

M�?N ¼ M�?>N ¼ M>?�N; (172)

or under some special circumstances, e.g., massless parti-
cles:

M>NðfMa ¼ 0g; fMi ¼ 0gÞ ¼ M�N; (173)

M>N?ðfMa ¼ 0g; fMi ¼ 0gÞ ¼ M�N?>: (174)

Given such exact identities like (170), the reader may
wonder why we even bothered to introduce separately
variables like MN> and MN . In our view, such redundancy
is a virtue, since it offers deeper intuitive understanding of
these kinematic variables, and allows one to think about the
same fundamental quantity in different contexts, e.g., in
(1þ 3)-dimensions or in (1þ 2)-dimensions.
We additionally find [see proof terminating in (B53) in

Appendix B 3] that the mass-bounds from Table III obey a
hierarchy:

MN ¼ MN> � M>N � M�N � MN�: (175)

Similarly, the doubly-projected mass-bounds from
Table IV obey the hierarchy

MN>? � M>N? � M>?N � M�?N � M�N? ¼ MN�?:
(176)

From these hierarchies, it becomes apparent that the
>-projected, late-partitioned variables bear a cost associ-
ated with the insensitivity to the longitudinal momenta.
By dropping this information, we necessarily weaken
the bound relative to the early-partitioned versions.
Interestingly enough, the order of projection and partition
has the opposite effect with the �-projection, since both
longitudinal and transverse information is contained in the
masses of the agglomerates, and hence by throwing away
the masses at a later stage, we in fact throw away maximal
information and are forced to produce the worst possible
bound.

X. CONNECTIONS TO OTHER VARIABLES
IN THE LITERATURE

The existing literature is abundant with a number of
(transverse) invariant mass variables which were suggested
(at various times and for a variety of reasons) for the study

24Previously in (107), we already encountered the N ¼ 1
version of Eq. (170). The general proof for arbitrary N is
provided in the appendix in Eq. (B49).
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of missing momentum event topologies (see [1] for a
recent review). At the same time, the mass-bound variables
which we defined earlier in Table III, were meant to be very
general, since they target the rather generic event topology
of Fig. 5, and are intended to have as few hidden assump-
tions as possible. It follows that we should be able to
correlate the most useful mass-scale variables in the litera-
ture to one of our mass-bound variables from Table III.25

The purpose of this subsection is to demonstrate that this is
indeed the case.

A. Missing transverse momentum pT

The defining feature of any ‘‘missing particle’’ event is
the presence of missing momentum (more precisely, miss-
ing transverse momentum) p6 T . This is due to the produc-
tion and escape of a certain number of ‘‘invisible’’
particles, which are either sterile, or very weakly interact-
ing, so that they are not seen in the detector. The p6 T

distribution26 is perhaps the most widely studied distribu-
tion in relation to new physics searches, especially in
models with WIMP dark matter candidates like supersym-
metry, UED, and so on. Equation (142) allows us to corre-
late the p6 T variable to our M1� variable as

M1� !uT!0
2p6 T: (177)

We see that asM1� is defined more and more inclusively, it
eventually becomes equal to twice the missing transverse
momentum. Thus in the case of a singly produced parent,
Eq. (177) allows us to interpret the usual p6 T variable (more
precisely, the variable 2p6 T) as a suitably constructed (in the
M1� sense) transverse invariant mass of the parent (see also
the discussion at the end of Sec. VII C 7). In accordance
with (173), in the uT ! 0 limit the upper kinematic end
point of the 2p6 T distribution gives a lower bound on the
parent mass in events interpreted as single-parent (N ¼ 1)
production.

B. Effective mass meff

The ‘‘effective mass’’ variable defined in (84) can be
also directly related to one of our variables, namely, the
late-partitioned, ‘‘�’’-projected variable M�1 discussed in
Sec. VII C 6. The previously derived Eq. (135c) reads

M2
�1 ¼ m2

eff � u2T: (178)

Therefore, we obtain the correspondence

M�1 !uT!0
meff ; (179)

allowing us to interpret meff as a suitably constructed (in
the M�1 sense) transverse invariant mass of a singly pro-
duced, semi-invisibly decaying parent (see also the discus-
sion at the end of Sec. VII C 6).
The comparison between Eqs. (177) and (179) rather

nicely illustrates the main point of Sec. V: that when it
comes to transverse projections and forming composite
particles, performing these operations in different order
yields different results. In the case at hand, when forming
composite particles before the ‘‘�’’ transverse projection,
one obtains 2p6 T , while by forming composite particles
after the ‘‘�’’ transverse projection, one obtains meff .

C. Florida
ffiffiffi

ŝ
p

min and
ffiffiffi

ŝ
p ðsubÞ

min variables

As already seen in Eq. (100), in the special case of
N ¼ 1, the unprojected mass-bound variable MN ¼ M1

is nothing but the subsystem
ffiffiffi

ŝ
p ðsubÞ

min variable from [48]:

M1ðM1Þ �
ffiffiffi

ŝ
p ðsubÞ

min ðM1Þ
¼

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p2

1T

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

q

�

2 � u2T

�

1=2
:

(180)

Restricting to events with vanishing upstream momentum

(uT ¼ 0), one gets the inclusive
ffiffiffi

ŝ
p

min variable from [52]:

lim
uT!0

M1ðM1Þ �
ffiffiffi

ŝ
p

minðM1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p2

1T

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
1 þ p6 2

T

q

:

(181)

As advocated in Refs. [48,52], practical applications of
M1ðM1Þ need not be limited to events in which the actual
number of parents wasN ¼ 1. The work of [48,52] showed
that in events with N ¼ 2, the peak in the M1ðM1Þ distri-
bution is correlated with the parent mass threshold
P

a¼1;2MPa
, even if the two parent particles P1 and P2

are different.
Note that the mathematical identity (170) also allows us

to write
ffiffiffi

ŝ
p ðsubÞ

min ðM1Þ ¼ M1>ðM1Þ; (182)

ffiffiffi

ŝ
p

minðM1Þ ¼ lim
uT!0

M1>ðM1Þ; (183)

relating the
ffiffiffi

ŝ
p ðsubÞ

min and
ffiffiffi

ŝ
p

min variables to the transverse

invariant mass quantity M1>, which is simply the total
transverse invariant mass in the event (after accounting
for the potential presence of any transverse upstream
momentum uT).

D. Transverse mass

Perhaps the most popular variable which specifically
targets a semi-invisibly decaying resonance, is the

25A corollary from this statement is that invariant mass varia-
bles which make similar sorts of assumptions but do not fit into
the classification of Table III, are often both poorly motivated
and suboptimal.
26The missing transverse momentum is often labeled called
‘‘missing transverse energy’’ and labeled ET or Emiss

T in experi-
mental papers. As previously discussed, we prefer to recognize
the important distinction between energy and momentum, so use
the symbol p6 T .
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transverse massmTe�, which, as suggested by our notation,
was first applied in searches for a leptonically decaying
W-boson (see, e.g., [6]):

m2
Te� � ðeeT þ e�TÞ2 � ð ~peT þ ~q�TÞ2 (184a)

� 2ðj ~peTjj ~q�Tj � ~peT � ~q�TÞ; (184b)

where ~peT ( ~qeT) is the transverse momentum of the lepton
(neutrino), and in the second line, one makes the approxi-
mation that the lepton and the neutrino are approximately
massless. Assuming that the W boson is produced singly,
with zero recoil (i.e., uT ¼ 0 in our language), the neutrino
transverse momentum ~qeT can be identified with the
measured missing transverse momentum ~p6 T , and (184b)
becomes

m2
Te� � 2peTp6 Tð1� cos	e�Þ; (185)

where 	e� is the measured opening angle between the
transverse vectors ~peT and ~p6 T .

In this simple example of a W-decay, the two daughter
particles are massless, but the same idea can be easily
generalized to the case of massive daughters as [55]

m2
Te�ðMe;M�Þ¼M2

eþM2
�þ2ðeeTe�T� ~peT � ~q�TÞ; (186)

where Me and M� are the electron and neutrino masses,
respectively, and

eeT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
e þ ~p2

eT

q

; (187a)

e�T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
� þ ~q2�T

q

: (187b)

Now, let us obtain these results with our formalism. In
general, we have a singly produced (N ¼ 1) parent reso-
nance, which decays to a single (NV ¼ 1) visible daughter
particle and a single (NI ¼ 1) invisible daughter particle.
Since there is only one particle in each daughter set,V 1 ¼
feg and I1 ¼ f�g, there is no need to form composite
particles, so the order of the operations becomes unimpor-
tant. However, if the daughter particles are massive, the
two different types of transverse projections give two
different versions of the transverse mass variable:

M2
1>ðM�Þ ¼ M2

>1ðM�Þ

¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
e þ ~p2

eT

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
� þ ~q2�T

q

�

2 � ~u2T; (188)

M2
1� ¼ M2�1 ¼ ðpeT þ q�TÞ2 � ~u2T: (189)

Here, Eq. (188) follows simply from the general formulas
(106) or (111) with the identifications M1 ¼ M1 ¼ Me,
~p1T ¼ ~p1T ¼ ~peT , M1 ¼ M� and ~p6 T ¼ ~q�T . Similarly,
Eq. (189) is obtained from either (135a) or (142a).

