
Randall-Sundrum corrections to the width difference andCP-violating phase inB0
s-meson decays

Florian Goertz and Torsten Pfoh

Institut für Physik (THEP), Johannes Gutenberg-Universität, D-55099 Mainz, Germany
(Received 24 June 2011; published 11 November 2011)

We study the impact of the Randall-Sundrum setup on the width difference ��s and the CP-violating

phase �s in the �B0
s-B

0
s system. Our calculations are performed in the general framework of an effective

theory, based on operator product expansion. The results can thus be used for many new-physics models.

We find that the correction to the magnitude of the decay amplitude �s
12 is below 4% for a realistic choice

of input parameters. The main modification in the ��s=�s-plane is caused by a new CP-violating phase in

the mixing amplitude, which allows for a better agreement with the experimental results of the CDF and

D0 Collaborations from B0
s ! J=c� decays. The best-fit value of the CP asymmetry Sc� can be

reproduced, while simultaneously the theoretical prediction for the semileptonic CP asymmetry As
SL can

enter the 1� range.
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I. INTRODUCTION

Within the search for new physics (NP) in the decay of
B0
s-mesons, an important observable is the width difference

��s � �s
L � �s

H between the light and the heavy meson
state. According to the above definition,��s happens to be
positive in the standard model (SM). It can be computed
from the dispersive and absorptive part of the �B0

s-B
0
s mix-

ing amplitude, Ms
12 and �s

12. To leading order (LO) in
j�s

12j=jMs
12j one finds the simple relation [1,2]

��s ¼ � 2ReðMs
12�

s�
12Þ

jMs
12j

¼ 2j�s
12j cos�s: (1)

We define the relative phase�s between the mixing and the
decay amplitude according to the convention

Ms
12

�s
12

¼ �jMs
12j

j�s
12j

ei�s ; �s ¼ argð�Ms
12�

s�
12Þ; (2)

for which the SM value is positive and explicitly given by
�SM

s ¼ ð4:2� 1:4Þ � 10�3 [3]. The combined experimen-
tal results of the CDF and D0 Collaborations differ from

the SM prediction in the ð�J=c�
s ;��sÞ-plane by about 2�

[4], whereas the latest CDF results disagree by 1� only [5].

Here, �J=c�
s 2 ½��=2; �=2� is the CP-violating phase in

the interference of mixing and decay, obtained from the
time-dependent angular analysis of flavor-tagged B0

s !
J=c� decays. In the SM it is given by [3,6]

�J=c�
s ¼ � arg

�
��bs

t

�bs
c

�
¼ 0:020� 0:005; (3)

with �bs
q ¼ VqbV

�
qs. In the presence of NP, ��s will be

modified [7,8]. We adopt the notation of [9] and extend the
SM relations according to

Ms
12 ¼ MsSM

12 þMsNP
12 ¼ MsSM

12 RMe
i�M;

�s
12 ¼ �sSM

12 þ �sNP
12 ¼ �sSM

12 R�e
i�� :

(4)

From (1) it follows that

��s ¼ 2j�sSM
12 jR� cosð�SM

s þ�M ���Þ; (5)

where ��SM
s ¼ ð0:087� 0:021Þ ps�1 [10]. A further im-

portant observable is the semileptonic CP asymmetry
As
SL ¼ Imð�s

12=M
s
12Þ. Including NP corrections, we find

As
SL ¼ j�sSM

12 j
jMsSM

12 j
R�

RM

sinð�SM
s þ�M ���Þ: (6)

Within the SM, the leading contribution to the dispersive
part of the �B0

s-B
0
s mixing amplitude appears at the one-loop

level. If NP involves flavor-changing neutral currents
(FCNCs) at tree-level, these give rise to sizable corrections
to the mass difference�mBs

� Ms
H �Ms

L ¼ 2jMs
12j [1]. In

the context of Randall-Sundrum (RS) scenarios [11], the
corrections to Ms

12 have been calculated in [12,13]. See

also [14,15] for a first estimate.
On the other hand, the presence of tree-level FCNCs and

right-handed charged-current interactions gives rise to new
decay diagrams. However, the NP corrections to the ab-
sorptive part of the amplitude are suppressed by m2

W=�
2

with respect to the SM contribution, where � is the NP
mass scale. Thus, they are neglected in many NP studies.
Recently, model-independent estimates on As

