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In high energy hadronic collisions, a scalar or pseudoscalar Higgs boson, � ¼ H, A, can be efficiently

produced via gluon fusion, which is mediated by heavy quark loops. In this paper, we consider double real

emission corrections to� ¼ A production, which lead to a Higgs plus two-jet final state, at order �4
s . Full

quark mass effects are considered in the calculation of scattering amplitudes for the CP -odd Higgs boson

A, as induced by quark triangle-, box-, and pentagon-diagrams. They complement the analogous results

for a CP -even Higgs boson H in Ref. [1]. Interference effects between loops with top and bottom quarks

as well as between CP -even and CP -odd couplings of the heavy quarks are fully taken into account.

DOI: 10.1103/PhysRevD.84.095025 PACS numbers: 14.80.Ec, 14.80.Da

I. INTRODUCTION

One of the prime tasks of the CERN Large Hadron
Collider (LHC) is the search for the origins of the sponta-
neous breaking of the electroweak SUð2Þ �Uð1Þ gauge
symmetry and, once such particles are found, the study of
one or several Higgs bosons as the remnants of the sym-
metry breaking mechanism. Among the various Higgs
boson production channels, the gluon fusion and the
weak boson fusion processes have emerged as the most
promising channels for Higgs boson discovery at the LHC
[1–3], and they are equally valuable for the study of its
properties, like the measurement of its couplings to gauge
boson and fermions [4,5].

In weak boson fusion (WBF), qq ! qqH mediated by
t-channel W or Z exchange, the two forward tagging jets
arising from the scattered quarks provide a tell-tale signature
which can be used for efficient background rejection [6].
The same Hjj signature can also arise in gluon-fusion
events, via Oð�2

sÞ real emission corrections to gg ! H
which, within the standard model (SM), is mediated mainly
by a top quark loop. For a Higgs boson, which is lighter than
the top quark, the resulting Hjj cross section can be deter-
mined to good approximation by an effective Lagrangian of
energy dimension five, which is given by [7–12]

Leff ¼ yt
ySMt

� �s

12�v
�HGa

��G
a��þ ~yt

ySMt
� �s

8�v
�AGa

��
~Ga��;

(1.1)

where Ga
�� denotes the gluon field strength and ~Ga�� ¼

1=2Ga
��"

���� its dual. The two terms result froma �ttH and a
�ti�5tA coupling of the (pseudo) scalar Higgs, respectively,
and they lead to distinctively different distributions of the
azimuthal angle between the two jets: the CP -even Hgg
coupling produces a minimum for �jj ¼ ��=2, while a

CP -odd Agg coupling leads to minima at �jj¼0 and��.

These distinctions become important in two-Higgs-doublet
models (2HDM) like theminimal supersymmetric extension

of the standard model (MSSM), where a CP -odd Higgs, A,
appears in addition to a light and a heavy, neutral CP -even
Higgs, h and H: the azimuthal angle distribution of �jj
events allow to differentiate between a CP -even Higgs
(� ¼ h, H) or a CP -odd one (� ¼ A).
For large Higgs boson masses (mH * mt), the full quark

mass dependence of the loop diagrams must be calculated
for reliable predictions, and the same is true for large ratios
of the two vacuum expectation values, vu=vd ¼ tan	,
where bottom-quark loops provide the dominant contribu-
tions to qq ! qqH, qg ! qgH, and gg ! ggH ampli-
tudes. For a CP -even Higgs boson, these calculations were
performed in Ref. [13]. The purpose of the present paper is
to present the corresponding results for a CP -odd Higgs
boson, � ¼ A, or more precisely, for an underlying Higgs
coupling to quarks derived from the Yukawa Lagrangian
L ¼ yq �qi�5qA. By combining the present results with

those for a CP -even Higgs, the quark-loop-induced con-
tributions to �jj production can be calculated for an
arbitrary Yukawa coupling of the form

L Yukawa ¼ �qðyq þ i�5~yqÞq�: (1.2)

Our results are implemented in a parton level Monte Carlo
program which is part of the VBFNLO program package
[14]. This numerical implementation allows to calculate
�jj production cross sections in hadronic collisions in-
cluding top- and bottom-quark loop contributions for arbi-
trary combinations of the Yukawa couplings yq and ~yq
(q ¼ t, b).
Our paper is organized as follows. In Sec. II, we first

define the models in which we consider pseudoscalar Higgs
production.We then provide an outline of the calculation of
the scattering amplitudes for the three basic subprocesses,
qq ! qqA, qg ! qgA, and gg ! ggA. Further details on
the various loop contributions are relegated to the
Appendixes. We have performed a number of analytic and
numerical consistency checks on our calculation: they are
described in Sec. III. The main phenomenological results
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are presented in Sec. IV, forpp scattering at the LHCwith a
center of mass energy of

ffiffiffi
s

p ¼ 14 TeV. For various combi-
nations of top- and bottom-quark contributions, parameter-
ized by tan	, we provide integrated Ajj cross sections but
also differential distributions. Results are also presented for
general�jj events, i.e. for the production of a Higgs boson
with arbitrary CP -violating couplings to the third genera-
tion quarks. Final conclusions are drawn in Sec. V.