Now, it is trivial to eliminate ~uT using the transverse
momentum relation (51) ~uT ¼ � ~peT � ~q�T , and show that
Eq. (188) is equivalent to (186):

M1>ðM�Þ ¼ M>1ðM�Þ ¼ mTe�ðMe;M�Þ; (190)

while Eq. (189) is equivalent to (184b):

M1� ¼ M�1 ¼ mTe�ðMe ¼ 0;M� ¼ 0Þ: (191)

E. Cluster transverse mass variables

Next we consider a couple of more complicated single
resonance processes. The first example is h ! ZZ !
eþe�� ��, where each Z-boson is assumed to be on-shell,
one decaying invisibly, the other decaying visibly to a pair
of leptons. For this particular scenario, Ref. [57] suggested
the cluster transverse mass variable

M2
T;ZZ ¼ ðET;Z1

þ ET;Z2
Þ2 � ð ~pT;Z1

þ ~pT;Z2
Þ2 (192a)

¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Z þ p2

T;eþe�

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Z þ p6 2

T

q

�

2

� ð ~pT;eþe� þ ~p6 TÞ2: (192b)

Note that the 1þ 3-dimensional invariant mass of the
visible and that of the invisible systems have each been
constrained to be equal toM2

Z. These two constraints reflect
the on-shell hypothesis we have chosen to assume for each
of the two Z bosons.27

Once again, we can obtain this variable from ourM1> or
M>1. In analogy to the case of mTe�, we have a single-
parent resonance, the Higgs boson h, decaying to a single
massive visible daughter, the first Z boson, and a single
massive invisible particle, the other Z-boson. This corre-
sponds to N ¼ 1, NV ¼ 1, NI ¼ 1, V 1 ¼ fZ ! eþe�g,
and I1 ¼ fZ ! � ��g. Correspondingly, we identify M1 ¼
M1 ¼ MZ, ~p1T ¼ ~p1T ¼ ~pT;eþe� , M1 ¼ MZ, and ~p6 T ¼
~qT;� ��. Then, (106) and (111) simply give

M2
1>ðMZÞ¼M2

>1ðMZÞ
¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Zþ ~p2

T;eþe�

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Zþp6 T

q

�

2� ~u2T; (193)

which is equivalent to (192b) in light of the momentum
conservation relation ~uT ¼ � ~pT;eþe� � ~p6 T . Thus, we have

proved

M1>ðMZÞ ¼ M>1ðMZÞ ¼ MT;ZZ: (194)

Another interesting example is provided by the process
h ! WþW� ! eþe�� ��, for which Ref. [58] proposed the
cluster transverse mass variable

27We note that if one wishes to relax the assumption of an on-
shell Z leading to the visible eþe� system, one may do so by
treating the electron and positron vectors as separate inputs to the
visible system V. Similarly, one may relax the assumption that
the invisible system is the result of the decay of an on-shell Z by
treating the neutrinos as independent invisible inputs.
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M2
C;WW �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ ~p2

T;eþe�

q

þ p6 T

�

2 � ð ~pT;eþe� þ ~p6 TÞ2:
(195)

Here, the two leptons are clustered together (even though
they originate from different W-bosons, they have a com-
mon parent in h) and their total transverse momentum is
~pT;eþe� . The definition (195) is similar to (192b), the

difference now being that the two leptons are not corre-
lated, and their invariant mass does not have to be consis-
tent withMZ. In addition, the invisible mass parameterM1

is now set to zero (as opposed toMZ), because the invisible
particles (the two neutrinos) are massless.

The cluster variable (195) can be readily obtained from
MN> with the following interpretation: N ¼ 1, NV ¼ 2,
NI ¼ 2,V 1¼feþ;e�g, and I1 ¼ f�; ��g. Correspondingly,
we identify M1 ¼ Meþe� , ~p1T ¼ ~pT;eþe� and M1 ¼
2M� ¼ 0. Then, the general formula (106) reduces to

M2
1>ð0Þ ¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ ~p2

T;eþe�

q

þ p6 T

�

2 � ~u2T; (196)

which is the same as (195), so that

M1>ð0Þ ¼ MC;WW: (197)

Notice that in this example we are clustering two visible
particles, and the order of operations becomes important.
Therefore, here M1> and M>1 in general lead to distinct
variables, unlike the case of (190) and (194).

F. The mtrue
T transverse mass variable

Concerning the same h ! WþW� ! eþe�� �� example,
Ref. [59] advertised the variable (assuming massless
neutrinos)

ðmtrue
T Þ2�M2

eþe� þ2

�

p6 T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ ~p2

T;eþe�

q

� ~p6 T � ~pT;eþe�

�

;

(198)

which can be rewritten as

ðmtrue
T Þ2 ¼ M2

eþe� þ ~p2
T;eþe� þ ~p6 2

T � ~p2
T;eþe� � ~p6 2

T

þ 2p6 T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ ~p2

T;eþe�

q

� 2 ~pT � ~pT;eþe�

¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ ~p2

T;eþe�

q

þ p6 T

�

2 � ð ~pT;eþe� þ ~p6 TÞ2

� M2
C;WW: (199)

From (197) and (199), it now follows that

M1>ð0Þ ¼ mtrue
T : (200)

This connection in fact was the primary motivation for
introducing the mtrue

T variable in the first place [59].

G. The mreco
TZ0 transverse mass variable

Our final single resonance example will be taken from a
new physics scenario, namely, a generic model with a new
Z0 gauge boson which decays to a SM Higgs boson h and a
SM Z-boson as Z0 ! hZ ! b �b� ��. For this particular to-
pology, Ref. [60] considered the transverse mass variable

mreco
TZ0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
h þ p2

Th

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Z þ p6 2

T

q

; (201)

whereMh (pTh) is the measured invariant mass (transverse
momentum) of the b �b jet pair resulting from the decay
h ! b �b.
In our language, the event topology Z0 ! hZ ! b �b� ��

corresponds to a single parent, the Z0 boson, thus N ¼ 1.
There is a single (NV ¼ 1) visible daughter particle,
which is the reconstructed Higgs boson: V 1¼fh!b �bg.
There is also a single (NI ¼ 1) invisible daughter particle,
which is the invisibly decaying Z-boson: I1 ¼ fZ ! � ��g.
Thus, we identify M1 ¼ M1 ¼ Mh, ~p1T ¼ ~p1T ¼ ~pTh and
M1 ¼ MZ.
Again, we have chosen to make assumptions about the

1þ 3-dimensional invariant masses of the visible and the
invisible systems, requiring the former to be equal to Mh,
and the latter to be equal toMZ, reflecting our assumptions
about the decay topology. As before, it would be possible
to independently relax either of both those assumptions by
treating the b �b and � �� as independent inputs to the visible
and invisible systems, respectively.
If we retain the mass-shell constraint for both the h

boson and the Z boson, then (106) and (111) give

M2
1>ðMZÞ ¼ M2

>1ðMZÞ
¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
h þ ~p2

Th

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Z þ p6 T

q

�

2 � ~u2T: (202)

Comparing to (201), we see that

lim
uT!0

M1>ðMZÞ ¼ lim
uT!0

M>1ðMZÞ ¼ mreco
TZ0 : (203)

Since mreco
TZ0 was properly defined as a transverse mass

variable, it is not surprising that it can be obtained as a
special case of the mass-bounding variables shown in
Table III. The importance of Eq. (202) is that it shows
the proper way to generalize mreco

TZ0 to the case where the Z0

is produced inclusively, with some nonvanishing UVM uT
in the event.
This concludes our discussion of singly produced reso-

nances. We are hopeful that after all these examples, the
reader is prepared to handle any assumed event topology,
and will be able to construct the proper transverse invariant
mass variable for the case at hand.

H. Cambridge mT2 variable

The variables considered in our previous examples re-
ferred either to the event as a whole (as in Secs. XA, XB,
and XC) or to the production of a single resonance (as in
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Secs. XD, XE, XF, and XG). We now move on to dis-
cussing variables intended to handle the production of
more than one parent resonance (N > 1). Such cases are
very common in new physics scenarios, especially if the
new model contains a dark matter candidate, whose life-
time is protected by some discrete symmetry (typically
a Z2). In such models (e.g., supersymmetry, extra
dimensions, little Higgs theories, etc.) the main production
mechanisms usually involve the pair-production of new
particles, thus the case of N ¼ 2 has received the most
attention so far in the literature, although N ¼ 3; 4; . . .
cannot be ruled out, and in principle deserve attention as
well.

A popular variable of this type is the Cambridge mT2

variable defined as [7]

mT2 � min
P

~qiT¼ ~p6 T

½max½M1>;M2>��; (204)

whereM1> andM2> are the transverse masses of the two
parent particles, and the minimization is done over all
possible partitions of the transverse momenta of the invis-
ible particles, consistent with the measured p6 T .

We note that if there is only one visible particle belong-
ing to each parent, we can immediately identify the
Cambridge variable mT2 with both M2> and M>2 [and
even withM2 using (108)] since partitioning and projection
commute for single particles. If, however, we intend to
apply mT2 to events in which one or either parent has two
or more physical daughters (e.g., when doing top quark
mass measurements in the di-leptonic t�t ! b �blþl�� ��
events), then M2> will become inequivalent to M>2 and
we should decide which of these is the right one to use. The
answer to this question is subtle. The originalmT2 paper [7]
does not explicitly state how parent momenta should be
constructed in the event that they have come from com-
pound objects, so it is left up to users to decide which
inputs to supply. It was certainly in the minds of the authors
of [7] that users ought always to supply the maximal
amount of trustworthy information to any analysis of any
kind. In the context of mT2, this maxim would imply
projecting only after combining the primary (1þ 3) mo-
menta of any constituents of parents, provided that those
constituents could be ‘‘trusted.’’28 Only when defined in
this manner (i.e., as M2>), can the maximum amount of
information be squeezed from the variable in ‘‘clean’’
events. However, there can be benefits from using M>2

(see, for example, Ref. [9]) in high-multiplicity or inclu-
sive situations in which the individual momenta making up
each parent have dubious provenance or poorly measured
longitudinal momenta. In such cases, one can benefit from
using M>2, even though its end point is less sharp for the

signal, simply because it is less sensitive to longitudinal
momenta and momenta at high rapidities.
One might ask which of the two mT2 choices—M2> or

M>2—is ‘‘better.’’ Unfortunately, this question does not
allow a ‘‘one size fits all’’ answer. Each of the two mT2

implementations has its unique advantages and disadvan-
tages. The longitudinal correlations among the visible par-
ticles which are preserved by M2> result in steeper, better
defined end-point structures—see Figs. 11(a) and 12(a)
below. On the other hand, M>2 dampens the effects of any
longitudinal momenta, which would be beneficial in cir-
cumstances where forward jet activity due to ISR may be a
problem.
We hope that the current paper will serve as a reminder

that, when using mT2 in cases where either parent is built
from two or more reconstructed momenta, readers should
think carefully about the advantages and disadvantages of
both approaches before choosing the option that is best for
them. Both versions of mT2, namely M2> and M>2, may
prove to be useful, and it can be important to make the
distinction between them.
In conclusion of this subsection, we highlight the anal-

ogy between mT2 and
ffiffiffi

ŝ
p

min, two variables which are more
closely related than one might think. We have shown that
the (1þ 3) dimensional version of mT2, together with the
mathematical identity (170) implies

mð1þ3Þ
T2 ðMÞ � M2>ðMÞ ¼ M2ðMÞ: (205)

The second equality here emphasizes that, in spite of the
transverse index ‘‘T’’, themT2 variable is a bona fide 1þ 3
dimensional quantity. In other words, the apparent trans-
verse projection in the definition (204) does not lead to any
loss of useful information.29 Of course, the same cannot be

said about the (1þ 2)-dimensional version mð1þ2Þ
T2 � M>2.

