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We revise the spin-dependent neutralino-nucleus elastic scattering comparing the formalisms and

approximations found in literature for the momentum transfer dependent structure functions. We argue

that one of the normalized structure functions of Divari, Kosmas, Vergados, and Skouras is all that one

needs to correctly take into account the detailed nuclear physics information provided by shell-model

calculations. The factorization of the particle physics degrees of freedom from the nuclear physics

momentum dependent structure functions implied by this formalism allows for a better understanding of

the so-called model independent method for setting upper limits. We further discuss the possibility of

experiments with spin-dependent sensitivity like COUPP to test or set limits on the proton spin-dependent

cross section in the framework of the stau coannihilation region of the constrained minimal super-

symmetric standard model. For this model with A0 ¼ 0, we provide a fitting formula by which it is

possible to convert an upper limit on the spin-independent cross section as a function of the neutralino

mass directly into an exclusion plot in the (m1=2, tan�) plane.
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I. INTRODUCTION

The nature of nonbaryonic dark matter that seems to
constitute the largest part of the matter in the Universe is
still unknown. If dark matter is formed by nonrelativistic
weakly interacting massive particles (WIMP) distributed in
the halo of the galaxy, they should scatter elastically with
the nuclei in a terrestrial detector [1]. A characteristic
signal of the WIMP interaction is the presence of an annual
modulation in the event rate correlated with the motion of
the Earth [2].

Experimental evidence of this modulation has been
reported in the past years by the DAMA collaboration
[3], and recently, also by the CoGENT collaboration [4].
The interpretation of these signals favors a light WIMP
with mass around 10 GeV and a large spin-independent
(SI) WIMP-nucleon cross section of the order of 10�4 pb
[5]. Other experiments, CDMS [6], XENON100 [7], and
SIMPLE [8], that anyway are not sensitive to the annual
modulation, have reported upper limits that challenge the
values of the cross section and mass statistically favored by
DAMA and CoGENT.

If on the experimental side the situation is at least
controversial [9,10], on the theoretical side it is not less
ambiguous. In the popular scheme of the minimal super-
symmetric standard model (MSSM) with R-parity conser-
vation where the lightest neutralino is a natural WIMP
candidate, it is possible to accommodate a light neutralino
with a cross section able to explain DAMA and CoGENT
results while not contradicting other phenomenological
constraints [11–14].

In supersymmetric models with unification conditions
like the constrained MSSM (CMSSM) light neutralinos

with such a large spin-independent cross section are ex-
cluded by other experimental constraints such as the LEP
bound on the chargino mass. On the other hand, global fits
that take into account accelerator, flavor physics, and dark
matter constraints, single out best fit points of the parame-
ter space with a heavy neutralino [15–17].
In this paper we thus consider a region of the CMSSM

parameter space, the so-called stau coannihilation region
(~�CR). In particular, we are interested to find out if present
and future experiments can constrain this region by the
spin-dependent (SD) elastic scattering.
In the case of WIMP like the lightest neutralino (or any

candidate with the same structure of coupling with nucle-
ons), setting constraints on the SD couplings is, confronted
with the SI case, complicated by the fact that: (a) there are
two elementary cross sections, WIMP-proton and WIMP-
neutron, that in principle should be constrained at the same
time and in a way that does not depend on the neutralino
‘‘composition’’ (the SI proton and neutron cross sections
are to a very good approximation equal); (b) in the formula
for the neutralino-nucleus cross section the particle physics
degrees of freedom are not factorized from the momentum
dependent spin structure functions (SSF), thus when set-
ting upper limits one is forced to fix the neutralino compo-
sition by the ratio of the couplings. Actually, problem (b) is
at the root of problem (a).
A solution to the problem (a) has been proposed in

Ref. [18]. Thereafter the method has become the standard
way to derive limits on the SD WIMP-nucleon cross sec-
tions and to combine them from different experiments
[19,20].
We have discussed problem (b) in a previous paper [21]

where it is evidenced that the foreseen factorization is
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actually achieved by simply normalizing the standard
structure functions to their value at zero momentum
transfer.

Here we show that the solution of problem (b) indeed
gives a better understanding of the solution to the problem
(a) proposed by Ref. [18]. In particular, we show that there
is no need of the assumptions made in Ref. [18] that were
the object of criticisms Refs. [22,23]. The method is not
limited to the zero momentum transfer cross section but
actually can incorporate the full momentum dependent
structure functions. This is done in Sec. III.

In Sec. II, and in the Appendix, we discuss various
aspects of the momentum transfer dependent formalism
and argue that some unnecessary complications of the
standard formalism are at the origin of the aforementioned
problems.

In Sec. IV we then discuss to what extent the limits on
the single WIMP-nucleon cross sections derived by actual
experiments like COUPP and XENON100 can constraint
the ~�CR.

In Sec. V we give a parametrization of the SI neutralino-
nucleon cross section in the stau-coannihilation region that
allows one to translate an experimental upper limit into a
bound in the (m1=2, tan�) plane.

The summary and conclusions are given in Sec. VI. In
the Appendix we provide a detailed derivation of the for-
mulas discussed in Sec. II.

II. SD FORMALISM REVISED

A. Structure functions and ‘‘form factors’’

Direct detection experiments employing odd nuclei with
nonzero ground state angular momentum J aim to con-
strain, in the case of absence of a positive signal, the spin-
spin interaction of dark matter particles with the nucleons.
Detailed nuclear shell-model calculations of the spin
matrix elements in the zero momentum transfer limit
(ZMTL), i.e. pointlike nucleus, and of the SSF that account
for the momentum transfer dependence response, have
been carried out for many nuclei employed in actual ex-
periments, see [24] for reviews.