II. OUTLINE OF THE CALCULATION AND
MATRIX ELEMENTS

The production of the CP -odd Higgs boson A in asso-
ciation with two jets, at order �4

s , proceeds in analogy to
the production of the CP -even Higgs boson HSM of the
SM. The HSMjj production processes with full heavy
quark mass effects were considered in Ref. [13], and we
closely follow the framework and the notation introduced
there. We consider the production subprocesses

qq!qqA; qQ!qQA; qg!qgA; gg!ggA;

(2.1)

and all crossing-related processes. Here, the first two en-
tries denote scattering of identical and nonidentical quark
flavors. The Higgs boson A is produced by massive quark
loops, for which only the third quark generation is taken
into account. Furthermore, within the MSSM, massive
squark loops can safely be neglected, because their con-
tribution sums to zero at amplitude level in the production
of a CP -odd Higgs boson [15]. In the 2HDM, up- and
down-type quark Yukawa couplings depend on the ratio
of vacuum expectation values, tan	 ¼ vu=vd, via the
relations

(1) 2HDM of type I:

~yIA;uu ¼
cot	

v
mu and ~yIA;dd ¼ � cot	

v
md; (2.2)

(2) 2HDM of type II (MSSM):

~yIIA;uu ¼�cot	

v
mu and ~yIIA;dd ¼� tan	

v
md: (2.3)

In the 2HDM of type I, Yukawa couplings for up-type and
down-type quarks are suppressed equally at large tan	

compared to the 2HDM of type II, where only the up-
type Yukawa coupling is suppressed but the down-type
Yukawa coupling is enhanced. Because of this enhance-
ment, loops with bottom quarks can also provide signifi-
cant contributions to cross sections.
In the calculation of the subprocesses listed in (2.1),

three different loop topologies appear: the triangle, box,
and pentagon diagrams of Fig. 1. The contributing
Feynman diagrams can be easily built from the simpler
QCD dijet processes at leading order. One needs to insert
the Higgs-gluon triangles into the gluon propagators of the
2 ! 2 tree-level diagrams in all possible ways or one
replaces a triple gluon or four gluon vertex by box or
pentagon graphs in all possible ways. Charge-conjugation
related diagrams, where the loop momentum is running
clockwise and counterclockwise, can be counted as one by
exploiting Furry’s theorem [16]. This effectively reduces
the number of diagrams by a factor of 2. Furthermore, all
diagrams are UV-convergent and, due to the finite quark
mass in the loops, also IR-convergent. All coupling con-
stants and loop factors which appear can conveniently be
absorbed into an overall factor

Ff ¼ 4mfhf
g4s

16�2
¼ 4mfhf�

2
s ; (2.4)

where f ¼ b, t labels the heavy quark flavor of a particular
loop. In the following, we use the MSSM couplings of
Eq. (2.3), i.e. we set ht¼cot	mt=v and hb¼tan	mb=v.
By pulling out a loop factor 4mf=16�

2, we anticipate that

the Dirac trace of all loops requires a quark mass insertion to
compensate the helicity flip induced by the �f �f coupling.

1. Subprocesses qQ ! qQA and qq ! qqA

The subprocess qQ ! qQA, depicted in Fig. 1(a), is the
simplest contribution to Aþ 2 jet production. Following
Ref. [13], the amplitude for different flavors can be written
as

A qQ ¼ X
f¼t;b

FqQ
f J

�1

21 J
�2

43 T�1�2
ðq1; q2; mfÞtai2i1 tai4i3

¼ AqQ
2143t

a
i2i1

tai4i3 : (2.5)

 A

(a)

 A

(b)

  A

(c)

FIG. 1. Examples of Feynman graphs contributing to Aþ 2 jet production via gluon fusion.
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Using the notation and formalism for the spinor algebra of
[17], the external quark lines can be expressed by effective
quark currents J

�1

21 and J
�2

43 as given in [13]. The triangle

tensor T�1�2ðq1; q2; mfÞ (see Appendix A Fig. 10) has the

simple form

T�1�2ðq1; q2; mfÞ ¼ "�1�2q1q2C0ðq1; q2; mfÞ: (2.6)

Here, C0 denotes the scalar three-point function and
"�1�2q1q2 is the totally antisymmetric tensor (Levi-Civita
symbol) in four dimensions contracted with attached gluon
momenta q1 and q2. The t

a
ij ¼ 
a

ij=2 are color generators in

the fundamental representation of SUðNÞ, N ¼ 3 and the
overall factor

FqQ
f ¼ S1S2S3S44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p0
1 �p

0
2 �p

0
3 �p

0
4

q
Ff (2.7)

includes normalization factors of external quark spinors.
Here, the �pi denote physical momenta describing phase
space and the wave functions of fermions and bosons while
pi is used for momenta appearing in the momentum flow in
Feynman diagrams. Both sets of momenta are related by
the sign factors Si [17]

pi ¼ Si �pi; (2.8)

with Si ¼ þ1 for fermions and Si ¼ �1 for anti-
fermions. The factor Ff is given in Eq. (2.4). For

identical quark flavors, one has to keep in mind Pauli
interference

A qq ¼ Aqq
2143t

a
i2i1

tai4i3 �Aqq
4123t

a
i4i1

tai2i3 : (2.9)