Now, compare (205) to the analogous equation follow-
ing from (108) and (182)

ffiffiffi

ŝ
p ðsubÞ

min ðM1Þ ¼ M1>ðM1Þ ¼ M1ðM1Þ: (206)

We are reminded that
ffiffiffi

ŝ
p ðsubÞ

min and mð1þ3Þ
T2 have essentially

the same physical meaning: they both give a lower bound
on a mass in (1þ 3) dimensions as a function of the
corresponding invisible mass parameters. In the case of
ffiffiffi

ŝ
p ðsubÞ

min that mass is the center-of-mass energy of the colli-

sion since it views the whole collision as a ‘‘single parent,’’

while mð1þ3Þ
T2 hypothesizes that the collision was a 2 ! 2

process, and therefore bounds the mass of the heavier of
the two outgoing particles.

28This might include the case where an experiment that records
di-leptonic top-pairs with good (signed) b-tagging could allow
the lþ to be associated unambiguously with the b and the l� to
be associated with the �b.

29This fact is found to be surprising to people who view mT2
and similar variables as acting on ‘‘projected’’ quantities. On the
other hand, it is no surprise to those who have always viewed
mT2 as a variable insensitive to relative rapidity differences
between the (total) invisible and (total) visible decay products
of each parent—the line taken in [9].
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I. The doubly-projected variables mT2? and mT2k
The doubly-projected variables mT2? and mT2k intro-

duced in [25] are nothing but the one-dimensional ana-
logues of the Cambridge variable mT2 (204), where one
performs an additional projection on the directions T? and
Tk, correspondingly. As was the case for mT2 discussed

above, the transverse projection should be interpreted in
the T ¼ > sense, and there are three possible versions of
each variable, depending on the order of operations:

mT2?ðMÞ ¼
8

>

<

>

:

M2>?ðMÞ in 1þ 3 dims;

M>2?ðMÞ in 1þ 2 dims;

M>?2ðMÞ in 1þ 1 dims;

(207)

and similarly formT2kðMÞ. The example considered in [25]

was inclusive chargino production, where each chargino
parent decays to a visible lepton and an invisibly decaying
sneutrino. In this case, each visible daughter partition V a

has a single massless visible particle (a lepton) and the

distinction between the early-partitioned version mð1þ3Þ
T2? �

M2>?, the in-between partitioned versionm
ð1þ2Þ
T2? � M>2?,

and the late-partitioned version mð1þ1Þ
T2? � M>?2 does not

become manifest. However, in more complicated scenarios
with multiple visible daughter particles, one would in

principle obtain different results from mð1þ3Þ
T2? , mð1þ2Þ

T2? and

mð1þ1Þ
T2? , which is why one is advised to carefully define

which particular version of mT2? (and similarly for mT2k)
is being used.

J. Additionally constrained variables

So far, we have been discussing very general variables,
which target the most general event topology of Fig. 5.
Notice that we have made very few assumptions on how
the decays (52) actually take place, and where such as-
sumptions have been made (such as in Sec. XE), it is
always possible to relax those constraints if desired. Also
we did not use any additional information which may be
available from the preliminary studies of other variables
related to our events, for example, the invariant mass
distributions of the visible daughter collections V a.
Armed with such additional information, one may in prin-
ciple further constrain the minimization over the unknown
momenta, and obtain new, more specialized versions of our
variables. However, the downside is that such additional
information typically comes at a cost: the need to make
additional assumptions about the event topology.

As an example, consider the Oxford M2C variable
[14,17], which is a variant of mT2, subject to the following
additional assumptions:

(1) The two parents P1 and P2 are identical, with
a priori unknown mass MP1

¼ MP2
, therefore the

minimization over invisible momenta is performed
subject to the additional constraint

ðP1 þQ1Þ2 ¼ ðP2 þQ2Þ2; (208)

with Pa and Qa given by (53) and (57)
correspondingly.

(2) There is one and only one invisible particle in each
invisible daughter set, i.e., that

jI1j ¼ jI2j ¼ 1:

(3) There is more than one visible particle in each
visible daughter set, i.e., that

jV 1j ¼ jV 2j � 2:

(4) There are no intermediate on-shell resonances,
so that the decay (52) is effectively ðjV aj þ
jIajÞ-body for each a ¼ 1; 2.

Given a large sample of events S that satisfy these con-
ditions, one can study the distribution of the invariant mass
MV a

of the visible particles in each set V a. If presented

with some sufficiently large sample of events S¼
f�j�2Ag, one can measure the upper bound for the
MV a

distribution which will be found at the mass differ-

ence between the parent and the single invisible daughter:

�max � max
events

½MV a
� ¼ MPa

�Ma: (209)

One can then reuse this measurement for any event � 2 S
by asserting the constraint

�max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPa þQaÞ2
q

�
ffiffiffiffiffiffiffi

Q2
a

q

; (210)

during the process of minimization over Qa.
The advantage of such additionally constrained varia-

bles is that they are clearly better adapted for the study of
the corresponding class of more restricted event topolo-
gies. And additional constraints can bring qualitatively
new features, including otherwise unobtained upper
bounds on parental masses [17,22]. Their disadvantage is
that they are better adapted (perhaps only suitable) for the
study of those restricted topologies, and it is not clear how
to interpret them once some of the assumptions hardwired
in their definitions cease to be valid.

K. Other variables

In the literature, one may sometimes encounter variables
which have the appearance of a (transverse) invariant mass,
but cannot be related to any of our variables in Table III.
As an illustrative example, consider the transverse mass
variable

M2
TWW

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ ~p2

T;eþe�

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
eþe� þ p6 2

T

q

�

2

� ð ~pT;eþe� þ ~p6 TÞ2; (211)
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proposed in Ref. [61] in relation to the h ! WþW� !
eþe�� �� process discussed in Sec. XE. Comparing to the
definition (195) ofMC;WW and to the identity (196), we see

that MTWW
can be formally obtained from MC;WW ¼

M1>ð0Þ with the rather ad hoc replacement

M1 ¼ 0 ! M1 ¼ Meþe� : (212)

However, there is no good physics justification for this
conjecture and as a result, MTWW

cannot be related to any

of the variables in Table III. Not surprisingly, subsequent
studies [59] found that MC;WW ¼M1>ð0Þ outperforms

MTWW
.

XI. SIMULATION: PHYSICS EXAMPLES

In this section, we provide an illustration of our previous
discussion with two specific physics examples from the
standard model:

(i) A case with N ¼ 1. Here, we consider the inclusive
(single) production of a SM Higgs boson (mostly
from gluon fusion), followed by the decay of the
Higgs to a leptonic W-pair:

pp!hþX!WþW�þX!‘þ‘�þp6 TþX; (213)

where X plays the role of UVM and stands for jets
from initial state radiation, unclustered hadronic en-
ergy, etc. In terms of our previous notation, this case
involves one parent (N ¼ 1), two visible particles
(NV ¼ 2), and two invisible particles (NI ¼ 2).

(ii) A case with N ¼ 2. Here we consider dilepton
events from inclusive t�t pair production, where
both W’s decay leptonically:

pp ! t�tþ X ! b �bWþW� þ X

! b �b‘þ‘� þ p6 T þ X: (214)

This case corresponds to two parents (N ¼ 2), four
visible particles (NV ¼ 4), and two invisible parti-
cles (NI ¼ 2).

In both of those two cases, the events very closely resemble
the typical SUSY-like events, in which there are two miss-
ing dark matter particles. Parton-level event simulation is

performed with PYTHIA [62] at an LHC of 7 TeV, includ-
ing the effects from the underlying event (using PYTHIA’s
default model for it).