SL in the pres-

ence of heavy gluons have been presented in [16], taking
into account modifications in �s

12. NP contributions from

electroweak (EW) penguin operators as well as right-
handed charged currents have not been considered. We
find that the former can compete with or even dominate
contributions from QCD penguins within the minimal RS
model [13,17], while parts of the latter tend to give the
dominant contribution to �sRS

12 for the most natural choice

of input parameters.
This paper is organized as follows. In the next section we

briefly summarize the main features of the RS model. We
distinguish between two variants, the minimal and the
custodial RS model with protection of the ZbL �bL vertex,
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each with a brane-localized Higgs. Then we calculate the
leading contributions to �s

12 in the presence of NP, where
we restrict ourselves to operators which are expected to
give the dominant corrections for the models at hand. A
numerical scan across RS contributions is presented in
Sec. IV. Here, we evaluate Ms

12 and �s
12 for 10 000 appro-

priate random sets of input parameters. Important con-
straints arise from the �B0

s-B
0
s oscillation frequency, which

corresponds to the mass difference �mBs
, and the observ-

able �K. The results are presented in the��s=�s- as well as
the As

SL=Sc�-plane. We conclude in Sec. V. In a series of

appendixes we collect analytic results for RS Wilson co-
efficients needed in our computations.

II. FEATURES OF THE RS MODEL

The RS model is formulated on a five-dimensional (5D)
anti–de Sitter space. The compactified fifth dimension is an
S1=Z2-orbifold, labeled by a dimensionless coordinate
� 2 ½��;��. The usual 4D space-time is rescaled by a
so-called warp factor, such that length scales depend on the
position in the extra dimension. The whole (5D) space-
time is called the bulk. The RS metric is given by

ds2 ¼ e�2krj�j��	dx
�dx	 � r2d�2; (7)

with ��	 ¼ diagð1;�1;�1;�1Þ. Here, k and r denote the
curvature and the radius of the fifth dimension, which are
of the order of the (inverse) Planck scale. The Z2-parity
identifies points ðx�;�Þ and ðx�;��Þ and thus gives rise
to boundaries at � ¼ 0 and �, which are called Planck/
ultraviolet (UV) and TeV/infrared (IR) brane, respectively.
The RS model solves the gauge hierarchy problem by
suppressing mass scales on the IR-brane. Explicitly, one
achieves

MIR � e�LMPl � �MPl � MW (8)

for L � kr� � 37 (� ¼ 10�16). Thus, the strong hierarchy
between the Planck and the weak scale, MPl and MW , is
understood by gravitational red-shifting, if the Higgs field
is localized on or near the IR-brane. An effective four-
dimensional description is usually obtained via Kaluza-
Klein (KK) decomposition, which replaces each 5D field
by an infinite tower of massive 4D fields, each of them
supplied with a so-called profile depending on �. Even
fields under Z2 (which in addition obey Neumann bound-
ary conditions on both branes) possess a massless zero
mode, which can however receive a mass via coupling to
the Higgs field. Those light modes are interpreted as the
SM fields. The masses of the additional heavy KK modes
are of the order of the scale MKK � k� � few TeV, which
is identified with the cutoff � of the effective low-energy
theory. For instance, the mass of the first KK gluon is given

by mð1Þ � 2:45MKK. Take care of the fact that some au-
thors defineMKK as the mass of the first excitation. Explicit
formulas for the fermion- and gauge-boson profiles were

first given in [18–21], respectively. The warp factor can be
used to generate fermion-mass hierarchies [18,19,22]. This
is achieved by localizing the fields differently in the bulk
by an appropriate choice of the doublet/singlet 5D mass
parameters MQi=qi , which are often called bulk masses.