The squared amplitude, summed over initial- and final-
particle color, becomes

X
color

jAqqj2 ¼ ðjA2143j2 þ jA4123j2ÞN
2 � 1

4

þ 2ReðA2143A�
4123Þ

N2 � 1

4N
: (2.10)

2. Subprocesses qg ! qgA

Polarization vectors of external gluon lines with a tri-
angle insertion can be expressed by effective polarization
vectors

e�iAðmfÞ¼"��iqiP
1

ðqiþPÞ2C0ðqi;�ðqiþPÞ;mfÞ; (2.11)

which replace the polarization vectors ��i of the underlying
2 ! 2 process for gluons i ¼ 1, 2. Here, qi is the external
gluon momentum while P denotes the momentum of the
Higgs boson. The expression for the amplitude of graphs
with a triangle insertion adjacent to a three-gluon vertex
differs slightly from that in [13] due to the emergence of
the Levi-Civita symbol

Aqg
tri ¼

X
f

Fqg
f ½ta1 ; ta2�i1i2

�
2½e1A � �2J21 � q2 � e1A � J21�2 � ðp2 � p1Þ � e1A � q2J21 � �2�

� 2½e2A � �1J21 � q1 � e2A � q1J21 � �1 � e2A � J21�1 � ðp2 � p1Þ� þ 2"�1�2�3�4
J
�2

21 ½�1 � �2q�3

1 q
�1

2 ðp2 � p1Þ�4

þ ð�2 � q1��1

1 � �1 � q2��1

2 Þ � ðq1 þ q2Þ�3ðp2 � p1Þ�4�C0ðp2 � p1; q1 þ q2; mfÞ
ðq1 þ q2Þ2

�
: (2.12)

Further expressions for amplitudes of graphs with a tri-
angle insertion can be taken from [13] replacing e

�
iH

by e
�
iAðmfÞ. The tensor structure of the box diagram

in Fig. 1(b) is given by �B�1�2�3
ðq1; q2; q3; mfÞ, (see

Appendix B, Fig. 11). Finally, the color structure of the
qg ! qgA amplitude is given by [13]

Aqg ¼ ðta1 ta2Þi2i1Aqg
12 þ ðta2 ta1Þi2i1Aqg

21 with

Aqg ¼ X
f

Aqg
f : (2.13)

The indices 12 and 21 label amplitudes with interchanged
external gluons. Thus, the resulting color-summed squared
amplitude takes the form

X
color

jAqgj2 ¼ ðjAqg
12 j2 þ jAqg

21 j2Þ
ðN2 � 1Þ2

4N

� 2Re½Aqg
12 ðAqg

21 Þ��
N2 � 1

4N
: (2.14)

3. Subprocesses gg ! ggA

After inserting suitable loop topologies and application
of Furry’s theorem, this process contains 19 graphs with
triangle insertions, 18 box contributions and 12 pentagon
diagrams. The pentagon diagrams, Fig. 1(c), enter via the
P�1�2�3�4 tensor (see Appendix C Fig. 12). Full expres-
sions and diagrams can be looked up in [18]. The contrib-
uting color structures to the process gg ! ggA can be
expressed by the real-valued color coefficients ci defined
in [13]
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c1 ¼ tr½ta1 ta2 ta3 ta4� þ tr½ta1ta4 ta3ta2�;
c2 ¼ tr½ta1 ta3ta4 ta2� þ tr½ta1ta2 ta4 ta3�;
c3 ¼ tr½ta1 ta4ta2 ta3� þ tr½ta1ta3 ta2 ta4�:

(2.15)

Evaluation of the color traces yields

c1 ¼ 1

4

�
2

N
�a1a2�a3a4 þ da1a2lda3a4l � fa1a2lfa3a4l

�
;

c2 ¼ 1

4

�
2

N
�a1a3�a4a2 þ da1a3lda4a2l � fa1a3lfa4a2l

�
;

c3 ¼ 1

4

�
2

N
�a1a4�a2a3 þ da1a4lda2a3l � fa1a4lfa2a3l

�
:

(2.16)

In terms of these color coefficients, the complete amplitude
for gg ! ggA can be decomposed into three separately
gauge invariant subamplitudes

A gg ¼ X3
i¼1

ci
X
f

Agg
i;f: (2.17)

The sum over colors of the external gluons for the squared
amplitude becomes

X
color

jAggj2 ¼ X3
i;j¼1

Agg
i ðAgg

j Þ�X
color

cicj; (2.18)

where the color factors are given by

C1�
X
color

cici¼ðN2�1ÞðN4�2N2þ6Þ
8N2

; ðno sum:over iÞ;

(2.19)

C 2 �
X
color

cicj ¼ ðN2 � 1Þð3� N2Þ
4N2

; i � j: (2.20)

Thus, one finally gets

X
color

jAggj2 ¼ C1
X3
i¼1

jAgg
i j2 þ C2

X3
i;j¼1;i�j

Agg
i ðAgg

j Þ�:

(2.21)