A. An N ¼ 1 example: a Higgs resonance

We start with the Higgs production process (213) for a
Higgs boson mass Mh ¼ 200 GeV. In the language of
Fig. 5, the Higgs resonance is treated as the only heavy
parent particle (N ¼ 1) and the event is partitioned as

V 1 ¼ f‘þ; ‘�g; I1 ¼ f�‘; ��‘g:

This partitioning is pictorially represented in Fig. 8. We
now concentrate on the five unprojected or singly projected
variables which are of interest to us, namely,MF withF 2
f1; 1>;>1; 1�;�1g. Their distributions are shown in
Fig. 11(a), and for proper comparison, we use the correct
value of the missing mass parameterM1 ¼ 0 where neces-
sary. In that case, according to the general property (167),
all MF variables are bounded from above by the parent

mass, in this case Mh. For reference, Fig. 11(a) also shows
the Breit-Wigner distribution of the Higgs resonance
(yellow-shaded histogram). Figure 11(a) confirms that the
distributions obey the bound of Eq. (167). Furthermore, it
also shows that each of the five distributions appears to be
saturated—i.e., that each has a kinematic end point at the
value of the Higgs boson massMh (only a very tiny fraction
of events is observed to exceed the bound, but this is due to
the finite width of the Higgs parent).
We can confirm the end point is saturated for each of the

variables MF 2 f1; 1>;>1; 1�;�1g by explicitly con-

structing an extremal event. We do so under the approxima-
tion that M‘ ¼ M� ¼ 0. Following the arguments of
Sec. IXB, we should construct an extremal event � from
the subset E sampled by nature of the total set of momentum
configurations A that satisfy our general N ¼ 1,
MP1

¼ MH topology. In the case of the decay of interest

(213), nature obliges us to impose an additional on-
mass-shell condition for the intermediate W� bosons
E ¼ fa 2 AjðPi þQiÞ2 ¼ M2

Wði 2 f1; 2gÞg.30 An ex-
ample of an extremal event � 2 E that satisfies the

TABLE V. The 18 additional heterogeneously-doubly-
projected transverse mass variables for each N, where the addi-
tional subindex on? specifies the type of T? projection as being
of the ‘‘>,’’ ‘‘_,’’ or ‘‘�’’ type. As was the case in Tables III and
IV, ‘‘partition’’ implies the combined operation of partitioning
the objects and agglomerating them by summation into compos-
ite objects.

Early partition Hedged partition Late partition

MN>?_ , MN>?� M>N?_ , M>N?� M>?_N , M>?�N
MN_?> , MN_?� M_N?> , M_N?� M_?>N , M_?�N
MN�?> , MN�?_ M�N?> , M�N?_ M�?>N , M�?_N

FIG. 10. Illustration of an example extremal configuration for
the N ¼ 1 variables when applied to the h example.

30We assume theW to have narrow widths. In fact, since we can
construct an extremal event while imposing a strict on-shell
requirement for the intermediate W�, then we can certainly
also do so when that requirement is relaxed by allowing the W
to sample from its natural width distribution.
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constraints and that also saturates the two inequalities of
(168) is (see also Fig. 10)

P‘þ ¼ ðE1; E1; 0; 0Þ P‘� ¼ ðE2; E2; 0; 0Þ
Q� ¼ ðE2;�E2; 0; 0Þ Q �� ¼ ðE1;�E1; 0; 0Þ;

where E1;2 ¼ Mh

4 � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
h=4�M2

W

q

.

We note that in the cases ofM1� andM�1, the kinematic
end point coincideswith themass of the parent only because
the final state objects in this example happened to be mass-
less. In more general scenarios with massive particles the
end points ofM1� andM�1 will provide only an unsaturated
lower bound on the parent mass, in line with (33).

Figure 11(a) also allows us to compare the different MF
distributions to each other. As expected from the general
property (170), the distributions of M1 and M1> (given in
blue) are identical. As discussed in Sec. XC and shown in
Eqs. (180) and (182), they also coincidewith the distribution

of the
ffiffiffi

ŝ
p ðsubÞ

min variable from [48]. Similarly, in line with

Eq. (173), the distributions of M>1ðM1 ¼ 0Þ and M�1
(shown in red) are practically indistinguishable, since the
lepton masses are so tiny. Notice that this is only true when
M>1 is calculatedwithM1 ¼ 0, aswas done here, otherwise
the distributions ofM>1 andM�1 would generally be differ-
ent. Finally, the distribution ofM1� (shown in green online)
is distinct, as this variable is not related to any of the others.

Upon inspection of the shapes of different distributions
in Fig. 11(a), one observes that M1 and M1> appear to
peak closest to the parent massMh, and consequently, have
the best defined end-point structures. On the other hand,
M1� peaks much farther from Mh, and has a rather low
event population in the vicinity of its end point. Finally,
the case of M>1ð0Þ ’ M�1 represents an intermediate

situation—the peak is found in between the peaks of
M1 ¼ M1> and M1�; and the end-point structure is more
pronounced than the case of M1�, but not as sharp as the
case of M1 ¼ M1>. This is an inevitable consequence of
the hierarchy (B53) among the mass-bounds which is
present in every event.
Next, in Fig. 11(b) we compare the distributions of the

standard variablesmeff (red solid line) and 2p6 T (green solid
line) to their mass-bound counterparts M�1 (red dotted
line) and M1� (green dotted line). Recall from the discus-
sion in Sec. XB [and, in particular, Eq. (179)] that M�1 is
the analogue of meff , and in the limit of no upstream
momentum the two variables become identical. This is
confirmed in Fig. 11(b), which shows rather similar dis-
tributions for M�1 and meff . However, the analogy is not
perfect and the meff distribution is slightly shifted to the
right. The only31 reason for this effect is the fact that we
allow for initial state radiation in our sample, so that the
Higgs parent is typically produced with some recoil and
uT � 0. This is why the meff distribution does not termi-
nate atMh, but shows a long tail extending tomeff >Mh. In
contrast, theM�1 distribution has an exact end point atMh.
A similar analysis holds for the other pair of distribu-

tions (color-coded in green) which are shown in Fig. 11(b).
As explained in Sec. XA and seen from Eq. (177), the
variableM1� is the analogue of 2p6 T , since the two become
identical in the limit of no upstream momentum (uT ! 0).
However, in the presence of upstream momentum, the
proper behavior (an end point located at the parent mass)

FIG. 11 (color online). (a) Unit-normalized distribution of the five N ¼ 1 mass-bound variables MF , F 2 f1; 1>;>1; 1�;�1g for
the inclusive Higgs production process h ! WþW� ! ‘þ‘� þ p6 T at a 7 TeV LHC, with mh ¼ 200 GeV and M ¼ 0. The dotted
(yellow-shaded) histogram gives the true

ffiffiffi

ŝ
p

distribution, which in this case is given by the Breit-Wigner h resonance. (b) Unit-
normalized distributions of the variables meff and 2p6 T ¼ 2p6 T (solid lines), contrasted with M�1 and M1� (dotted lines).

31We checked that when one restricts the plot only to events
with uT ¼ 0, the distributions of meff andM�1 become identical,
as required by Eq. (179).
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is retained only by the M1� distribution, while the 2p6 T

distribution picks up a long tail extending beyond the true
value of Mh.

This concludes our discussion of the N ¼ 1 unprojected
and singly-projected variables in relation to Higgs produc-
tion (213). We note that one could also apply N ¼ 2
variables to this example, this time considering the two
W bosons as the two heavy parent particles, and partition-
ing as

V 1¼f‘þg; I1¼f�‘g; V 2¼f‘�g; I2¼f ��‘g:
The upper kinematic end points of the resulting distribu-
tions will be found at the corresponding parent mass, in this
case the mass MW of the W-bosons.

B. An N ¼ 2 example: Top quark pair production

As our next example, we consider dilepton events from
the top quark pair-production process (214). We assume
that the two b-jets from the top quark decays have been
tagged, which distinguishes them from QCD jets from
initial state radiation. Correspondingly, the tagged b-jets
will be included among the set of visible particles, while
any remaining QCD jets will contribute to the UVM
category.

We first reconsider theN ¼ 1variables already studied in
Sec. XIA, and show that they can be useful evenwhen there
are multiple parents in the event. For the purpose of con-
structingN ¼ 1 variables, the event is partitioned simply as

V 1 ¼ fb; �b; ‘þ; ‘�g; I1 ¼ f�‘; ��‘g:
Figure 12(a) displays the distributions of the resulting
N ¼ 1 variables. Those distributions should be contrasted

with the true
ffiffiffi

ŝ
p

distribution of the t�t pair, which is shown in
the figure with the yellow-shaded histogram. Just like in

Fig. 11(a), we find only three distinct distributions, since
M1 ¼ M1> from (170) and M>1ðM1 ¼ 0Þ ’ M�1 from
(173). The hierarchical ordering of the three distributions
is the same as in Fig. 11(a), the distribution of M1 ¼ M1>
being the hardest, and the distribution of M1� being the
softest. Since all of ourN ¼ 1 variables are defined through
minimization, each variable provides a lower bound on the

true center-of-mass energy
ffiffiffi

ŝ
p

in the event. As one might
have expected, it is the M1 (or equivalently, the M1>)
variable which offers the best (in the sense of being most
stringent and meaningful) bound. Since M1 and M1> are

identical to the
ffiffiffi

ŝ
p ðsubÞ

min variable, their distribution exhibits

the interesting property first noted in [52] in relation to
ffiffiffi

ŝ
p

min: that the peak of the distribution is located very
near the mass threshold for producing the two heavy pa-
rents, in this case the two top quarks. Indeed, notice how the

peak in the (blue) M1 ¼ M1> ¼ ffiffiffi

ŝ
p ðsubÞ

min histogram coin-

cides with the onset of the (yellow-shaded) true
ffiffiffi

ŝ
p

distri-
bution. When applied to searches for new physics, one can

then use the peak in theM1 ¼ M1> ¼ ffiffiffi

ŝ
p ðsubÞ

min distribution as

a rough estimate of the new physics mass-scale [48,52].
In analogy to Fig. 11(b), here we can also perform a

comparison of the usual variables meff and 2p6 T to their
mass-bound analogues M�1 and M1�. In Fig. 12(b), we
compare meff to M�1 (in red) and 2p6 T to M1� (in green).
This time the differences are much less pronounced that the
single resonance case shown in Fig. 11(b). This suggests
that for N ¼ 2 processes, the variable meff (2p6 T) is on an
equal footing with M�1 (M1�).
We remind the reader that the N ¼ 1 variables shown in

Fig. 12(a) do not exhibit any upper kinematic end points,
since they are being applied toN ¼ 2 events, i.e., they have
the ‘‘wrong’’ value of N and so the bounding relations
(166) do not apply to any individual parent. Thus, let us

FIG. 12 (color online). The same as Fig. 11, but for the t�t example. The yellow-shaded distribution now gives the true invariant mass
of the t�t pair.
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now discuss the N ¼ 2 variables, which have the correct
value ofN and for which (166) holds. In the case ofN ¼ 2,
a t�t dilepton event is partitioned as

V 1¼fb;‘þg; V 2¼f �b;‘�g; I1¼f�‘g; I2¼f ��‘g:

This partitioning can be pictorially visualized in Fig. 7.
Since we are primarily interested in the kinematical effects,
for this illustrative example we make the simplifying as-
sumption (unlikely to be realized in any real experiment)
that each lepton can be associated with its sibling b-jet.