The differential neutralino-nucleus cross section, as a
function of the recoil energy of the nucleus ER ¼ q2=2mA

being q the modulus of the momentum transfer, has the
general form

d��
A

dER

¼ mA

2�2
Av

2
��

Að0Þ��ðERÞ: (1)

Here � ¼ SI or � ¼ SD,mA is the mass of the nucleus with
mass number A, �A the neutralino-nucleus reduced mass,
and v the relative velocity. ��

ðAÞð0Þ are the ZMTL total

cross sections, to be discussed below. The function��ðERÞ
accounts for the structure of the nucleus and is normalized
to one in the ZMTL, ��ð0Þ ¼ 1.

For � ¼ SI, �SIðERÞ ¼ F2ðERÞ, where FðERÞ is the
nuclear form factor. In Eq. (1), therefore, the nuclear
physics is separated from the particle physics.
For � ¼ SD, in the standard formalism introduced by

Engel in Ref. [25] (see [24,26,27] for reviews), we have

�SD
E ðERÞ ¼ SðERÞ

Sð0Þ ; (2)

with

SðERÞ ¼ a20S00ðERÞ þ a0a1S01ðERÞ þ a21S11ðERÞ: (3)

i; j ¼ 0; 1 are isospin indexes and a0 and a1 the isoscalar
and isovector WIMP-nucleon scattering amplitudes writ-
ten in the isospin basis. The ZMTL of the functions SijðERÞ
is Sijð0Þ � 1, they are not normalized to one and the

function S01 for some nuclei can be negative. Particle
physics and nuclear physics are not separated.
These unpleasant features of the standard formalism are

avoided with the formalism of Divari, Kosmas, Vergados,
and Skouras [28]. In this framework we can write

�SD
V ðERÞ ¼ F ðERÞ

F ð0Þ ; (4)

with

F ðERÞ ¼ a20F00ðERÞ þ 2a0a1F01ðERÞ þ a21F11ðERÞ:
(5)

Note that in this case Fijð0Þ ¼ 1 by construction. In

Ref. [21] (see also [28–30]) we have remarked that the
functions FijðERÞ are practically identical in the recoil

energy interval of interest for experiments, not only for
light nuclei but also for medium-heavy and heavy nuclei,

F00ðERÞ ’ F01ðERÞ ’ F11ðERÞ: (6)

Thanks to Eq. (6), Eq. (5) reduces to

�SD
V ðERÞ ¼ F11ðERÞ: (7)

Hence, the SD ‘‘form factor’’ is determined by only one
SSF. It does not depend anymore on the neutralino prop-
erties as it happens in the SI scattering.
The two formalisms are equivalent and connected by

FijðERÞ ¼
SijðERÞ
Sijð0Þ : (8)

If the Sij are known also the Fij are known and vice versa.

Equation (7), anyway, allows for a drastic simplification
of the formulas while retaining the exact informations of
nuclear shell-model calculations. In literature, in spite of
this, the formalism is largely overlooked. In some cases
phenomenological parametrizations are used.
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One example is the parametrization given in [31,32]

FLSðqrnÞ ¼
8<
:
�
sinðqrnÞ
qrn

�
2

qrn < 2:55; qrn > 4:5;

0:047 2:55 � qrn � 4:5;

(9)

with the nuclear radius rn ’ 1:0A1=3 fm.
Another example is furnished by the parametrization

implemented in the code MICROMEGAS [33] for the case
of nuclei for which the Sij are not available:

FmO ¼ SijðqÞ
Sijð0Þ ¼ exp

�
� q2R2

A

4

�
; (10)

where RA ¼ 1:7A1=3 � 0:28� 0:78ðA1=3 � 3:8þ ½ðA1=3�
3:8Þ2 þ 0:2�1=2Þ. These expressions are used also in recent
literature [8,34,35] even in the case that the functions Sij or

Fij are known. It is thus interesting to compare them with

F11.
Figure 1 shows the normalized SSF F11, FLS, and FmO

for one light nucleus, 19F, one medium-heavy, 73Ge, and
one heavy nucleus, 127I, all of them largely employed in
current experiments. The function F11 for

19F is taken from
Ref. [28], for 73Ge is obtained from the function S11 of
Ref. [36], for 127I from the function S11 of Ref. [37] (set
calculated with the Bonn A potential).

In the abscissas, we use the dimensionless variable y ¼
ðqb=2Þ2, where b ¼ 1 fmA1=6 is the oscillator size parame-
ter. This variable is the natural one employed in shell-
model calculations using harmonic oscillator wave func-
tions. The functional form of Sij and Fij is typically a

polynomial or a polynomial times an exponential in y or
u ¼ 2y [24,28]. The recoil energy is easily found to be

related to y by ER ¼ 80� y� A�4=3 MeV. For clearness

we report also the corresponding recoil energies for each
nucleus on a second abscissa. The interval 0< y< 1 cov-
ers the recoil energies interval accessible experimentally
but in the case of fluorine the relevant region is only up to
y� 0:1.
The approximation furnished by FLS is reasonable both

at low recoil energies and at higher energies in the region of
the plateau, especially for the heavy nucleus. This is not
surprising, for this parametrization was introduced [31] to
fit the SSF in Xe and Nb [25,38]. The approximation
furnished by FmO is much worse in all the cases. A differ-
ent Gaussian parametrization is given, for example, in
Refs. [39,40].
We stress again that, for the nuclei for which the func-

tions Fij or Sij have been published, there is no need of

phenomenological fits or parametrization. The normalized
function F11 accounts for the results of the most accurate
spin structure function calculations and at the same time
allows one to separate the nuclear physics from the particle
physics in SD the cross section.