III. NUMERICAL IMPLEMENTATION

Analytic expressions for the amplitudes of the previous
chapter were implemented in the Fortran program
VBFNLO [14]. The tensor reduction of the loop contribu-
tions up to boxes is performed via Passarino–Veltman
reduction [19]. Additionally, we avoid the explicit calcu-
lation of the inverse of the Gram matrix by solving system
of linear equations, which is numerically more stable close
to the singular points. For pentagons, we use the Denner–
Dittmaier algorithm [20] which avoids the inversion of
small Gram determinants, in particular, for planar configu-
rations of the Higgs and the two final-state partons. The
program was numerically tested in several ways. Besides

usual gauge-invariance and Lorentz-invariance tests of
the amplitudes, the different topologies were checked
separately. The contraction of a triangle-tensor
T�1�2

ðq1; q2; mfÞ with gluon momentum q�i has to vanish

due to total antisymmetry of the Levi-Civita symbol

q�1

1 T�1�2
ðq1; q2; mfÞ ¼ q�2

2 T�1�2
ðq1; q2; mfÞ ¼ 0: (3.1)

Contracting with external gluon momenta, the tensor ex-
pressions of boxes and pentagons reduce to differences of
triangles and boxes, respectively. With the tensor integrals
as defined in the Appendix, the Ward identities for the
boxes read

q�1

1 B�1�2�3
ðq1; q2; q3; mfÞ ¼ T�2�3

ðq12; q3; mfÞ
� T�2�3

ðq2; q3; mfÞ; (3.2)

q
�2

2 B�1�2�3
ðq1; q2; q3; mfÞ ¼ T�1�3

ðq1; q23; mfÞ
� T�1�3

ðq12; q3; mfÞ; (3.3)

q
�3

3 B�1�2�3
ðq1; q2; q3; mfÞ ¼ T�1�2

ðq1; q2; mfÞ
� T�1�2

ðq1; q23; mfÞ; (3.4)

where the abbreviation qij ¼ qi þ qj has been used.

Similarly, for the pentagons, one finds

q
�1

1 P�1�2�3�4
ðq1; q2; q3; q4; mfÞ

¼ B�2�3�4
ðq12; q3; q4; mfÞ � B�2�3�4

ðq2; q3; q4; mfÞ;
(3.5)

q
�2

2 P�1�2�3�4
ðq1; q2; q3; q4; mfÞ

¼ B�1�3�4
ðq1; q23; q4; mfÞ � B�1�3�4

ðq12; q3; q4; mfÞ;
(3.6)

q
�3

3 P�1�2�3�4
ðq1; q2; q3; q4; mfÞ

¼ B�1�2�4
ðq1; q2; q34; mfÞ � B�1�2�4

ðq1; q23; q4; mfÞ;
(3.7)

q�4

4 P�1�2�3�4
ðq1; q2; q3; q4; mfÞ

¼ B�1�2�3
ðq1; q2; q3; mfÞ � B�1�2�3

ðq1; q2; q34; mfÞ:
(3.8)

These relationships were tested numerically and they, typi-
cally, are satisfied at the 10�9 level when using Denner–
Dittmaier reduction for the tensor integrals. In addition,
one can perform a QED-check for the pentagons.
Replacing gluons by photons and considering the process
�� ! ��A, diagrams with three- and four-gluon-vertices
vanish, because these structures are not available in an
Abelian theory. The amplitude is simply given by the
sum of all pentagon graphs, without color factors. When
contracting with an external gauge boson momentum, one
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obtains zero, since boxes are not allowed for photons, by
Furry’s theorem. Our amplitudes pass this test as well.

To check the full scattering amplitudes, one can make
use of the heavy-top effective Lagrangian for a SM
strength Yukawa coupling,

LA
eff ¼

�s

8�v
Ga

�1�2
~Ga�1�2A with

~Ga�1�2 ¼ 1

2
��1�2�3�4Ga

�3�4
: (3.9)

As mt becomes large, the results calculated with full
fermion loops must approach the approximate ones derived
from the effective Lagrangian. This check was performed
with mt ¼ 5000 GeV, and cross sections agree at the 1%
level or better. In production runs, we put a cut in the
routines for the determination of the tensor integral coef-
ficients of the C and D functions such that the complete
amplitude is set to zero when small Gram determinants
appear. We have checked that the result and plots do not
depend on this cut for a broad range of values. Finally, the
amplitudes for all three subprocesses were recalculated
using the FeynCalc/FormCalc framework [21]. For a se-
lection of randomly generated phase space points, the two
independent calculations yield agreement at least at the
10�6 level.

IV. APPLICATIONS TO LHC PHYSICS

The numerical analysis of the �þ 2 jet cross section
was performed with a parton level Monte Carlo program in
the VBFNLO framework [14], using the CTEQ6L1 [22] set
for parton-distribution functions. In order to prevent soft or
collinear divergencies in the cross sections, a minimal set
of acceptance cuts has to be introduced. Following
Ref. [13], we impose

pTj > 20 GeV; jjj< 4:5; Rjj > 0:6; (4.1)

where pTj is the transverse momentum of a final state

parton and Rjj describes the separation of the two partons

in the pseudorapidity versus azimuthal-angle plane

Rjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

jj þ�2
jj

q
; (4.2)

with �jj ¼ jj1 � j2j and �jj ¼ �j1 ��j2. These

cuts anticipate LHC detector capabilities and jet finding
algorithms and will be called ‘‘inclusive cuts’’ (IC) in the
following. Unless specified otherwise, the factorization
scale is set to