The distributions of the corresponding five N ¼ 2 vari-
ables are shown in Fig. 13, where for illustrative purposes
we use Monte Carlo truth information to properly assign
the correct b-jet to each lepton. According to (166), these
distributions are bounded from above by the individual
parent mass, which in this case is the mass of the top quark.
Correspondingly, in Fig. 13, the reference yellow-shaded
distribution now shows the (average) top quark mass in the
event, which follows the familiar Breit-Wigner shape
(compare to the Higgs resonance shape in Fig. 11).

As before, we observe three distinct distributions, M2 ¼
M2> (in blue), M>2ðfMa ¼ 0gÞ ’ M�2 (in red), and M2�
(in green). All of them exhibit an upper end point less than
or equal to the top quark massMt, in accordancewith (166),
but the three shapes are considerably different. As before,
and in agreement with the general hierarchy proven in the
arguments leading up to (B53) for any event, the early-
partitioned versions M2 and M2> have the steepest end
point, with the largest fraction of events near the end point.

Again, we can show that we expect the M2, M2>,
M>2, M�2 and M2� bounds to be saturated by explicity

constructing an extremal event � 2 E that satisfies the on-
shell constraints of the t and �t quarks and W� bosons. An
example of such a configuration (see also Fig. 14) is

Pb ¼ P �b ¼ ðEb; pb; 0; 0Þ
P‘þ ¼ P‘� ¼ ðE‘; p‘; 0; 0Þ
Q� ¼ Q �� ¼ ðE�;�E�; 0; 0Þ;

where,

E2
b ¼ p2

b þM2
b E2

‘ ¼ p2
‘ þM2

‘

pb ¼ 
ðMt;Mb;MWÞ p‘ ¼ M‘ sinhð�� �Þ
E� ¼ pe� p ¼ 
ðMW;M‘; 0Þ
� ¼ sinh�1

�

pb

MW

�

� ¼ sinh�1

�

p

M‘

�

;

and the two-body momentum function is given by


ða; b; cÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � ðbþ cÞ2Þða2 � ðb� cÞ2Þp

2a
:

Recall from Eq. (205) that the early-partitioned varia-
blesM2 andM2> are equivalent to the (1þ 3)-dimensional

FIG. 13 (color online). The same as Fig. 12, but for N ¼ 2 variables: (a) the unprojectedM2 and the singly projected variablesM2>,
M>2,M�2, andM2�; and (b) the doubly-projected variablesM2>? (black),M>2? (cyan),M>?2 (magenta),M2�? (red),M�2? (green),
and M�?2 (blue). The yellow-shaded distribution now gives the average top quark mass in the event. In panel (b), ‘‘>’’-projected
quantities are denoted with solid lines and are evaluated with M1 ¼ M2 ¼ 0, while ‘‘�’’-projected quantities are denoted with dotted
lines.

FIG. 14. Illustration of an example extremal configuration for
the N ¼ 2 variables when applied to the t�t example.
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version mð1þ3Þ
T2 of the Cambridge mT2 variable. It appears

therefore that for studies like the one presented here, where
the UVM contributions can be safely identified and ac-

counted for, mð1þ3Þ
T2 is preferable over mð1þ2Þ

T2 .

We use the t�t example to also illustrate the doubly-
projected variables from Table IV. Figure 13(b) shows
the doubly-projected ‘‘>’’-projections (solid lines) and
the ‘‘�’’-projections (dotted lines). All ‘‘>’’-projected
quantities are evaluated with M1 ¼ M2 ¼ 0. Each type
of projection can be done in three different ways: early

partitioning, M2>? (black) and M2�? (red); late partition-
ing, M>?2 (magenta) and M�?2 (blue); or in-between
partitioning, M>2? (cyan) and M�2? (green).
Similarly to the result from Figs. 13(a) and 13(b) also

reveals that the early-partitioned, ‘‘>’’-projected variable
M2>? has the best defined end-point structure, which
clearly indicates the value of the parent mass Mt. As for
the remaining variables, two are identically equal:

M2�? � M�2?; (215)

TABLE VI. Correspondence between some of the existing variables in the literature, which were discussed in Sec. X, and the
corresponding mass-bound variables. A checkmark (✓) implies an exact equivalence, otherwise the relevant limiting condition is
listed. The last variable mT2?ðMaÞ employs the doubly-projected ? construction described in Appendix A.

Mass-bound variable

Existing variable N ¼ 1 N ¼ 2

M1ðM1Þ ¼ M1>ðM1Þ M>1ðM1Þ M�1 M1� M2ðMÞ ¼ M2>ðMÞ M2>?ðMÞ
2p6 T ¼ 2ET uT ! 0

meff M1 ! 0, uT ! 0 uT ! 0

ffiffiffi

ŝ
p ðsubÞ

min ðM1Þ ✓

ffiffiffi

ŝ
p ðsubÞ

min ðM1Þ uT ! 0

mTe�ðMe;M�Þ ✓ ✓ Me, M� ! 0 Me, M� ! 0

MT;ZZðMZÞ ✓ ✓

MC;WW M1 ! 0

mtrue
T M1 ! 0

mreco
TZ0 ðMZÞ uT ! 0 uT ! 0

mT2ðMÞ ✓

mT2?ðMÞ ✓

TABLE VII. The versions of the transverse variables used in commonly used high-energy physics computer libraries and codes. A
brief survey of experimental collaborations’ software suggests that most follow the conventions of CLHEP. ‘‘LTV’’ is a shorthand for
the method getLorentzTransverseVectorðÞ.

Library Object

Method/function name

e> e2> m> m2
> mT2 e_ e2_

CLHEP [36] LorentzVector mtðÞ mt2ðÞ � � � � � � etðÞ et2ðÞ
ROOT [37] TLorentzVector MtðÞ Mt2ðÞ � � � � � � � � � EtðÞ Et2ðÞ
Fastjet [40] Pseudojet mperpðÞ mperp2ðÞ � � � � � � � � � EtðÞ Et2ðÞ
PGS [41] � � � � � � � � � � � � � � � � � � v4etðpÞ � � �
Oxbridge LorentzVector ETðÞ ET2ðÞ LTVðÞ:massðÞ LTVðÞ:masssqðÞ � � � � � � � � �
MT2 [38] LorentzTransverseVector EtðÞ EtsqðÞ massðÞ masssqðÞ � � � � � � � � �

Mt2332Calculator � � � � � � � � � � � � mT2332ðÞ � � � � � �
UCD MT2 [39] mt2 Ea, Eb Easq, Ebsq � � � � � � getmt2ðÞ � � � � � �
Defining equation

in this paper

(5) (7) (205) (13)
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which is a special case of the general identity (149), while
two others are approximately equal:

M>?2ðfMa ¼ 0gÞ � M�?2; (216)

where a noticeable difference arises only at low values due
to the finite mass of the b-quark—see Eq. (174).

XII. CONCLUSIONS

The main ‘‘result’’ of this paper is the proposal made in
Sec. VII of a general scheme for constructing and catego-
rizing the basic invariant mass variables which are best
suited for the study of missing energy events at hadron
colliders. As a demonstration of the utility of this general
scheme, in Sec. X, we showed how a wide variety of widely
used kinematic variables discussed in the literature can be
properly accommodated in our framework. A short sum-
mary of this discussion is presented in Table VI, which
exhibits the connections between the variables discussed in
Sec. X and the corresponding mass-bound variables from
Tables III and IV. The table reveals that one can give a new
meaning to well-known variables like p6 T and meff , which
were originally introduced and defined in a way unrelated
to any invariant mass considerations. Now we see that the
same variables allow an alternative interpretation in terms
of bounds on Lorentz invariants of interest as long as
one is using the massless (�) type of projection for the
transversification.

Another lesson from Table VI is that depending
on the specific topology, the same bound may be con-
structed in different ways. A perfect illustration is provided
by the variable M1 ¼ M1>. As discussed in detail in
Sec. XE, even for the same final state (two leptons
and missing energy), the variable M1 ¼ M1> can emerge
as differing bounds (either MT;ZZ or MC;WW) depending

on the choice of interpretation of the kinematical
information.

But the value of the proposed scheme is not just in the
accommodation of existing techniques and variables.
The primary benefit from our approach is that, having
understood the main principles behind the construction
of a good invariant mass variable, the reader is now
prepared to tackle almost any event topology, first, by
realizing what are the proper invariant mass variables for
the case at hand, and second, by knowing how to construct
and calculate those variables. As discussed in Secs. III, IV,
V, and VI, there are a number of choices to be made along
the way, related to the method of transversification, the
partitioning of the event, and the exact order in which one
takes all those operations. The main guiding principle
through all this is that at the end of the day, one is always
going to construct a bound on the mass of the heaviest
parent. In that sense, we are extending the principles and
methods of construction put forth in [7] for mT2 and [52]

for
ffiffiffi

ŝ
p

min.