B. Differential and total event rate

In SD scattering, given the neutralino-proton and
neutralino-neutron cross sections �SD

p;n ¼ ð�2
p=�Þ3jap;nj2,

the total cross section at q ¼ 0 reads

�SD
A ð0Þ¼

�
�A

�p

�
2 1

3

�
�pð0Þ

ffiffiffiffiffiffiffiffiffi
�SD

p

q
þ%�nð0Þ

ffiffiffiffiffiffiffiffiffi
�SD

n

q �
2
: (11)

�p is WIMP-proton reduced mass and

�p;nð0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
hSp;ni (12)
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FIG. 1 (color online). In blue line the normalized structure function F11 ¼ S11ðqÞ=S11ð0Þ, for the nuclei 19F, 73Ge, and 127I. The
dashed line refers to the parametrization of Eq. (9) and the dash-dotted line to the parametrization of Eq. (10). The variable in
the abscissas is y ¼ ðqb=2Þ2, being q the momentum transfer and b ¼ 1 fmA1=6 the oscillator size parameter. In the red abscissas the
corresponding values of the recoil energies in keV are given.
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are the spin matrix elements of the proton and neutron
groups. We remind that hSp;ni � hJ;MJ ¼ JjSzp;njJ;MJ ¼
Ji. In general, both the SD WIMP-nucleon scattering
amplitudes ap and an [ap;n ¼ ða0 � a1Þ=2] and the nuclear
matrix elements can have opposite sign, hence % ¼ �1 is
the relative sign between j�pð0Þapj and j�nð0Þanj. An
ab initio derivation of the SD cross sections using the
formalism of Ref. [28] is given in the Appendix.

In the SI case, for the neutralino we have �SI
p ’ �SI

n �
�SI, the standard total cross section at q ¼ 0 is

�SI
A ð0Þ ¼

�
�A

�p

�
2
A2�SI: (13)

The differential recoil rate is obtained by folding Eq. (1)
with the velocity distribution function. We use the standard
truncated Maxwellian [32]:

f1ðvÞ ¼ v

v0vE

fðvÞ;

fðvÞ ¼ 1

�

�
exp

�
�ðv� vEÞ2

v2
0

�
� exp

�
�ðvþ vEÞ2

v2
0

��
;

� ¼ ffiffiffiffi
�

p
erfðzÞ � 2z expð�z2Þ;

z ¼ vesc

v0

: (14)

vesc is the escape velocity, v0 the velocity of the Sun, and
vE the velocity of the Earth.

Taking �0 ¼ 0:3 GeV=cm3 as the local dark matter
density density, 	0 ¼ 2�Av

2
0ð�A=mAÞ the typical recoil

energy, and �SI ¼ F2ðERÞ, �SD ¼ F11ðERÞ, we can write

dR�

dER

¼ �0v0

m
mA

��
Að0Þ

dt�

dER

; (15)

dt�

dER

¼ ��ðERÞ
	0

Z vmax

vminðERÞ
dv

vE

fðvÞ: (16)

The total rate is simply given by

R� ¼ �0v0

m
mA

��
Að0Þt�; (17)

t� ¼
Z E2

E1

dER

dt�

dER

: (18)

The integration limits are vminðERÞ ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ER=	0

p
, vmax ¼

vesc, E1 ¼ Eth, E2 ¼ minðEexp
2 ; EmaxÞ, where the maximal

recoil energy is Emax ¼ 	0ðvmax=v0Þ2. The energy thresh-
old Eth and Eexp

2 give the energy interval chosen by an

experiment to analyze the data. For comparison with a
given experiment using specified nuclei and detection
methods, if necessary, one should account in the previous
formulas for the energy resolution and efficiencies that
may depend on the energy.

In the following we use the Helm form factor in the
parametrization proposed in Ref. [32]:

F2ðqÞ ¼
�
3
j1ðqrnÞ
qrn

�
2
expð�q2s2Þ;

j1ðxÞ ¼ sinx

x2
� cosx

x
;

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 7

3
�2a2 � 5s2

s
fm;

s ¼ 0:9 fm;

a ¼ 0:52 fm;

c ¼ ð1:23A1=3 � 0:6Þ fm:

(19)

In literature one can find other parametrization [41] or
form factors obtained directly by shell-model calculations
[28,29,42]. We use here Eq. (19) because it is employed
practically by all the experimental groups.

III. MODEL INDEPENDENT UPPER LIMITS

As an application of the previous formalism we discuss
the so-called model independent method for setting upper
limits on neutralino cross sections and give an alternative
proof of Eq. (13) of Ref. [18].
Let us consider a nucleus such that the SI rate is negli-

gible compared to the SD one: in supersymmetric models
the SD rate roughly dominates in nuclei with mass number
A � 20 while SI dominates at larger mass numbers due to
A2 proportionality [27]. We return on this point in the next
section.
We introduce the factors

�A ¼ �0v0

m
mA

; (20)

C p;n
A ¼ �A

�p

�p;nð0Þffiffiffi
3

p : (21)

Equation (17), with the aid of Eqs. (11), (20), and (21), thus
becomes

RSD ¼ �A

�
CpA

ffiffiffiffiffiffiffiffiffi
�SD

p

q
� CnA

ffiffiffiffiffiffiffiffiffi
�SD

n

q �
2
tSDA : (22)