�f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT1pT2

p
; (4.3)

while the renormalization scale is fixed by setting [13]

�4
sð�RÞ ¼ �sðpT1Þ�sðpT2Þ�2

sðm�Þ: (4.4)

We use one-loop �s running with �sðMZÞ ¼ 0:13. All
our results below contain the contributions from the full

top- and bottom-quark loops. For the top-quark mass, we
usemt ¼ 173:1 GeV. In the case of bottom-loops, running
Yukawa coupling and propagator mass are taken into ac-
count, with the Higgs-mass as reference scale. Within the
Higgs-mass range of 100–600 GeV, the bottom-quark mass
is 33% to 42% smaller than the pole mass of 4.855 GeV.
The evolution of mb up to a reference scale � can be
expressed as

�mbð�Þ ¼ �mbðmbÞ c½�sð�Þ=��
c½�sðmbÞ=�� ; (4.5)

with �mbðmbÞ ¼ 4:2 GeV, as derived from the relation be-
tween pole mass and MS-bar mass. For the coefficient
function c, the five-flavor approximation [23,24] within
the mass range mb <�<mt,

cðxÞ¼
�
23

6
x

�
12=23

�½1þ1:17549xþ1:50071x2þ0:172478x3�; (4.6)

is used. Further evolution of �mb to a renormalization scale
�>mt can be performed safely within the five-flavor
approximation, because the deviation to the six-flavor
scheme is less than 1% for �< 600 GeV.
Contributions of individual subprocess categories to the

total cross section for tan	 ¼ 1 are shown in Fig. 2 as a
function of the Higgs boson mass, mA. Here, the minimal
cuts of Eq. (4.1) were used. The cross sections for pro-
cesses involving gluons (quark-gluon or gluon-gluon am-
plitudes) exceed the quark-quark scattering contributions
by more than one order of magnitude. The mA dependence
of the full cross section, with top- and bottom-quark inter-
ference, is given in the left panel of Fig. 3 for a selection of

 0.1

 1

 10

 100

 100  200  300  400  500  600
mA [GeV]

σ 
[p

b]

tan β = 1, IC

qq
qg
gg

FIG. 2 (color online). Aþ 2 jet cross section of the individual
contributions of the subprocesses quark-quark, quark-gluon and
gluon-gluon scattering for tan 	 ¼ 1 as a function of the
pseudoscalar Higgs boson mass, mA. Here, the inclusive cuts
(IC) of Eq. (4.1) were applied.
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tan	 values. For small tan	, amplitudes with a top-quark
loop dominate over bottom-quark loop mediated contribu-
tions. The striking peak arises due to threshold enhance-
ment near mA � 2mt, whereas for bottom-quark loop
dominated processes, the peak would appear well below
the Higgs mass range shown.

For low mA, the minimal cross section is obtained near
tan	 � 7, when ht � hb [see Eq. (2.3)] and both Yukawa
couplings are suppressed compared to hSMt . For large tan	,
e.g. tan	 ¼ 50 in Fig. 3 (left panel), the bottom-quark
loops dominate. However, they lead to a much more rapid
decrease of the cross section with rising mA because the
suppression scale of the loops is now set by the heavy
Higgs boson mass instead of the quark mass. The reduced
importance of the bottom-quark loops at large mA implies
that equality of the top and bottom contributions and,
thereby, the minimum of the production cross section is
reached at increasingly larger tan	 asmA is increased. This
effect is demonstrated in the right panel of Fig. 3.

The �5-matrix in the Dirac-trace of the quark loops leads
to a new tensor structure and to a normalization of the
loops that, for equal Yukawa couplings, induces a ð3=2Þ2 ¼
2:25 times larger Ajj thanHjj cross section. This enhance-
ment is shown in Fig. 4 and is also apparent in the effective
Lagrangian of Eq. (1.1), where the coefficient of the
CP -odd Agg coupling exceeds that of the Hgg coupling
by a factor 3=2. This effective Lagrangian provides a good
approximation to the total �jj cross sections up to Higgs-
masses of � 160 GeV and for small transverse momenta,
pTj & mt. In this region, the effective Lagrangian approxi-

mation can be used as a numerically fast alternative for
phenomenological studies [13].

The smaller quark mass in the bottom loops also
has a pronounced effect on the transverse-momentum
distribution of the accompanying jets: for pTj * mb the

large scale of the kinematic invariants leads to an additional

suppression of the bottom induced subamplitudes com-
pared to the heavy quark effective theory. This effect is
clearly visible in Figs. 5 and 6, where the transverse-
momentum distributions of the softer and the harder of
the two jets are shown for pseudoscalar HiggsmassesmA ¼
120, 200 and 400 GeV for tan	 ¼ 1, 7, 30. For modest
Higgs mass values, both distributions fall more steeply for
large tan	. At large values ofmA, the Higgs bosonmass sets
the scale for the fermion loops which, in the mA ¼
400 GeV panels of Figs. 5 and 6, leads to pT distributions
which are approximately equal for the top- or bottom-quark
dominated loops. Similar effects are observed in the
dijet-invariant mass distribution, Fig. 7. From Figs. 5–7,
we confirm similarly to the CP-even Higgs case, that the
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FIG. 4 (color online). Comparison of cross sections for the
CP -odd and CP -even Higgs for the full loop calculation and
within the effective theory. The inclusive cuts (IC) of Eq. (4.1)
are applied.
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FIG. 3 (color online). Aþ 2 jet cross section as a function of the pseudoscalar Higgs boson mass, mA for different values of tan 	.
The inclusive cuts (IC) of Eq. (4.1) are applied.
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validity of the heavy quarkmass approximation is restricted
to m� <mq and pTj < mq, while large dijet-invariant