As we have seen, many of the generalized mass-bound
variables are already in use at the LHC and elsewhere, but
the majority have, for the moment, the status of solutions in
search of problems.
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APPENDIX A: COMPUTER LIBRARIES
OFFERING TRANSVERSE ENERGYAND

MASS VARIABLES

Though libraries should be a repository of human
knowledge, any careful experimentalist will already have
recognized that the computer libraries which support trans-
verse projection methods for Lorentz vectors do not always
produce the expected behavior. A selection of some of the
most commonly used libraries and some of their methods
for calculating transverse variables can be found in
Table VII. In many cases, the method of projection used
(i.e., ‘‘>’’ or ‘‘_’’) is undocumented and can only be
determined by excavating the implementation. What is
more, the names of the methods and functions in some
cases produce output very different from what the
user might expect. The result is that use of a plausible-
sounding method can land the unwary user with a totally
unexpected result—for example, the CLHEP method
called mtðÞ returns the >-projected transverse energy

(e> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ p2
T

q

), not the transverse mass they might

have anticipated. Of course, because of the right-hand
expression in Eq. (5), one might fittingly call this quantity
a ‘‘mass,’’ but in that case, the proper nomenclature should
probably be a longitudinal mass and not a transverse mass.
To the extent that there is agreement on the conventions,

one can see that the most commonly-used libraries (ROOT
and CLHEP) use the _ convention when calculating
‘‘transverse energy’’ quantities. The Tevatron and LHC
experimental collaborations tend to follow the ‘‘_’’ con-
ventions when talking about ‘‘transverse energy’’ in calo-
rimeters. For analyses where the transverse mass really
matters, e.g., for W ! ‘�, the (ROOT and CLHEP) libra-
ries have no function to return the ‘‘usual’’ transverse mass
of Refs. [2–5,57]: mT must instead be calculated explicitly
by the user.
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APPENDIX B: MASS-BOUNDS ON
COLLECTIONS OF MOMENTA

In this section, we present derivations of mass-bounds
on collections of arbitrary momenta, which may be repre-
sented by unprojected vectors and/or vectors transversified
by any of the projections >, _, and �. These cover the
cases mentioned in Sec. VII, and justify the representation
of multibody decays to visible and invisible particles in the
form of a pair of composite momenta, where all visibles are
projected identically (if at all) and all invisibles are like-
wise projected identically, though not necessarily by the
same method as the visibles.

The question of what goes into the set of momenta from
which we wish to generate the parental mass-bound is not a
mathematical question at all. However, once that set of
momenta is formed, the question of how to calculate
the best bound making maximum use of the information
contained in that set is entirely mathematical. It is this
mathematical question that we solve in the this section.

In essence, we try to answer the following question:
Given a particular set of vectors, what is the greatest
possible lower bound that we can place on the mass of
any parent particle which could have decayed to daughters
characterized by that set? In particular, how does that
bound depend on the dimensionalities and projection-types
of the vectors characterizing the information about the
daughters?

We shall denote the answer to that question as Mf. . .g,
where f. . .g is the set of vectors. We do not wish to restrict
the set to contain only momenta of the same type (e.g., only
four-momenta). Instead, we permit the set, if so desired, to
be a heterogeneous mixture containing any number of
four-momenta, >-momenta, _-momenta, �-momenta or
2-momenta. For example, MfA�; B�; c�>; d

�
>; e

�
>; f

�_;
g�� ; ~hTg would denote be the greatest possible lower bound
on the mass of a particle assumed to have decayed to (at
least) eight daughters, under the assumption that the only
information from which we would wish that bound to be
constructed were to comprise: the four-momenta of two
daughters a and b; the masses and transverse two-momenta
of three daughters c, d and e; the three-speed and trans-
verse two-momentum of daughter f; and the transverse
two-momenta of particles g and h.32

1. Parental mass-bounds from sets containing
any two objects

Before considering parental bounds from arbitrary sets
of momenta, we shall first consider the bound one obtains
for each of the ten pairwise combinations of the various
types of vectors, i.e.,:

MfA�; B�g MfA�; b�>g MfA�; b�_g MfA�; ~bTg
� Mfa�>; b�>g Mfa�>; b�_g Mfa�>; ~bTg
� � Mfa�_; b�_g Mfa�_; ~bTg
� � � Mf ~aT; ~bTg

:

To avoid imposing a physical interpretation on the vectors
(other than that they are momenta), we generally work with
A’s and B’s, as opposed to the P’s andQ’s used in the main
text. The latter carry implications of visibility/invisibility
that are irrelevant to the considerations of this section.
The list above appears to leave out the massless

�-projection, but this is simply a special case of the >
and _ projections, so the results for � can be derived from
the other two cases. In its place, we allow for combinations

of vectors including transverse two-momenta ~aT , ~bT , in
which the timelike component is simply unspecified. It will
be seen that the bounds from combinations involving ~aT ,
~bT simply emerge to be the massless case.

a. The MfA�; B�g parental mass-bound

We start with a straightforward case, taking care to be
explicit about the sequence of operations that will also be
required for the construction of the bound in the less trivial
cases. The best parental mass-bound33 given a pair of
daughter 1þ 3 momenta A� and B� is given by

M2fA�; B�g ¼ min½M2� ¼ min½P�P��
¼ min½ðA� þ B�ÞðA� þ B�Þ�
¼ ðA� þ B�ÞðA� þ B�Þ;
� ðA� þ B�Þ2 (B1)

where the first equality is simply a rephrasing of the mean-
ing of Mfg as the minimum mass consistent with the
constraints. The second equality is from the definition of
the inner product (or physically the definition of the mass),
and the third equality is from the definition of a vector
space (physically representing energy-momentum conser-
vation). The fourth equality is a statement that the vectors
A� and B� are fully specified, so the minimization is trivial
(no parameters need be changed). The hopefully unsurpris-
ing outcome, then, is that the best lower bound on the
parental mass is given by the invariant mass of the two
daughter momenta A� and B�.

b. The MfA�; b�>g parental mass-bound

To calculate the bound

M fA�; b�>g; (B2)

32Note that it makes no difference whether we use ~hT instead of
h�� as an input, as the information content of each is identical.

33Note that it is simplest to calculate the bound for the squared
of the parental mass M2f. . .g rather than for the parental mass
itself Mf. . .g. This difference is of no consequence, and so for
brevity we will talk only of ‘‘mass-bounds’’ in the text, ignoring
the square.
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we note that b�> contains partial information about some

1þ 3 vector B� which projects to b�> under the

>-projetion, about which the x and y components are
known, but the z component, bz is completely unspecified.
The bound (B2) can therefore be rephrased,

M 2fA�; b�>g ¼ min
bz

½ðA� þ B�Þ2�: (B3)

For the minimization we recognize that provided
either MA � 0 or j ~aTj � 0, then M is unbounded above
as bz ! �1. Provided that we are dealing with particles
produced with nonzero transverse momentum (which we
shall assume hereafter), the solution must then be given by
the local minimum

0 ¼ @

@bz
ðA� þ B�Þ2

¼ @

@bz
ðM2

A þM2
B þ 2ðEAEB � ~aT � ~bT � azbzÞÞ:

The minimization selects bz=EB ¼ az=EA such that B
� has

equal rapidity to A�,

yB ¼ yA: (B4)

To calculate the value of the mass-bound, we recognize
that, by the definition of the Lorentz transformation, the
inner product of A� and B�, which we might denote by
gðA; BÞ � A�g��B

�, is invariant under identical Lorentz

transforms � of both vectors

gðA; BÞ ¼ gð�A;�BÞ: (B5)

By letting � be a boost along the z-axis corresponding to
rapidity change �yA, which will then set both rapidities to
zero, one finds that

gðA; BÞ ¼ eðAÞ> eðBÞ> � ~a> � ~b>: (B6)

The best lower bound on the parent mass for daughters
specified by a 1þ 3 momentum A� and a >-projected
1þ 2 momentum b�> is then given by

M 2fA�; b�>g ¼ M2
A þM2

B þ 2ðeðAÞ> eðBÞ> � ~a> � ~b>Þ
¼ ða> þ b>Þ�ða> þ b>Þ� � ða�> þ b�>Þ2:

(B7)

c. The MfA�; ~bTg parental mass-bound

The bound on a 1þ 3 Lorentz vector with a transverse
two-vector can be found in a similar manner, but the 1þ 3

vector, which projects to ~bT is now given by some B, which
has both unknown z component and unknown mass. The
bound is given by

M fA; ~bTg ¼ MfA; Bg ¼ min
bz;MB

½Aþ B�: (B8)

A similar argument to that which led to (B4) shows that the
bz component must be such that yB ¼ yA. The MB mini-
mization selects MB ¼ 0, so that

M 2fA; ~bTg ¼ M2
A þ 2ðeðAÞT j ~bTj � ~aT � ~bTÞ

� ða�> þ b��Þ2; (B9)

so the bound is formed by turning the transverse two-
momentum into a �-projected 1þ 2 momentum.
Comparing with (B7), we see that if b�> is made massless

MB ¼ 0, then eðBÞ> ¼ j ~bTj and (B9) is reproduced.

d. The Mfa�>; b�>g parental mass-bound

For each of the 1þ 2 >-projected vectors, the corre-
sponding set of 1þ 3 dimensional objects shares the same
transverse components and inner product (mass) as their
>-projected counterpart, but has arbitrary z momentum.
The bound is then given by

M 2faT; bTg ¼ min
az;bz

½ðAþ BÞ2� (B10)

This time, the minimizations force the rapidities of A and B
to be equal, but leave the value of that rapidity yA ¼ yB
free. Similarly to the previous cases,

M2faT; bTg ¼ M2
A þM2

B þ 2ðeðAÞT eðBÞT � ~aT � ~bTÞ
¼ ða�> þ b�>Þ2: (B11)

e. The Mfa�>; ~bTg parental mass-bound

The limit on M is given by

M 2faT; ~bTg ¼ min
az;bz;MB

½ðAþ BÞ2�: (B12)

The minimizations set the rapidities to be equal yA ¼ yB
(but undefined) andMB ¼ 0. The limit again appears in the
form,

M 2faT; ~bTg ¼ M2
A þ 2ðeðAÞT j ~bTj � ~aT � ~bTÞ

� ða�> þ b��Þ2: (B13)

f. The Mf ~aT; ~bTg parental mass-bound

The limit on M for a pair of transverse two-momenta is
given by

M 2f ~aT; ~bTg ¼ min
az;bz;MA;MB

½ðAþ BÞ2�: (B14)

The z minimizations again set the relative rapidities equal
but arbitrary yA ¼ yB, and the mass minimizations set
MA ¼ MB ¼ 0.