The appearance of tree-level FCNCs is caused by the
modified interactions between gauge and matter fields,
which now contain overlap integrals of the corresponding
profiles. If the gauge field possesses a mass, the overlap is
flavor (and KK mode) dependent, giving rise to FCNCs
when changing from the weak interaction to the mass
eigenbasis. A crucial observation is that these nonuniversal
overlap integrals are exponentially suppressed for UV
localized (i.e. light) fermions. This is known as RS-GIM
mechanism [14,15]. Details about the couplings and over-
laps within the minimal RS formulation, with an IR-brane
Higgs and gauge and matter fields in the bulk, can be found
in [17]. The famous custodial extension including a pro-
tection for the ZbL �bL vertex [23,24] is treated in [25,26].
If one deals with SM-like quarks, it is convenient to

expand the profiles in terms of v2=M2
KK, where v �

246 GeV is the Higgs vacuum expectation value. This
involves the zero-mode profile evaluated at the IR-brane

FðcÞ ¼ sgn½cosð�cÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2c

1� �1þ2c

s
(9)

as a function of the bulk-mass parameters cQi
¼ MQi

=k

and cqi ¼ �Mqi=k [17]. To LO in v2=M2
KK the spectrum of

the light down-type quarks corresponds to the eigenvalues
of the effective Yukawa matrix

Yeff
d ¼ diag½FðcQi

Þ�Yddiag½FðcdiÞ�

¼
ffiffiffi
2

p
v

Uddiag½md;ms;mb�Wy
d : (10)

The mixing matrices Ud and Wd are most easily obtained
by a singular-value decomposition of the left-hand side of
the latter equality. From now on, we will refer to the first
nontrivial order in the expansion in v2=M2

KK (which we
also apply for massive gauge bosons) as the zero-mode
approximation (ZMA).

III. CALCULATION OF �s
12

Within the SM, �s
12 is known to next-to-leading order

(NLO) in QCD [3,27–32]. In this section, we calculate the
leading contribution to �s

12 in the presence of NP. It is given

by the hadronic matrix element of the transition amplitude,
which converts �B0

s into B0
s

�s
12 ¼

1

2mBs

hB0
s jT j �B0

si;

T ¼ Disc
Z

d4x
i

2
T½H �B¼1

eff ðxÞH �B¼1
eff ð0Þ�:

(11)
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Taking the discontinuity in the expression above projects
out those intermediate states, that are on-shell. The leading
correction to the SM result is given by the interference
between SM and NP insertions. The framework of heavy-
quark expansion allows for a systematic evaluation of the
matrix element in powers of 1=mb. At the zeroth order, the
momentum of the B-meson in its rest frame corresponds to
the momentum of the bottom quark, while the strange-
quark momentum is set to zero. At typical hadronic dis-
tances x > 1=mb, the transition of �B0

s into B0
s is a local

process. Thus, the matrix element can be expanded in
terms of local �B ¼ 2 operators. QCD corrections are
implemented by running the �B ¼ 1 operators from
the matching scale down to the mass of the bottom quark.
The leading SM contributions can be collected into matrix
elements of the �B ¼ 2 operators

Q1 ¼ ð�sibiÞV�Að �sjbjÞV�A;

Q2 ¼ ð�sibiÞSþPð�sjbjÞSþP;
(12)

where i and j denote color indices and a summation over
repeated indices is always understood throughout this
paper. The shorthand notation V � A indicates the
Dirac structure 
�ð1� 
5Þ in between the spinors,
whereas S� P denotes (1� 
5). The possibility of having
right-handed charged currents within the RS model asks
for further�B ¼ 2 operators, caused by interference of the
SM with NP insertions. We introduce

Q3 ¼ ð�sibjÞSþPð �sjbiÞSþP;

Q4 ¼ ð�sibiÞS�Pð �sjbjÞSþP;

Q5 ¼ ð�sibjÞS�Pð �sjbiÞSþP:

(13)

The appropriate �B ¼ 1 Hamiltonian, allowing for new
right-handed charged currents as well as FCNCs, is given
by

H �B¼1
eff ¼GFffiffiffi

2
p �bs

c

� X
i¼1;2

ðCiQiþCLL
i QiþCLR

i QLR
i

þCRL
i QRL

i ÞþX10
i¼3

CiQi

�
þX10

i¼3

ðCNP
i Qiþ ~CNP

i
~QiÞ:

(14)

In the RS model the operators Q1;2 arise from (KK)

W�-boson exchange, and the LR=RL operators involve
right-handed charged currents. They are defined as

Q1¼ð�sicjÞV�Að �cjbiÞV�A; Q2¼ð �siciÞV�Að �cjbjÞV�A;

QLR
1 ¼ð�sicjÞV�Að �cjbiÞVþA; QLR

2 ¼ð�siciÞV�Að �cjbjÞVþA;