If an experiment with exposure EA ¼ MA � T (MA is the
mass of the element with mass number A and T the time of
live data taking) has no statistically significant evidence,
then an upper limit (UL) at some confidence level is put on
the number of events NUL. For each unknown m
 this is

converted in an upper limit on the cross section requiring
R� E <NUL, that is,

�
CpA

ffiffiffiffiffiffiffiffiffi
�SD

p

q
� CnA

ffiffiffiffiffiffiffiffiffi
�SD

n

q �
2
<

NUL

�At
SD
A EA

: (23)
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The right-hand side of (23) is by definition the experimen-
tal upper limit on the neutralino-nucleus SD cross section,
let us call �lim

A as in Ref. [18],

�lim
A � NUL

�At
SD
A EA

: (24)

Furthermore, utilizing the same name of Ref. [18], we
define the quantities

�limðAÞ
p;n � �lim

A

ðCp;nA Þ2 : (25)

Dividing both members of (23) by (24) and using the
quantities (25), we arrive at

0
B@

ffiffiffiffiffiffiffiffiffi
�SD

p

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�limðAÞ

p

q �
ffiffiffiffiffiffiffiffiffi
�SD

n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�limðAÞ

n

q
1
CA

2

< 1; (26)

that is exactly Eq. (13) of Ref. [18] in the case of the
allowed region in the (�p, �n) plane.

In Ref. [18] the nucleon cross section limits in Eq. (25)
are defined as basic quantities that then are combined to
give Eq. (26). To do this it is necessary to assume that for a
given nucleus it is possible to set separately limits on the
SD-proton and SD-neutron cross sections even in the case
that one contribution is clearly subdominant. These as-
sumptions and the method were criticized in Refs. [22–24].

In reality our derivation shows that such hypotheses are
unnecessary and that the full justification of Eq. (26) only
relies on the factorization of the particle physics from
nuclear physics degrees of freedom and has a general
validity.1

Another common misunderstanding about Eq. (26) is
that it is based on ZMTL total cross section and that it does
not take into account the exact momentum dependent
structure function.

Actually, we see that using F11, the correct behavior of

the SSF can be taken into account in the upper limit �limðAÞ
by the factor tSD, see Eq. (24).

On the other hand, the ‘‘upper limits’’ on the single
proton or neutron cross sections, Eq. (25), are just useful
quantities introduced to write Eq. (23) in the compact form
(26). They become the actual experimental upper limits if,
for the nucleus from which these are determined and in a
specific WIMP model, one can prove that the proton con-
tribution is dominant over the neutron contribution or
vice versa (given the dominance of the SD rate over the
SI rate). In general, the exclusion curves on the single cross
sections are fundamentally indicative of the experiment’s

sensitivity and cannot constrain particle physics models in
a universal way.

IV. SD SCATTERING AND THE ~�CR

To further clarify the last point, we choose a specific
particle physics model, that is the constrained minimal
supersymmetric standard model (CMSSM) with R-parity
conservation. We consider the parameter space with fixed
trilinear scalar coupling A0 ¼ 0, positive Higgs mixing
term (�> 0) which is the benchmark supersymmetric
theory for phenomenological and experimental studies
[43]. If the neutralino is required to furnish the cosmologi-
cal relic density inferred by WMAP [44], then, for fixed
tan� only specific regions in the (m1=2, m0) plane are left.

In the (~�CR) the lightest stau is almost degenerate in mass
with the neutralino and the coannihilation of the two
particles in the early Universe brings the value of the relic
density in the favored WMAP interval. This parameter
space is still untouched by direct detection experiments
and LHC just started to explore it [15–17]; moreover, it
will be hard to probe it with indirect detection methods
such as � ray from neutralino annihilation in the halos
[45–47].
The strips in the plane (m1=2, m0) [43] for varying tan�

from10 to 50 in steps of 5, are shown in the inset of Fig. 2(a).
The strips and the cross sections are obtained with
DARKSUSY [48], imposing WMAP constraints on the relic

density 0:096<�h2 < 0:128, accelerator constraints on
the lightest Higgs, mh > 114 GeV and chargino mass
m
þ

1
> 103:5 GeV and the flavor physics constraint from

bottom quark radiative transitions.
In the same figure the SI neutralino-proton cross section

as a function of the neutralino mass is shown. The SD
neutralino-proton and neutralino-neutron cross section are
shown in Fig. 2(b) and in the inset of Fig. 2(b), respec-
tively. Two general features are worth noting: the SI cross
section depends on tan� more strongly than the SD cross
sections, the former varying by an order of magnitude and
the latter by a factor less than 2; the SD are Oð102Þ larger
than the SI, in agreement with [49].
The neutralino field in the mass basis can be written as


0
1 � N11

~Bþ N12
~W0 þ N13

~H1 þ N14
~H2, where N1i are

the elements of the matrix that diagonalizes the neutralino
mass matrix, ~B, ~W0 are the neutral gaugino fields, and ~H1,
~H2 the neutral Higgsino fields. In all the considered pa-
rameter space the neutralino is bino-like: we find numeri-
cally N11 � 0:99 � N13 � 10�3 � N12; N14. This means
that the coupling to the Z boson that is driven by the
Higgsinos couplings proportional to N13 and N14 is heavily
suppressed; the cross section is determined by squarks
exchange. Analogously also in the SI case to the
CP-even Higgs h and H are suppressed by N13 and N14

and the cross sections is thus mainly determined by squark
exchange. Anyway, the couplings of the Higgs to down-
type quark become ðtan�Þ2 enhanced at large tan�. The

1This result was also implicitly obtained, with different nota-
tions and considering the case of general phases, in Ref. [30].
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two contributions thus can be of the same order and SI
cross section is more sensitive to variations of tan�.

A. 19F, 127I, and the ~�CR

To discuss the relation between the SI and SD rates, we
consider the light nucleus 19F that is known to furnish the
best sensitivity to the proton SD cross section [28,50,51]
and 127I, that have both good SI and SD sensitivities.