M 2f ~aT; ~bTg¼2ðj ~aTjj ~bTj� ~aT � ~bTÞ�ða�� þb��Þ2: (B15)
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g. The MfA�; b�_g parental mass-bound

The _ projection described in Sec. III B maps all 1þ 3

vectors B� with the same transverse momentum ~bT and

velocity VB ¼ j ~bj=EB to the same 1þ 2 vector b�_.
Therefore, the longitudinal momentum component bz is
unspecified and the parental mass-bound MfA�; b�_g is
given by

M 2fA�; b�_g ¼ min
bz

½ðAþ BÞ2�; (B16)

From Eqs. (22) and (23), we see that we can decompose the
full (1þ 3)-dimensional energy and mass

E2
B ¼ ðeB_Þ2 þ ðeBz Þ2; (B17)

M2
B ¼ ðmB_Þ2 þ ðmB

z Þ2; (B18)

each in terms of a transverse quantity (eB_, mB_) and a

longitudinal quantity (eBz ¼ j ~bzj=VB, m
B
z ¼ j ~bzj=ðVBBÞ)

with B denoting the Lorentz factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
B

q

.

Using these relations, we can write the Lorentz-invariant
quantity ðAþ BÞ2 as
ðA�þB�Þ2¼M2

AþðmB_Þ2þb2z=ðVBBÞ2

þ2

�

EA

VB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2Tþb2z

q

� ~aT � ~bT�azbz

�

: (B19)

Leaving aside the trivial case of bT ¼ 0, we now attempt
the minimization over bz, requiring

0¼ @

@bz
ðA�þB�Þ2¼2

0

B

@

EA

VB

bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2Tþb2z

q
�azþ bz

V2
B

2
B

1

C

A: (B20)

This gives rise to a quartic in bz,

ðb2T þ b2zÞðbz � �Þ2 � �2b2z ¼ 0; (B21)

where the constants

� ¼ azV
2
B

2
B; (B22)

� ¼ EAVB
2
B: (B23)

The need to solve this quartic makes the M2fA�; b�_g
bound intractable in comparison with the similar
M2fA�; b�>g bound. Similar difficulties are encountered

in the following M2fa�_ ; b�_g case.
One might guess that the yB ¼ yA condition resulting

from M2fA�; b�>g bound could represent the correct

solution, since we are again working with a fully (1þ 3)-
dimensional vector combined with a (1þ 2)-dimensional
vector. But the solution this condition gives for bz is not a
root of the quartic in (B21). One can show that b0z ¼ 0
implies

bz ¼ bT�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2V2
B � �2

q
; (B24)

which when substituted into the LHS of (B21) gives

b2T�
2�2

ð�2 � �2V2
BÞ2

�

b2TV
4
B þ ðV4

B � 1Þð�2V2
B � �2Þ

� 2bTV
4
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2V2
B � �2

q

�

;

which is in general nonzero, i.e., the equal rapidities con-
dition only minimizes bz under certain special conditions.

h. The Mfa�_; b�_g parental mass-bound

In the case of two _-projections, the mass-bound is
given by

M 2fa�_; b�_g ¼ min
az;bz

½ðAþ BÞ2�; (B25)

the minimization of which involves finding az and bz, with
both VA and VB being held fixed, such that each of az and
bz is a root of a quartic like that in (B21).
In this situation, we can apply the same mass/energy

decompositions (B17) and (B18) to az, to get a variant of
(B19),

ðA�þB�Þ2¼ðmA_Þ2þ a2z
V2
A

2
A

þðmB_Þ2þ b2z
V2
B

2
B

þ2

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2Tþa2z

q

VA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2Tþb2z

q

VB

� ~aT � ~bT�azbz

1

C

A

(B26)

Differentiating by az and by bz separately, the minimi-
zation imposes

0 ¼ @

@az
ðA� þ B�Þ2

¼ 2

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2T þ b2z

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2T þ a2z

q

az
VAVB

� bz þ az
V2
A

2
A

1

C

A; (B27)

and simultaneously

0 ¼ @

@bz
ðA� þ B�Þ2

¼ 2

0

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2T þ a2z

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2T þ b2z

q

bz
VAVB

� az þ bz
V2
B

2
B

1

C

A: (B28)

Note that the fraction j ~aj=j ~bj appears in both (B27) and
(B28), albeit as a reciprocal in the latter. So, we can
combine the two minimization constraints in the form of
a quadratic in az and bz:
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a2z
V2
A

2
A

þ b2z
V2
B

2
B

þ azbz

�

1

V2
A

2
A

þ 1

V2
B

2
B

�

¼ 0: (B29)

This can be solved to give az ¼ �cbz, with

c ¼ 1 or
V2
A

2
A

V2
B

2
B

: (B30)

Substituting this solution back into (B26) gives a pleas-
ingly simple result

ðA�þB�Þ2¼ðmA_Þ2þðmB_Þ2þb2z

�

2cþ c2

V2
A

2
A

þ 1

V2
B

2
B

�

þ2

0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2Tþc2b2z

q

VA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2Tþb2z

q

VB

� ~aT � ~bT
1

A: (B31)

Since cwas chosen to be positive, this expression is clearly
minimized for bz ¼ 0, implying that az ¼ 0 as well. If we
then make the replacements aT=VA ¼ eA_ and bT=VB ¼
eB _ , we find that the choice az ¼ bz ¼ 0 gives, quite
simply and in tune with our intuition and inductive sense,

M2fa�_; b�_g ¼ ða�_ þ b�_Þ2: (B32)

i. The Mfa�>; b�_g parental mass-bound

The boundM2fa�>; b�_g requires minimization over both

az and bz.

M2fa�>; b�_g ¼ min
az;bz

½ðA� þ B�Þ2�; (B33)

with ðA� þ B�Þ2 defined as before in (B19). First the
minimization over az forces the rapidities of A and B to
be equal, az=EA ¼ bz=EB. Plugging this into (B19), we
obtain

ðA�þB�Þ2¼M2
AþðmB_Þ2þb2z=ðVBBÞ2

þ2

�

EAEB� ~aT � ~bT�b2z
EA

EB

�

: (B34)

¼ M2
A þ ðmB_Þ2 þ b2z=ðVBBÞ2

þ 2

�

EA

EB

ðE2
B � b2zÞ � ~aT � ~bT

�

: (B35)

The expression (E2
B � b2z) can be written one of two

ways—either as ðeB>Þ2 or as ðeB_Þ2 � b2z=ðVBBÞ2. We

choose the latter, since we have fixed eB_, but if we were
to fix instead eB>, we would rederive (B9).

A further simplification is implied by the equal rapidities

condition, since EA ¼ eA>EB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
B � b2z

q

. Using this and

(B17), we find

ðA� þ B�Þ2 ¼ M2
A þ ðmB_Þ2 þ b2z=ðVBBÞ2

þ 2

0

@eA>e
B_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2z
b2T

2
B

s

� ~aT � ~bT

1

A: (B36)

Recognizing that b2T
2
B is positive, we see that the bz

minimization simply gives az ¼ bz ¼ 0, and thus

M2fa�>; b�_g ¼ ða�> þ b�_Þ2: (B37)

j. The Mfa�_; ~bTg parental mass-bound

This mass-bound is similar to Mfa�_; b�>g with the

additional minimization of MB � 0.

M2fa�_; ~bTg ¼ min
az;bz;MB

½ðAþ BÞ2� (B38)

¼ ðmA_Þ2 þ 2ðeA_bT � ~aT � ~bTÞ (B39)

¼ ða�_ þ b��Þ2: (B40)

2. Arbitrarily large sets of (1þ 3)-, ð1þ 2Þ>- and
2-vectors

The generalization of (B1) to an arbitrarily large set of
fully specified 1þ 3 vectors A ¼ fA�

i j1 � i � jAjg is
M2fAg ¼ min½M2� ¼ min½P2� ¼ min½ð�iA

�
i Þ2�

¼ ð�iAiÞ2: (B41)

Note that in the special case of fully specified 1þ 3
vectors, the mass-bound for the set is the same as the
mass-bound of the single object formed of the sum of those
vectors

M fAg ¼ Mf�iAig: (B42)

Let us further generalize our results to an arbitrary set of
(1þ 3)-vectors A and ð1þ 2Þ>-projected vectors B> ¼
fb�j>j1 � j � jB>jg. Each of the b�j> has a (1þ 3)-vector

equivalence class B
�
j for which the z components can

take any value. Writing B ¼ fB�
j j1 � j � jB>jg and

Bz ¼ fbjzj1 � j � jBzjg, we can therefore write the

mass-bound as

MfA;B>g¼MfA;Bg¼min
Bz

½ð�iA
�
i þ�jB

�
j Þ2�; (B43)

where each of the B
�
j has a free z component. The result

can be found by induction. The boundMfK�
1 ; . . . ; K

�
mg for

some set of fully specified (1þ 3)-vectors is given by the
sum Mf�i¼1;mK

�
i g by (B42). Adding a further 1þ 3

vector K
�
mþ1 which has free z momentum to that set gives

a bound MfK�
1 ; . . . ; K

�
mþ1g. A similar argument to that

which led to (B4) shows that the rapidity of K
�
mþ1 must be

equal to that of �i¼1;mK
�
i . With this constraint applied

K�
mþ1 becomes a fully specified 1þ 3 vector, so we can
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treat it as one of the known 1þ 3 vectors and proceed with
the next 1þ 2 (>-projected) vector in the set.

Applying this argument sequentially to the Bj, we find

that

M fA; b�j>g ¼ Mfð�iA
�
i Þ; B�

j g; (B44)

where each of the Bj has the same rapidity as �iA
�
i .