masses do not spoil the validity of this limit.
For the set of pseudoscalar Higgs masses and tan	

values mentioned above, predictions for the normalized
�jj-distributions are shown in Fig. 8. The calculation

was carried out with a modified set of cuts, however, which
was shown in Ref. [29] to lead to a better sensitivity to the
CP -structure of the Higgs couplings than the inclusive
cuts. In Fig. 8, we use

pTj > 30 GeV; jjj< 4:5; Rjj > 0:6;

�jj ¼ jj1 � j2j> 3;
(4.7)

which we call ICphi cuts in the following. One finds that
the characteristic structure of the �jj distribution dips at

�jj ¼ 0 and �jj ¼ �180 degrees, and remains there for

bottom-quark dominated Ajj production, albeit at a
quantitatively reduced level formA > 2mq. For a relatively

light pseudoscalar Higgs boson and large tan	, the softer
transverse-momentum distribution of the Higgs leads to
kinematical distortions of the �jj distribution: at �jj � 0

the Higgs recoils against two jets and hence must have
pTH > 60 GeV, and this high pT-scale leads to an addi-
tional suppression as compared to the �jj � �180 degree

casewhere transverse-momentumbalancing of the jets does
allow pTH ¼ 0.
The azimuthal angle between the more forward and the

more backward of the two tagging jets, �jj ¼ �jF ��jB,

provides a sensitive probe for the CP -character of the
Higgs couplings to the quarks [25–28,35]. As shown in
the left panel of Fig. 9, for a heavy quark in the loop, the
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FIG. 5 (color online). Normalized transverse-momentum distributions of the softer jet in Ajj production at the LHC, for different tan
	 and Higgs-mass values. The inclusive selection cuts of Eq. (4.1) are applied.
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GLUON-FUSION CONTRIBUTIONS TO �þ 2 JET . . . PHYSICAL REVIEW D 84, 095025 (2011)

095025-7



CP -even Hqq coupling produces a minimum for �jj ¼
�90 degrees while a �5-induced CP -odd Aqq coupling
leads to minima at �jj ¼ 0 and �180 degrees. The soft-

ening effects observed for the jet transverse-momentum
distribution then raise the question, to what extent the jet
azimuthal-angle correlations of the effective theory will
get modified when bottom-quark loops dominate.

For the effective theory of the large quark mass limit,
it was observed that CP -violating effects due to a mixture
of CP -even and CP -odd couplings leads to a phase
shift of the �jj distribution compared to the CP -even

case by an angle, �, which is given by the relative
strength of the two couplings [26,27]. Taking into account
the relative enhancement by the factor 3=2 of the Agg

coupling due to loop effects, the phase shift angle is
given by

tan� ¼ 3

2

~yq
yq

; (4.8)

when heavy quark loops of a single flavor dominate. In
order to test this effect for the case of a light quark, we
show, in the right panel of Fig. 9, the results for

yb ¼ 3

2
~yb ¼ � tan	

mb

v
and yt ¼ 3

2
~yt ¼ � cot	

mt

v
;

(4.9)

where a 45	 phase shift is expected, with minima of the�jj

distribution at�45	 andþ135	. This basic expectation is,

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  500  1000 1500 2000 2500
mjj [GeV]

1/
σ  

dσ
/d

m
jj 

[1
/G

eV
]

mA=120 GeV, IC
eff. th.
tan β = 1
tan β = 7
tan β= 30

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  500  1000 1500 2000 2500
mjj [GeV]

1/
σ  

dσ
/d

m
jj 

[1
/G

eV
]

mA=200 GeV, IC
eff. th.
tan β = 1
tan β = 7
tan β= 30

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0  500  1000 1500 2000 2500
mjj [GeV]

1/
σ 

dσ
/d

m
jj 

[1
/G

eV
]

mA=400 GeV, IC
eff. th.
tan β = 1
tan β = 7
tan β= 30

FIG. 7 (color online). Normalized dijet-invariant mass distributions in Ajj production at the LHC for different tan and Higgs-mass
values. The inclusive selection cuts of Eq. (4.1) are applied.
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indeed, confirmed by the detailed calculation. However,
there are additional distortions of the azimuthal-angle dis-
tributions which can again be explained by kinematical
effects due to transverse-momentum balancing of the two
jets and the Higgs boson.