For 19F, we use the spin matrix elements of Ref. [28] that
give�19

p ð0Þ ¼ 1:646 and�19
n ð0Þ ¼ �0:030. In this case the

neutron contribution in the SD rate can be safely neglected.
We remark that the first nuclear shell-model calculation for
19F [51] found hSpi ¼ 0:441, hSni ¼ �0:109. The succes-

sive calculation of Ref. [28] using a more realistic interac-
tion found hSpi ¼ 0:4751 and hSni ¼ �0:0087. The proton

contribution is thus similar but the neutron contribution is
clearly negligible. The statement that the neutron contribu-
tion is relevant, see for example [8], in light of the more
accurate calculation of Ref. [28], is doubtful.

As reminded above, for light nuclei like fluorine, the SD
rate can be dominant over the SI, but this has to be checked
in each particular WIMP model. We show the ratio
RSD=RSI for fluorine in Fig. 3(a). The SD rate is bigger
by a factor up more than 2 at low and medium tan� but it is
smaller than the SI rate at large tan�; in any case the two
rates are always of the same order of magnitude. The SI
rate cannot be completely neglected at high tan� and for
lower tan�, neglecting it, one underestimates the total
rate (see Ref. [52] for the case of general MSSM). The

exclusion plots in the (m
, �
SD
p ) are inaccurate for the ~�CR.

In this case, one has to draw an exclusion plot in the
(�SD

p , �SI) plane for each fixed mass, the so-called mixed

coupling approach [53].
Nuclear shell-model calculations give for 127I �127

p ð0Þ ¼
0:731 and�127

n ð0Þ ¼ 0:177 (spin matrix elements obtained
with the potential Bonn A from Ref. [37]). Although
proton favoring, the neutron group contribution to the
nuclear spin is of the same order of magnitude. If the
neutralino couplings to the proton and neutron are similar,
the neutron contribution to the nuclear spin must be con-
sidered. This indeed is what happens in the ~�CR, where
0:75<�SD

p =�SD
n < 0:9 [21] for tan� between 10 and 50.

Furthermore, ap < 0 and an > 0, thus a cancellation in the

SD rate is expected because the products aphSpi and

anhSni are of the same order and have opposite sign.
Figure 3(c) shows the ratio of RSD=RSI in 127I only con-
sidering the proton contribution, while in Fig. 3(b) both are
included. Because of the A2 proportionality, the SI rate
always dominates by a factor from 4 to 25 in Fig. 3(c), but
the cancellation makes the SD rate from 2 to 3 orders of
magnitude smaller than the SI, Fig. 3(b).
In the case of ~�CR, hence, iodine can only constrain the

SI interaction. The exclusion plots in the planes (m
, �
SD
p ),

(m
, �
SD
n ), or the combined (�SD

p , �SD
n ) at fixed neutralino

mass, derived using 127I cannot constrain the ~�CR, for they
are derived neglecting the dominant SI contribution or the
equally important neutron contribution that almost cancels
the proton one.
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FIG. 2 (color online). (a) Spin-independent neutralino-nucleon cross section in the stau coannihilation region with A0 ¼ 0 and tan�
from 10 to 50 in steps of five as a function of the neutralino mass. The dashed line is obtained with the fitting formula, Eq. (29), with
coefficients given in Table I. The inset shows for each value of tan� the strip in the plane (m1=2, m0) allowed by WMAP constraints on

the relic density 0:096<�h2 < 0:128 and satisfies accelerator constraints. (b) Spin-dependent neutralino-proton cross section and, in
the inset, the spin-dependent neutralino-neutron cross section for tan� ¼ 10, 30, and 50.
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B. COUPP and the ~�CR

The two nuclei discussed so far are the detecting me-
dium of COUPP [54], a bubble chamber with CF3I. We use
the latest data from Ref. [54]: an affective exposure of CF3I
after cuts of E ¼ 28:1 kg� days, 50% efficiency, Eth ¼
21 keV, NUL ¼ 6:7 at 90% confidence level and the same
values of the velocities, v0 ¼ 230 km=s, vesc ¼ 650 km=s
and an average velocity of the Earth vE ¼ 244 km=s. In
Fig. 4(a) the blue solid line is the present limit on SD
WIMP-proton cross section derived from the fluorine frac-
tion, while in Fig. 4(b) it is the limit on the SI cross section

derived from the iodine fraction. The blue-dashed lines are
limits extrapolated with the same NUL, 100% efficiency,
effective exposure 500 kg� yr and threshold at 7 keV. The
red solid lines are the cross sections for tan� ¼ 50, the
orange ones for tan� ¼ 10.
The indication that we derive from Fig. 4 is that it will be

unlikely for COUPP to probe the ~�CR by SD scattering
unless very large exposures of fluorine are achieved. On the
other hand, a part of the parameter space will be probed by
the SI scattering with iodine. This is not a limitation for the
~�CR since the two cross sections are clearly correlated.
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FIG. 4 (color online). (a) Spin-dependent neutralino-proton cross sections for tan� ¼ 10 (orange line) and 50 (red line) in the stau
coannihilation region with A0 ¼ 0,�> 0. The blue solid line represents the present upper limit from COUPP, the blue-dashed line the
extrapolated COUPP limit with an effective exposure of 500 kg� year and threshold at 7 keV. (b) The same as (a) but for the proton
spin-independent cross section. The dash-dotted line is the upper limit from XENON100 calculated as explained in the text, the dotted
line the limit published in Ref. [7].
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FIG. 3 (color online). Ratio of the spin-dependent total event rate over the spin-independent rate RSD=RSI varying tan� in the stau
coannihilation region of the CMSSM with A0 ¼ 0 and �> 0. In panel (a) for 19F. In panel (b) the ratio is plotted for 127I taking into
account both the proton and neutron contribution in the spin-dependent rate; in panel (c) only the proton contribution is included. The
points of the parameter space are the same as in Fig. 2.
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A constraint on �SI automatically implies a constraint on
�SD. As a matter of fact, should evidence be reported by
more experiments and rates measured in fluorine, iodine,
and other elements like xenon, argon, or germanium, the
full information on the SD sector can be reconstructed
[21,55].