(15)

and the QRL
i are chirality-flipped with respect to QLR

i .
Operators of the type RR are not included into our analysis
as their coefficients scale like v4=M4

KK in the models
at hand. Because of the hierarchies in the Cabibbo-

Kobayashi-Maskawa (CKM) matrix and the RS-GIM
mechanism, it is sufficient to restrict ourselves on c quarks
as intermediate states, when we calculate the RS correc-
tions involving the charged-current sector. For the SM
contribution however, we include the combinations uc,
cu, and uu in addition to the operators given above.
Concerning the NP corrections LL, LR, RL, we pull out
the CKM factor �bs

c for convenience. The measured values
for Vcb and Vcs, extracted from semileptonic B and D
decays, should be identified with the exchange of all
[SUð2ÞL] W-type bosons. As a consequence, the NP coef-
ficients CLL

1;2 arise only due to nonfactorizable corrections,

which can not be absorbed into �bs
c . We further have to

include QCD penguin operators

Q3 ¼ ð �sibiÞV�A

X
q

ð �qjqjÞV�A;

Q4 ¼ ð �sibjÞV�A

X
q

ð �qjqiÞV�A;

Q5 ¼ ð �sibiÞV�A

X
q

ð �qjqjÞVþA;

Q6 ¼ ð �sibjÞV�A

X
q

ð �qjqiÞVþA;

(16)

as well as EW penguin operators

Q7 ¼ 3

2
ð �sibiÞV�A

X
q

Qqð �qjqjÞVþA;

Q8 ¼ 3

2
ð �sibjÞV�A

X
q

Qqð �qjqiÞVþA;

Q9 ¼ 3

2
ð �sibiÞV�A

X
q

Qqð �qjqjÞV�A;

Q10 ¼ 3

2
ð �sibjÞV�A

X
q

Qqð �qjqiÞV�A;

(17)

where q ¼ u, c, d, s, andQq is the electric charge. Here, no

CKM factors are involved and one has to keep all light
quarks as intermediate states if one considers neutral-

current insertions only. The operators ~Q3...10 are chirality-
flipped with respect to (16) and (17). In principle, there is
the possibility of a flavor change on both vertices for NP
penguins, and the Wilson coefficients depend on the quark
flavor q. However, these effects suffer from an additional
RS-GIM suppression and can be neglected for all practical
purposes. For the same reason the chirality-flipped pen-

guins ~CRS
3...10 can be neglected compared to CRS

3...10 for bs
transitions [13]. Within the minimal RS model it will turn
out that, despite of the �=�s-suppression, the EW penguin
operators can dominate over the gluon penguins [13–15].
This is explained by an extra factor L, which shows up in
the leading correction to the left-handed Z0-coupling. Note
that this is not the case in the custodial RS variant [23,24],
which features a protection for the ZbL �bL vertex. The RS
Wilson coefficients of the penguin operators can be found
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in [13] and are collected in Appendix B for completeness.
There further is the possibility of flavor-changing Higgs
couplings which, however, can be neglected against the
contributions of flavor-changing heavy gauge bosons in RS
models.

Concerning the double-penguin insertions, we include
all light quarks with masses set to zero (besides mc). The
double-penguin insertion also allows for leptons within the
cut-diagram. However, as the related SM coefficient is

suppressed by �=�s, there is no chance to obtain big
effects from �sb ! ��� transitions, which are less con-
strained by experiment [33]. Note that this is not a general
statement about NP models. If there is a tree-level transi-
tion �sb ! ���mediated by light NP particles in the range of
�100 GeV, the double NP insertion becomes comparable
to the SM diagrams [34]. Possible candidates are scalar
leptoquarks [9,35]. Neglecting intermediate leptons, we
find to LO in 1=mb