The azimuthal-angle correlations of the jets will be
affected by higher-order QCD corrections, in particular,
due to the emission of additional partons. When consid-
ering large rapidity separations of the two leading jets,
decorrelation effects may be expected to be particularly
large, due to the increased phase space for such emis-
sions. Indeed, parton shower studies of such effects
[30,31] at first seemed to indicate such decorrelations
which, however, are likely due to approximations made
in the parton shower treatment. For the effective theory,
also the NLO QCD corrections for hjj production are
available, and they do not indicate a significant decor-
relation of the jet azimuthal angles [32]. This result is
strengthened by a recent analysis of hjj distributions
with multiple parton emissions in a framework which
correctly models the high energy limit of the QCD
amplitudes [33]. Encouraged by these results, we as-
sume that also for the more general situation considered
here, with significant contributions from light (bottom)
quark loops, the azimuthal-angle distributions will not
be significantly distorted by additional parton emission.
An actual study of these questions is beyond the scope
of the present paper, however.

V. CONCLUSIONS

In this paper, we have presented the determination of
quark mass effects on the cross section and on distributions

for pseudoscalar Higgs production in association with two
final state partons. Our calculation for Ajj production
complements the analogous one for a scalar Higgs, i.e.
Hjj production as carried out in Ref. [13]. Qualitative
features are quite similar for the two cases. Validity of
the heavy quark mass approximation is found to be re-
stricted to m� <mq and pTj < mq while large dijet-

invariant masses do not spoil the validity of the heavy
quark limit. A pronounced difference between Ajj and
Hjj production is observed in the azimuthal-angle distri-
bution between the two jets, which allows, in principle, to
determine the CP -properties of the produced Higgs boson
at the LHC [27].
Our analytical expressions have been implemented in

the VBFNLO program [14] and are publicly available as a
parton level Monte Carlo program. Even though the code
must evaluate loop expressions up to pentagons, the cal-
culation is leading order in the strong coupling constant
since Higgs production in gluon fusion first appears at the
one-loop level. As a leading order process, it has been
provided with an interface in the Les Houches format
[34] to run with parton shower programs, providing full
particle, momentum, and color flow information. The code
allows to sum top- and bottom-quark induced contributions
with arbitrary CP -violating couplings

L Yukawa ¼ �qðyq þ i�5~yqÞq�; (5.1)

and, thus, is versatile enough for simulating the effects of
general, CP -violating Higgs sectors at the LHC.
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FIG. 9 (color online). �jj distributions for different Higgs-sector scenarios: pure CP -odd or CP -even coupling in the effective
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APPENDIX A: TENSOR STRUCTURE
OF TRIANGLES

The generic three-point functions for triangle graphs
with opposite loop momentum have the following expres-
sions

T�1�2

1 ðq1; q2; mfÞ

¼ �i

4mf

Z d4k

i�2
tr

� 6kþmf

k2 �m2
f

��1
6kþ 6q1 þmf

ðkþ q1Þ2 �m2
f

� ��2
6kþ 6q12 þmf

ðkþ q12Þ2 �m2
f

�5

�
; (A1)

T�1�2

2 ðq1; q2; mfÞ

¼ �i

4mf

Z d4k

i�2
tr

� þmf

k2 �m2
f

��2
6kþ 6q2 þmf

ðkþ q2Þ2 �m2
f

� ��1
6kþ 6q12 þmf

ðkþ q12Þ2 �m2
f

�5

�
; (A2)

where q1, q2 are outgoing momenta, q12 ¼ q1 þ q2 and
the overall factor �i=4mf cancels the explicit mass factor

arising from the Dirac trace. Using the charge-conjugation
matrix C

Ĉ��Ĉ
�1 ¼ ��T

�; Ĉ�5Ĉ
�1 ¼ �T

5 with

Ĉ ¼ �0�2; Ĉ2 ¼ 1;
(A3)

one can derive (Furry’s theorem [16])

T
�1�2

1 ðq1; q2; mfÞ ¼ T
�1�2

2 ðq1; q2; mfÞ
� T�1�2ðq1; q2; mfÞ: (A4)

Thus, the color structure simplifies to

tr½ta1 ta2�T�1�2

1 ðq1; q2; mqÞ þ tr½ta2 ta1�T�1�2

2 ðq1; q2; mfÞ
¼ �a1a2T�1�2ðq1; q2; mfÞ: (A5)

Evaluation of the Dirac trace yields

T�1�2ðq1; q2; mfÞ ¼ "�1�2q1q2C0ðq1; q2; mfÞ: (A6)

Here, C0 denotes the scalar three-point function and
"��q1q2 is the totally antisymmetric tensor (Levi-Civita
symbol), contracted with the gluon momenta q1 and q2.