As discussed in Sec. IVA, the SI rate in the ~�CR cannot
be neglected for fluorine. Considering a mixed SI-SD
approach with a fixed neutralino mass, we obtain

�SD
p < �limðFÞ

p � ðCSIF Þ2tSIF
ðCpFÞ2tSDF

�SI: (27)

In analogy with Sec. II we set CSI ¼ ð�A=�pÞA. At

tan� ¼ 50, where the SI rate is more important, the cor-
rection term on the right-hand side gets values larger than
�SD

p , in any case the largest values are of order 10�6 pb.

These values when compared with the present limits,

�limðFÞ
p ’ 10�1 pb from COUPP and ’ 10�2 pb from

SIMPLE [8], are anyway negligible. Hence, one should
start to consider the SI rate only when the exposure is such
that the sensitivity reaches the values of �SD

p predicted by

the model.

V. CONSTRAINING THE (m1=2, tan�) PLANE

In Fig. 4(b) we also show for comparison the present
upper limit of XENON100 [7], which is the most stringent
on the SI cross section. To be consistent with COUPP, we
have calculated the XENON100 plot using the same values
of the velocities given above and the following data: ef-
fective exposure of 1471 kg� days, energy threshold at
8.4 keV, and NUL ¼ 5:62 at 90% confidence level deduced
by the Feldman-Cousins method [56] with three events
observed and mean background 1.8. As for the COUPP
limits, we have calculated this curve using the total event
rate without energy resolution function. Our curve differs
by few percent from the published one, dotted line in
Fig. 4(b). The latter is obtained with a statistical analysis
of the energy spectrum that takes into account all the
experimental uncertainties and with values of the velocities
v0 ¼ 220 km=s, vesc ¼ 544 km=s, and vE ¼ 232 km=s.

This exercise shows that for masses above 50 GeV the
limits are more robust and less sensitive to the experimen-
tal details, statistical method to analyze the data and veloc-
ities (needless to say this is not true in the lowmass region).
In the high mass range m
 > 50 GeV, the exclusion limits

are also robust against changes of the velocity distributions

[57], being the major source of uncertainty a factor of
2 in �0.
Since we have remarked above that the ~�CR will be

probably probed through the SI scattering, we further in-
vestigate what kind of information on the ~�CR parameter
space can be extracted. We note from Fig. 2(a) that the SI
cross section is a smooth decreasing function of the neu-
tralino mass when m0 and m1=2 are varied along the

WMAP allowed lines for fixed tan�. Clearly it is also a
continuous function of this parameter. Therefore we can
look for a general fitting formula valid for all the values of
tan�. We first fit each �SI of Fig. 2(a) for a given value of
tan� with the function

� ¼ X4
k¼2

&k

�
100 GeV

m


�
k
; (28)

and than the coefficients &k are fitted with a fourth order
polynomial in tan�. We thus find

�SIðtan�;m
Þ ¼
X4
k¼2

�X4
i¼0

�kiðtan�Þi
�
100 GeV

m


�
k
�
: (29)

The coefficients of the fit �ki are given in Table I. The fit
obtained with Eq. (29) is shown in Fig. 2(a) with a dashed
line.
Analogously, the neutralino mass can be parametrized

along the WMAP lines. We find that for all the values of
tan� it holds

m
 ’ 0:44m1=2 � 15 GeV: (30)

While the slope 0.44 is found for all the values, the constant
negative term is an average value, since it presents a very
mild dependence on tan� that anyway is not important for
what follows. Thus, using Eq. (30) in Eq. (29) we end up
with a formula �SIðtan�;m1=2Þ for the cross section in

terms of the fundamental parameters m1=2 and tan�. In
last analysis, this allows one to convert an upper limit
on the event rate directly into an exclusion plot in the
(m1=2, tan�) plane.
The result of this procedure is shown in Fig. 5, where the

excluded regions are on the left of the curves. The COUPP
upper limit with an effective exposure of 500 kg� year,
dashed blue line in Fig. 4(a), corresponds to the dotted
black line in Fig. 5. The other curves are obtained
for XENON100 considering an effective exposure to be

TABLE I. Coefficients for the fitting formula of Eq. (29).

k ð�Þk0 (pb) ð�Þk1 (pb) ð�Þk2 (pb) ð�Þk3 (pb) ð�Þk4 (pb)

2 2:469� 10�9 5:085� 10�11 5:432� 10�12 1:783� 10�13 �6:089� 10�16

3 2:716� 10�9 �9:790� 10�10 3:92� 10�11 �6:413� 10�13 �6:059� 10�15

4 1:395� 10�8 �2:029� 10�9 2:143� 10�10 �6:711� 10�12 9:481� 10�13
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5, 10, 100, and 500 times the present value of 1471 kg�
days. The dot-dashed red line corresponds roughly to the
effective exposure of a future ton mass detector with 1 yr
operation and total acceptance cut of 40%. The extrapola-
tion of COUPP, dotted black line, is obtained without any
acceptance cut.