�s
12 ¼ � m2

b

12�ð2MBs
ÞG

2
Fð�bs

c Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p ��
ð1� zÞð�1 þ�LL

1 Þ þ 1

2
ð1� 4zÞð�2 þ �LL

2 Þ þ 3zð�3 þ K0LL
3 Þ

� 3

2

ffiffiffi
z

p ð�LR
1 þ �LR

2 þ K0LR
3 þ K0LR

4 Þ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
�
ð3 �K00

1 þ K00
s1 þ

3

2
�K00
2 þ

1

2
K00

s2Þ þ
�bs
u

�bs
c

ð1� zÞ2ðð2þ zÞK1

þ ð1� zÞK2Þ þ 1

2

ð�bs
u Þ2

ð�bs
c Þ2 ð2K1 þ K2Þ

��
hQ1i þ

�
ð1þ 2zÞð�1 þ�LL

1 ��2 � �LL
2 Þ � 3

ffiffiffi
z

p ð2�LR
1 þ�LR

2 � K0LR
4 Þ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
�
ð3 �K00

1 þ K00
s1 � 3 �K00

2 � K00
s2Þ þ 2

�bs
u

�bs
c

ð1� zÞ2ð1þ 2zÞðK1 � K2Þ þ ð�bs
u Þ2

ð�bs
c Þ2 ðK1 � K2Þ

��
hQ2i

� 3
ffiffiffi
z

p ð�LR
1 þ 2�LR

2 þ K0LR
3 ÞhQ3i þ 3

ffiffiffi
z

p ð�RL
1 � K0RL

3 ÞhQ4i þ 3
ffiffiffi
z

p ð�RL
2 � K0RL

4 ÞhQ5i
�

� m2
b

12�ð2MBs
Þ

ffiffiffi
2

p
GF�

bs
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p ��
ð1� zÞ�NP

1 þ 1

2
ð1� 4zÞ�NP

2 þ 3z�NP
3

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p
�
3 �K00NP

1 þ K00NP
s1 þ 3

2
�K00NP
2 þ 1

2
K00NP

s2

��
hQ1i þ

�
ð1þ 2zÞð�NP

1 � �NP
2 Þ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z

p ð3 �K00NP
1 þ K00NP

s1 � 3 �K00NP
2 � K00NP

s2 Þ
�
hQ2i þO

�
1

mb

��
; (18)

where z ¼ m2
c=m

2
b and hQi � hB0

s jQj �B0
si. In order to get a compact result, we have defined the linear combinations

ðA;B 2 fL;RgÞ
�i ¼ Ki þ K0

i þ K00
i ; �AB

i ¼ KAB
i þ K0AB

i ; i ¼ 1; 2;

�3 ¼ K0
3 þ K00

3 ; �NP
i ¼ K0NP

i þ K00NP
i i ¼ 1; 2; 3;

(19)

where the coefficients on the right-hand side of (19) are themselves linear combinations of Wilson coefficients. In
agreement with [27] we have (Ciþj � Ci þ Cj)

K1 ¼ NcC
2
1 þ 2C1C2; K2 ¼ C2

2; K0
1 ¼ 2ðNcC1C3þ9 þ C1C4þ10 þ C2C3þ9Þ; K0

2 ¼ 2C2C4þ10;

K0
3 ¼ 2ðNcC1C5þ7 þ C1C6þ8 þ C2C5þ7 þ C2C6þ8Þ; K00

1 ¼ NcC
2
3þ9 þ 2C3þ9C4þ10 þ NcC

2
5þ7 þ 2C5þ7C6þ8;

K00
2 ¼ C2

4þ10 þ C2
6þ8; K00

3 ¼ 2ðNcC3þ9C5þ7 þ C3þ9C6þ8 þ C4þ10C5þ7 þ C4þ10C6þ8Þ: (20)

The combinations Ki stem from the insertion of charged-
current operators and give the dominant contribution in
the SM. The coefficients K0

i and K00
i correspond to the

interference of charged-current with penguin operators
and penguin-penguin insertions, respectively. As we con-
sider light quarks (q ¼ u, d, s) in the limit mq ¼ 0, there
is a cancellation in the EW penguin sector due to the
electric charges. The coefficients �K00

i therefore resemble
the K00

i , with C7...10 set to zero. For strange quarks as
intermediate states, there is a second possibility for the

penguin insertion. In the limit ms ¼ 0, there are additional
contributions

K00
s1¼ð2þNcÞðC4�C10=2Þ2þ2ðNcþ1ÞðC3�C9=2Þ

�ðC4�C10=2Þþ2ðC3�C9=2Þ2;
K00

s2¼2ðC3�C9=2ÞðC4�C10=2ÞþðC3�C9=2Þ2: (21)