APPENDIX B: TENSOR STRUCTURE OF BOXES

The analytic expressions for the charge-conjugated
boxes are

�B�1�2�3

1 ðq1; q2; q3; mfÞ

¼ �i

4mf

Z d4k

i�2
tr

� 6kþmf

k2 �m2
f

��1
6kþ 6q1 þmf

ðkþ q1Þ2 �m2
f

� ��2
6kþ 6q12 þmf

ðkþ q12Þ2 �m2
f

��3
6kþ 6q123 þmf

ðkþ q123Þ2 �m2
f

�5

�
;

(B1)

�B�1�2�3

2 ðq1; q2; q3; mfÞ

¼ �i

4mf

Z d4k

i�2
tr

�
kþmf

k2 �m2
f

��3
6kþ 6q3 þmf

ðkþ q3Þ2 �m2
f

� ��2
6kþ 6q23 þmf

ðkþ q23Þ2 �m2
f

��1
6kþ 6q123 þmf

ðkþ q123Þ2 �m2
f

�5

�
;

(B2)

where q1, q2 and q3 are outgoing momenta, qij ¼ qi þ qj
and qijk ¼ qi þ qj þ qk. From charge conjugation one

gets

�B�1�2�3

1 ðq1; q2; q3;mfÞ ¼� �B�1�2�3

2 ðq1; q2; q3;mfÞ
� �B�1�2�3ðq1; q2; q3;mfÞ: (B3)

Two additional permutations are obtained by cyclic per-
mutation of (1, 2, 3). The color structure for the sum of the
two diagrams is

trðta1 ta2ta3Þ �B�1�2�3

1 ðq1; q2; q3; mfÞ
þ trðta3 ta2 ta1Þ �B�1�2�3

2 ðq1; q2; q3; mfÞ
¼ ½trðta1 ta2 ta3Þ � trðta3ta2 ta1Þ� �B�1�2�3ðq1; q2; q3; mfÞ
¼ i

2
fa1a2a3 �B�1�2�3ðq1; q2; q3; mfÞ: (B4)

The tensor structure of charge-conjugation related box
diagrams, e.g. with gluon permutation (1, 2, 3), can be
written as

AT1
µ1µ2

µ1
a1 q1

µ2
a2

q2

k

AT2
µ1µ2

µ1
a1 q1

µ2
a2

q2 k

FIG. 10. Two three-point functions connected by charge
conjugation.
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�B�1�2�3ðq1; q2; q3; mfÞ ¼ f"�3q1q2q3g�1�2 � "�2q1q2q3g�1�3 þ "�2�3q2q3q
�1

1 � "�2�3q1q3q
�1

2 þ "�2�3q1q2q
�1

3

þ "�1q1q2q3g�2�3 þ "�1�3q2q3q�2

1 � "�1�3q1q2q�2

3 � "�1�2q2q3q�3

1 þ "�1�2q1q3q�3

2

þ "�1�2�3q3g�1�2 � "�1�2�3q2g�1�3 þ "�1�2�3q1g�2�3 þ "�1�3q1q3ð2q�2

1 þ q
�2

2 Þ
þ "�1�2q1q2½2ðq�3

1 þ q
�3

2 Þ þ q
�3

3 �gD0ðq1; q2; q3; mfÞ � "�1�2�3q3C0ðq1 þ q2; q3; mfÞ
� "�1�2�3q1C0ðq1; q2 þ q3; mfÞ þ 2"�2�3q2q3D�1ðq1; q2; q3; mfÞ
þ 2"�1�3q1q3D�2ðq1; q2; q3; mfÞ þ 2"�1�2q1q2D�3ðq1; q2; q3; mfÞ: (B5)

The D0 and D� are four-point functions. Whereas the former denotes a scalar function, the latter can be expressed by the
usual Passarino–Veltman decomposition [19] as

D�ðq1; q2; q3; mfÞ ¼ q�1 D11 þ q�2 D12 þ q�3 D13: (B6)

Note that after contraction with polarization vectors ��1

1 , ��2

2 and quark current J�3

21 , the expression (B5) still contains terms
with factors ð�1 � q1Þ, ð�2 � q2Þ, ðJ21 � q3Þ even though they vanish, since gluon-polarization vectors ��i and momenta q�i are
perpendicular to each other and the quark current J21 is conserved. However, these terms are important for numerical gauge
checks, where the corresponding gluon-polarization vector is replaced by its momentum. Since the virtual gluon has a
nonzero q2i , these terms give finite contributions.

APPENDIX C: TENSOR STRUCTURE OF PENTAGONS

The two five-point functions connected by charge conjugation are defined by the expressions 0

P�1�2�3�4

1 ðq1; q2; q3; q4; mfÞ ¼ �i

4mf

Z d4k

i�2
tr

� 6kþmf

k2 �m2
f

��4
6kþ 6q4q4 þmf

ðkþ q4Þ2 �m2
f

��1

� 6kþ 6q14q14 þmf

ðkþ q14Þ2 �m2
f

��2
6kþ 6q124 þmf

ðkþ q124Þ2 �m2
f

��3
6kþ 6q1234 þmf
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f
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; (C1)

P
�1�2�3�4

2 ðq1; q2; q3; q4; mfÞ ¼ �i

4mf

Z d4k

i�2
tr

� 6kþmf

k2 �m2
f

��3
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f

��2
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f
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6kþ 6q123 þmf
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f

��4
6kþ 6q1234 þmf

ðkþ q1234Þ2 �m2
f

�5

�
; (C2)

where q1, q2, q3 and q4 are outgoing momenta (qij ¼ qi þ qj and similarly for qijk and qijkl). The allowed color structures
are given in [13]. The pentagon was reduced using the Denner–Dittmaier algorithm [20] and is available as a FORTRAN-
subroutine in VBFNLO [14]. The full analytic expression in terms of Passarino–Veltman reduction can be found in [18].
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FIG. 11. Two four-point functions connected by charge
conjugation.
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