We have to remark the limitations of the fitting formula.
The coefficients in Table I have many particle physics
uncertainties. First of all, the cross section and the relic
density were calculated with DARKSUSY with the default
values of the hadronic matrix elements. Other codes can
give slightly different values of the cross section for the
same input parameters. Furthermore, the dependence of the
SI cross section on not precisely known hadronic physics
quantities can cause variations up to a factor 5 for a given
point of the CMSSM parameter space [49]. There is a
further dependence of the SI cross section on A0.
Anyway the choice A0 ¼ 0 is the benchmark case study
also for direct searches of supersymmetric particles at
LHC: ATLAS and CMS typically present exclusion curves
in the (m0,m1=2) plane with A0 ¼ 0 and fixed tan� [58,59].

With the proposed formula, hence, one has a direct idea of
the sensitivity of a direct detection experiment to one of the
cosmologically favored region of the CMSSM parameter
space in a complementary way to LHC.

VI. SUMMARY

In this paper we have reviewed the formalisms and the
approximations found in literature for the treatment of the
SD neutralino-nucleus elastic scattering. We argued that all
that one needs to correctly take into account the detailed

nuclear physics information provided by shell-model cal-
culations is just one of the normalized structure functions
of Ref. [28].
We have shown that the factorization of the particle

physics degrees of freedom from the nuclear physics mo-
mentum dependent structure functions implied by this
formalism allows for a straightforward proof of the general
formula (26) proposed in Ref. [18] without the need of the
assumptions that were criticized in Ref. [23].
We have further discussed the ability of some of the

present experiments and their future upgrade to larger
active masses (COUPP and XENON100) to constrain the
stau coannihilation region of the CMSSM. In this region of
the parameter space the neutralino mass is in the interval
180–550 GeV and the SI cross section is a decreasing
function of the mass for 10< tan�< 50, taking values
in the range 10�8–10�10 pb and it is still poorly con-
strained by experiments. The SD cross sections, with the
proton and the neutron, are in the range 10�6–10�8 pb.
COUPP, although the high sensitivity of 19F to the

proton SD scattering and the fact that the SD neutralino-
nucleon cross sections are larger than the SI neutralino-
nucleon cross section, can constrain the model in its large
mass phase only by the SI interaction with 127I. The
reasons are various: first, because of the A2 scaling of the
SI neutralino-nucleus cross section; second, there is a
strong cancellation between the proton and neutron con-
tribution in the SD neutralino-127I cross section; third, the
active mass of 19F is small.
Furthermore, in 19F, for the considered particle physics

model, the SI rate is never negligible compared to the SD
rate. In the case that the exposure were such that the model
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FIG. 5 (color online). Exclusion curves in the plane (m1=2, tan�) for theCMSSMstau coannihilation regionwithA0 ¼ 0,�> 0, set by
an upper limit on the spin-independent neutralino-nucleon cross section using the fitting formulas Eqs. (29) and (30). The regions to the
left of the curves are excluded. The dotted line corresponds to the upper limit of COUPP (500 kg� yr), dashed blue line in Fig. 4(b). The
other lines are extrapolations for XENON100 where the present effective exposure is multiplied by factors 5, 10, 100, and 500.
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could be probed through SD scattering, an exclusion curve
in the plane (m
, �

SD
p ) would be inaccurate.

Finally, we have given a fitting formula for the SI
neutralino-nucleon cross section in the stau coannihilation
region as a function of the two fundamental parameters
tan� andm1=2 (10< tan�< 50) that allows one to directly
convert an upper limit into an exclusion plot in the ( tan�,
m1=2) plane for the case study A0 ¼ 0.

ACKNOWLEDGMENTS

The author thanks J. D. Vergados and M. E. Gomez for
inspiring discussions, suggestions, and comments on the
manuscript. P. Gondolo is acknowledged for useful ques-
tions during the TeVPA 2011 conference where prelimi-
nary results of this paper were presented. Support by
MultiDark, Grant No. CSD2009-00064 of the Spanish
MICINN project Consolider-Ingenio 2010 Programme
and partial support from MICINN Projects No. FPA2009-
10773, No. MICINN-INFN(PG21)FPA2009-10773, and
from Junta de Andalucia under Grant No. P07FQM02962
are acknowledged.

APPENDIX: PROOF OF THE
FORMULAS OF SEC. II

In this Appendix we derive the formulas given in Sec. II
following the formalism of Ref. [28] but with a simplified
and slightly different notation.

The neutralino-nucleon SD cross section is determined
by the axial part of effective Lagrangian. At the nucleon
level, in the isospin representation that is convenient for
nuclear physics calculations, we can write

Leff ¼ �
���5
 �N2s�
1
2ða01þ a1�̂3ÞN: (A1)

The operator �̂3 act as �̂3jpi ¼ jpi, �̂3jni ¼ �jni and 1 is
the identity operator in isospin space. Thus, for N ¼ p, n
the isospin operator gives ða0 � a1Þ=2 ¼ ap;n ¼P

qdq�q
ðNÞ, where dq is the effective coupling with quarks

and �qðNÞ the spin fractions of the nucleon carried by the
quarks. We do not discuss further the physics involved at
the nucleon level, see Refs. [49,50].

Taking the nonrelativistic limit we get the neutralino-
nucleus spin-spin interaction,

V̂ ¼ 4ŝ
 	XA
i¼1

1

2
ða01þ a1�̂

3
i ÞŜi
ðr� riÞ: (A2)

Here Ŝi and ri are the spin and coordinates of the ith

nucleon. In literature sometimes factors GF=
ffiffiffi
2

p
, GF

ffiffiffi
2

p
,

or GF2
ffiffiffi
2

p
are extracted from a0;1. To simplify the formu-

las, we adopt instead the convention that all the couplings
are included in a0;1.