Note that these terms have not been taken into account in
[27]. However, as all double-penguin insertions are
numerically suppressed, this omission has no significant
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effect. Next we come to the interference of SM diagrams
with NP penguins, which is collected in

K0NP
1 ¼2ðNcC1C

NP
3þ9þC1C

NP
4þ10þC2C

NP
3þ9Þ;

K0NP
2 ¼2C2C

NP
4þ10;

K0NP
3 ¼2ðNcC1C

NP
5þ7þC1C

NP
6þ8þC2C

NP
5þ7þC2C

NP
6þ8Þ;

K00NP
s1 ¼2ððNcþ2ÞC4ðCNP

4 �CNP
10 =2Þ

þðNcþ1ÞC4ðCNP
3 �CNP

9 =2Þ
þðNcþ1ÞC3ðCNP

4 �CNP
10 =2Þþ2C3ðCNP

3 �CNP
9 =2ÞÞ;

K00NP
s2 ¼2ðC3ðCNP

3 �CNP
9 =2ÞþC3ðCNP

4 �CNP
10 =2Þ

þC4ðCNP
3 �CNP

9 =2ÞÞ (22)

and

K00NP
1 ¼ 2ðNcC3C

NP
3þ9 þ C3C

NP
4þ10 þ C4C

NP
3þ9 þ NcC5C

NP
5þ7

þ C5C
NP
6þ8 þ C6C

NP
5þ7Þ;

K00NP
2 ¼ 2ðC4C

NP
4þ10 þ C6C

NP
6þ8Þ;

K00NP
3 ¼ 2ðNcC3C

NP
5þ7 þ C3C

NP
6þ8 þ C4C

NP
5þ7 þ C4C

NP
6þ8

þ NcC5C
NP
3þ9 þ C5C

NP
4þ10 þ C6C

NP
3þ9 þ C6C

NP
4þ10Þ:
(23)

Here, we have neglected the tiny contributions from the
interference of SM EW penguins with NP graphs. There
further is interference between NP charged currents and
SM penguins

K0LL
1 ¼ 2ðNcC3C

LL
1 þ C3C

LL
2 þ C4C

LL
1 Þ;

K0LL
2 ¼ 2C4C

LL
2 ;

K0LL
3 ¼ 2ðNcC5C

LL
1 þ C5C

LL
2 þ C6C

LL
1 þ C6C

LL
2 Þ;

K0LR
1 ¼ 2ðNcC3C

LR
1 þ C3C

LR
2 þ C4C

LR
1 Þ;

K0LR
2 ¼ 2C4C

LR
2 ;

K0LR
3 ¼ 2ðNcC5C

LR
1 þ C5C

LR
2 þ C6C

LR
1 Þ;

K0LR
4 ¼ 2C6C

LR
2 :

(24)

The corrections to the purely charged-current interactions
are collected into

KLL
1 ¼ 2ðNcC1C

LL
1 þ C1C

LL
2 þ C2C

LL
1 Þ;

KLL
2 ¼ 2C2C

LL
2 ;

KLR
1 ¼ 2ðNcC1C

LR
1 þ C1C

LR
2 þ C2C

LR
1 Þ;

KLR
2 ¼ 2C2C

LR
2 :

(25)

The coefficients Kð0ÞRL
i resemble Kð0ÞLR

i , with CLR
i replaced

by CRL
i . All NP coefficients should by calculated at the NP

mass scale and then be evolved down to mb. Explicit
expressions for the minimal and the custodial RS model
can be found in the appendixes.

For the sake of completeness, we finally quote the
known results for the mixing amplitude. One defines

H �B¼2
eff ¼ X5

i¼1

CiQi þ
X3
i¼1

~Ci
~Qi; (26)

where there are no tree-level contributions to C2;3 and ~C2;3

in the RS model [12,13]. The RS correction to

2mBs
Ms

12 ¼ hB0
s jH �B¼2

eff j �B0
si (27)

can be found in [12,13], and is given by

MsRS
12 ¼ 4

3
mBs

f2Bs

�
ðCRS

1 ð �mbÞ þ ~CRS
1 ð �mbÞÞB1

þ 3

4
Rð �mbÞCRS

4 ð �mbÞB4 þ 1

4
Rð �mbÞCRS

5 ð �mbÞB5

�
:

(28)

The bag parametersB1;4;5 are listed in (34), and the�B ¼ 2
coefficients can be found in Appendix C. Compared to
CRS
1 ð �mbÞ, the coefficient CRS

4 ð �mbÞ is suppressed by about 2

orders of magnitude due to a stronger RS-GIMmechanism.