Since the set of 1þ 2>-projected vectors is isomorphic
to the set of 1þ 3 vectors with fixed (but arbitrary) rapidity
under the operations of addition and inner product, we can
rewrite this bound as

M fA;B>g ¼ Mfð�iA
�
i Þ; ð�jb

�
j>Þg; (B45)

the bound for the summed 1þ 3 vector ð�iA
�
i Þ and the

1þ 2>-projected vector ð�jb
�
j>Þ, the explicit formula for

which is given in (B7).
We can further extend the argument by allowing some

other daughters parameterized only by their two-
momentum to be added to the set,

M fA;B>; CTg; (B46)

with CT ¼ f ~ckTj1 � k � jCTjg. Each 2-vector ~ckT has a
corresponding equivalence class which can be represented
by a 1þ 2 >-projected vector c�k> with unknown mass.

The arguments which led to (B44) apply equally to the ck>,
so the corresponding C

�
k 1þ 3 vector rapidities are

set equal to �iA�i, but now we have the extra minimiza-
tion over the masses which fixes mC ¼ 0 for each C

�
k

(or indeed c�k>).
Therefore,

M fA;B>;CTg¼Mfð�iA
�
i Þ;ð�jb

�
j>þ�kc

�
k�Þg: (B47)

(B47) now has the same form as all the previous bounds,
but in obtaining the result we have found out something
nontrivial: one would not get the best bound on M if one
were simply to replace the set of 2-vectors CT by their sum
ð�k ~ckTÞ: One must instead add the corresponding massless
1þ 2 vectors c�k�.

In principle, we could now try to extend our bounds to
include (arbitrarily large numbers of) _-projected 1þ 2
vectors. However, we shall not do so for two reasons. The
first reason is that in collider experiments, such as the LHC,
situations for which _ projection is appropriate are rare. It
is only in very unusual cases where we might find ourselves
knowing just the transverse momentum components and
the size of the three-velocity, but not the azimuthal angle �,
the z-momentum, or the mass.

The second reason we do not pursue the _ vectors
further is that one ends up with a real mess, as we have
seen. The most basic pairwise combination MfA; b_g
requires solution of a quartic equation in bz. Only if one
is solely interested in combining (>, _, �)-projected vec-
tors might the expressions be tractable, but the utility of
such a combination is unclear.

3. Mass-bound hierarchies

The similarity in the expressions for the mass-bounds
derived in the preceding sections allows for a further
observation—that as progressively more information is
neglected or unknown, the mass-bound is lowered.
Intuitively one would expect this, since the absence of
hard information causes one to have to be progressively
more conservative, but we can, with little additional work,
show this explicitly to be the case.
We set out, therefore, to prove the hierarchy that was

seen earlier in (175). Our proof proceeds in two stages.
In the first stage, we demonstrate the result for the case
N ¼ 1, in which the hierarchy becomes:

M1 ¼ M1> � M>1 � M�1 � M1�: (B48)

In the second stage, we extend this to general N.
Using the results of the previous section, we can treat

each of the mass-bound variables in terms of the composite
visible and composite invisible objects described in
Sec. VI B. The equality in (B48) then results from the
definition of M1 as a concrete case of (B7), where A�

represents the visible P� and b�> the invisible q�>.
Similarly, M1> is just (B11), where a�> and b�> stand in

for p�
> and q�>. On comparing (B7) with (B11), we see that

they are identical, and hence M1 ¼ M1>.
For the next statement, M1> � M>1, we have to

consider the difference between early and late partition,
i.e., whether we retain information about the relative
longitudinal momenta of the visibles. Let our visible com-
posite P

�
a of parent Pa be composed of constituents P

�
i ,

i.e.,

P
�
a ¼ X

i2V a

P
�
i ¼ ðEa; ~paT;pazÞ;

with

E a ¼ X

i2V a

Ei; ~paT ¼ X

i2V a

~piT; paz ¼
X

i2V a

piz:

We form the early-partitioned composite

p �
a> ¼

�

X

i2V a

P
�
i

�

>
¼ ðea>; ~paTÞ;

and the late-partitioned composite

p �
>a ¼

X

i2V a

p�
i>;¼ ðe>a; ~pTaÞ;

differing only in their energy components

e a> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
a � p2

az

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
a þ p2

aT

q

;

e>a ¼
X

i2V a

ei> ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
>a þ p2

Ta

q

;

where
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M2
a ¼

�

X

i2V a

P
�
i

�

2
; m2

>a ¼
�

X

i2V a

p�
i>

�

2
:

Of course, it is established in the preceding
Appendixes B 1 a and B 1 bthat M2

a � M2
>a, since m>a

could be constructed by repeated minimizations of Ma

over the longitudinal momentum components ðpzÞi.
Hence, ea> � e>a.

If we now define analogous quantities ~ea>, ~e>a, and ~qaT

for the composite invisible particle, then all the same argu-
ments apply. Forming the two mass variables as in (102)
and (109),

M2
1> ¼ ðe1> þ ~e1>Þ2 � ð ~p1T þ ~q1TÞ2

� ðe>1 þ ~e>1Þ2 � ð ~pT1 þ ~qT1Þ2 ¼ M2
>1:

Moving next to M�1, we note that this is simply the
previous case, with an additional minimization over the
masses Mi of the constituent particles, which must reduce
the size of the bound, forcing M�1 � M>1.

For the final inequality, we recall the statement due to
(B47), that says the bound is weakened (i.e., made smaller)
if we base the bound on the sum of the transverse two-
vectors, rather than promoting them to �-projected
(1þ 2)-vectors before summing. The difference is solely
in the energy component—the late-partitioned p��a has
energy component

e �a ¼
X

i2V a

ðpTÞi;

whereas the early-partitioned p�
a� has energy component

e a� ¼ paT:

By the triangle inequality, e�a � ea�, yielding the final
required result, that

M2�1 ¼ ðe�1 þ ~e�1Þ2 � ð ~pT1 þ ~qT1Þ2
� ðe1� þ ~e1�Þ2 � ð ~p1T þ ~q1TÞ2 ¼ M2

1�:
Armed with this knowledge, we tackle the hierarchy

when N > 1. We revisit the definitions of MN , MN>,
M>N , MN�, and M�N , from Sec. VII C, as

MNðMÞ � min
P

~qiT¼p~T

½max
a

½MaðPa;Qa; ~�aÞ��;

MN>ðMÞ � min
P

~qiT¼p~T

½max
a

½Ma>ðpa>;qa>; ~�aÞ��;

M>NðMÞ � min
P

~qiT¼p~T

½max
a

½M>aðp>a;qa>a; ~�aÞ��;

MN�ðMÞ � min
P

~qiT¼p~T

½max
a

½Ma�ðpa�;qa�; ~�aÞ��;

M�NðMÞ � min
P

~qiT¼p~T

½max
a

½M�aðp�a;q�a; ~�aÞ��:

At first glance, it might seem alarming that we assert
M1 ¼ M1>, when M1 seems to be built of a fully (1þ 3)-
dimensional object M1ðP1;Q1; ~�1Þ. But in fact, with the

components ðqzÞi left free, the minimization will (for rea-
sons identical to those in the discussion of early and late
partitioning) be achieved when all the constituents of Q1

have equal rapidity to P1, meaning

M 1ðP1;Q1; ~�1Þ ¼ M1>ðp1>;q1>; ~�1Þ:

But this should apply to all N, since the only constraint
on the invisibles of each parent Qa is on their transverse
momentum components. That is, for each of the N parents,
given our inputs we will get

M aðPa;Qa; ~�aÞ ¼ M1>ðp1>;q1>; ~�1Þ;

and therefore we immediately see that

MNðMÞ� min
P

~qiT¼p~T

½max
a

½MaðPa;Qa; ~�aÞ��

¼ min
P

~qiT¼p~T

½max
a

½Ma>ðpa>;qa>; ~�aÞ���MN>ðMÞ:

(B49)

Next, one might ask whether the successive inequalities
still hold. The very first one follows straightforwardly.
Only in the input vectors to each of the N parental mass-
boundsMa> doMN> andM>N differ. Furthermore, since
the late-partitioned input vectors p>a and q>a will have
smaller energy components than their early-partitioned
counterparts pa> and qa>, each of the individual parental
bounds follows the relation

M a>ðpa>;qa>; ~�aÞ � M>aðp>a;q>a; ~�aÞ; (B50)

for every possible choice of unprojected inputs Pa, Qa.
To complete the argument, we need to establish that the

global minimum considering all trial ~qiT cannot increase if
any or all of the parental bounds decrease.
The minimization probes the full space of f ~qiTg, subject

to the constraint that their sum is the missing transverse
momentum vector, with all other parameters having been
specified. For the minimization to pick out a larger value
for M>N than for MN>, we must have

max
a

½M>aðp>a;q>a; ~�aÞ�>max
a

½Ma>ðpa>;qa>; ~�aÞ�
(B51)

for the same values of f ~qiTg that give the value of MN>, if
nowhere else. But we have already established (B50) for all
a and all inputs. So we are led to the conclusion

MN>ðMÞ � M>NðMÞ: (B52)

Actually, we have achieved more than that. The same
argument holds for the remaining levels of the hierarchy
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involving the �-projection. So, we can boldly claim our
final result and can retire to a well-deserved cuppa

MN ¼ MN>
�

M>N

�
M�N
�
MN�: (B53)

APPENDIX C: PRONUNCIATION GUIDE

Following the release of the first version of this note to
the arXiv, a pronunciation guide was requested. The au-
thors do not wish to stifle innovation in this area, but
tentatively suggest the formulations below.

Symbol Pronunciation IPA Comment

T tee tiː or ‘‘generic tea’’ (yellow label)

> tee tiː or ‘‘mass-preserving tea’’

(milky)

_ vee viː
� oh əʊ as in ‘‘Oh my, cucumber

sandwiches’’
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