The spin operator of the neutralino operates on eigen-
states of the spin jsi, while conventionally all the angular

momentum operators of the nucleus are evaluated in state

with the maximal value of the z projection, hÔi �
hJ;MJ ¼ JjÔzjJ;MJ ¼ Ji. The nuclear wave function
depends also on the isospin and the coordinates of the
nucleons

jAi ¼ jJ;MJ ¼ J; �3; r1 . . . rAi: (A3)

The elastic differential cross section in the center of
mass frame and the total cross section, in the case that
there is no angular dependence of the amplitude, are
given by

d�

d�
¼ �2

A

4�2
jMj2; � ¼ �2

A

�
jMj2; (A4)

where the scattering matrix element, with jA; 
i ¼ jAijsi,
is

M ¼ hA; 
j
Z

dre�iq	rV̂jA; 
i: (A5)

For two spin operators acting on different spaces, the
average over the initial directions of modulus squared of

the scalar product is jSa 	 Sbj2 ¼ 1
3S

2
aS

2
b, hence,

jMj2 ¼ 1
316hŝ2
ish�̂2iA: (A6)

We have defined the operator

�̂ ¼ XA
i¼1

1

2
ða01þ a1�̂

3
i ÞŜie

�iq	ri ¼ 1

2
ða0�̂0 þ a1�̂1Þ;

(A7)

with

�̂ 0 ¼
XA
i¼1

1Ŝie
�iq	ri ; �̂1 ¼

XA
i¼1

�̂3i Ŝie
�iq	ri : (A8)

To evaluate h�̂2iA we note that for a vector operator, the
matrix elements in states jJ;MJ ¼ Ji are related to the
reduced matrix elements by [60]

hJjjÔjjJi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þð2J þ 1Þp

J
hJ; JjÔzjJ; Ji;

hJ; JjÔ2jJ; Ji ¼ 1

2J þ 1
jhJjjÔjjJij2:

(A9)

It follows:

hJ; JjÔ2jJ; Ji ¼ J þ 1

J
jhJ; JjÔzjJ; Jij2: (A10)

We thus define the momentum dependent matrix elements,

�0ðqÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
h�̂z

0iA; �1ðqÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
h�̂z

1iA:
(A11)

From Eqs. (A7)–(A11), we find
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h�̂2iA ¼ 1

16
ja0�0ðqÞ þ a1�1ðqÞj2: (A12)

Obviously, hŝ2
is ¼ sðsþ 1Þ ¼ 3=4. Equation (A6) thus

takes the form

jMj2 ¼ 1
4ja0�0ðqÞ þ a1�1ðqÞj2: (A13)

Expanding the square and factoring out the zero momen-
tum values, we introduce the normalized structure func-
tions FijðqÞ:

FijðqÞ ¼
�iðqÞ�jðqÞ
�ið0Þ�jð0Þ ; (A14)

and find

jMj2 ¼ 1
4ða20�2

0ð0ÞF00ðqÞ þ 2a0a1�0ð0Þ�1ð0ÞF01ðqÞ
þ a21�

2
1ð0ÞF11ðqÞÞ: (A15)

By reason of Eq. (6), we can make the approximation

jMj2 ’ 1
4ða0�0ð0Þ þ a1�1ð0ÞÞ2F11ðqÞ: (A16)

Taking q ¼ 0 in Eqs. (A11) and using �̂3jpi ¼ þjpi and
�̂3jni ¼ �jni, we have

�0ð0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s �XA
i¼1

1Ŝzi

�
A
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
ðhSpi þ hSniÞ

¼ �pð0Þ þ�nð0Þ; (A17)

�1ð0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s �XA
i¼1

�̂i3Ŝ
z
i

�
A
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
J þ 1

J

s
ðhSpi � hSniÞ

¼ �pð0Þ ��nð0Þ: (A18)

Equation (12) is thus proved.
Furthermore, using a0;1 ¼ ap � an and Eq. (12),

Eq. (A16) becomes

jMj2 ¼ 4
J þ 1

J
ðaphSpi þ anhSniÞ2F11ðqÞ: (A19)

For a single nucleon (A19) reduces to 3jap;nj2, hence,

�SD
p;n ¼ 3

�2
p

�
jap;nj2; (A20)

Eq. (11) follows from Eqs. (A19) and (A20).

Finally, with the substitution d� ¼ 4�
4�2

A
v2 dq

2 ¼
2mA�
�2

Av
2 dER in Eq. (A4) and using Eqs. (A19) and (11), we

obtain Eq. (1).
The present formalism and the standard formalisms are

equivalent and connected by

SijðqÞ ¼ 2J þ 1

ð1þ 
ijÞ8��iðqÞ�jðqÞ: (A21)

For a given nuclear wave function they furnish the same
cross section.
In last analysis, the difference resides in the way by

which the multipole decomposition in vector spherical
harmonics of the operator (A7) is carried out. In the
standard formalism this done in terms of the operator
T el5

L and L5
L, see Refs. [24–26] and references therein

for explicit formulas and meaning. Both operators contain
the couplings a0 and a1, thus the modulus squared of each
contains terms proportional to a20, a

2
1, and the interference

a0a1. The function SðqÞ in terms of the functions SijðqÞ
arises after a rearrangement of these terms.
In the formalism of Ref. [28], the multipole decompo-

sition in vector spherical harmonics is done on the opera-
tors (A8). Anyway, keeping separated the terms in a0 and
a1 has the advantage that the squared of the amplitude is
always a perfect square, see Eq. (A13), and limit q ¼ 0 is
reached in a more transparent way.
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