The coefficients ~CRS
1 ð �mbÞ and CRS

5 ð �mbÞ are even further

suppressed. The SM mixing amplitude can be taken from
[3,36,37]

MsSM
12 ¼ G2

F

12�2
ð�bs

t Þ2m2
WmBs

�Bf
2
Bs
B1S0ðxtÞ; (29)

where�B ¼ 0:837 involves NLOQCD corrections in naive
dimensional reduction (NDR). S0ðxtÞ is the Inami-Lim
function and xt ¼ �mtð �mtÞ2=m2

W with �mtð �mtÞ ¼ ð163:8�
2:0Þ GeV. The meson mass and decay constant are given
by mBs

¼ 5:366ð1Þ GeV [38] and fBs
¼ ð238:8�

9:5Þ MeV [39], respectively. If not stated otherwise, all
other experimental input is taken from [38].

IV. NUMERICAL ANALYSIS

In order to obtain the RS predictions, we need an ap-
propriate set of input parameters, consisting of the Yukawa
matrices, the bulk-mass parameters cQi

and cqi of the

SUð2ÞL-doublet and singlet fermions, as well as the KK
scale MKK. Within an anarchic approach to flavor, all
Yukawa entries are chosen to be of Oð1Þ. The generation
of input points is most easily achieved by making use of the
warped-space Froggatt-Nielsen mechanism [15,17], which
provides simple analytic expressions for the fermion
masses and Wolfenstein parameters in terms of the zero-
mode profiles (9) and entries of the Yukawa matrices, but
independent ofMKK to first approximation. In our analysis,
we use 10 000 randomly generated parameter sets
with jðYu;dÞijj 2 ½0:1; 3�, which guarantees perturbativity

of the Yukawa couplings in higher order corrections
[40]. The points are chosen such that they fit the correct
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zero-mode masses, CKM mixing angles and phase in
standard convention [38] within the 1� range.

The contributions of some individual ingredients of �s
12

(18) are summarized in Table I. The SM coefficients
are taken from [41]. For the sake of comparison, we rescale

the RS penguin coefficients, for instance ~K0RS
2 �ffiffiffi

2
p ðGF�

bs
c Þ�1K0RS

2 (SM: ~K0
2 ¼ K0

2), as they are not supple-

mented with a CKM factor in (14). We compare the mean
absolute values of our RS predictions to the corresponding
sizes of the SM coefficients, where the numbers have to be
multiplied by the order of magnitude given in the last
column of Table I. The maximum values exceed the given
numbers by at least 1 order of magnitude, as suggested by
the large standard deviations. The NP mass scale is set to
MKK ¼ 2 TeV and we discard all points, which are in
conflict with the Z0 ! b �b ‘‘pseudo observables.’’ These
are the ratio of the width of the Z0-boson decay into bottom
quarks and the total hadronic width, R0

b, the bottom quark

left-right asymmetry parameter Ab, and the forward-

backward asymmetry for bottom quarks A0;b
FB , which set

an upper limit on cbL � cQ3
[17]. ForMKK ¼ 2 TeV, most

of the points with cbL >�0:5 are excluded. On the other

hand, forOð1Þ Yukawa couplings, the top-quark mass only
allows for a minimal UV localization of the ðtL; bLÞT
doublet. Thus, the valid bulk-mass parameters cQ3

are

clustered around �1=2. We reject all points which lie
outside the 95% confidence region in the gbL � gbR plane
(see analysis in [17]). Within the custodial RS variant with
protection of the Z0bL �bL-vertex, the related upper bound
on cbL vanishes. On the other hand, there is no stringent

upper bound on the bulk-mass parameter ctR � cu3 , which

we allow to vary within ½�0:5; 1�.
Neglecting experimental constraints, there is no differ-

ence between the minimal and the custodial RS variant at
LO in v2=M2

KK in the charged-current sector (see
Appendix A). For the natural assumption of cQ2

<�1=2

the biggest correction comes from the operator QLR
2 . This

is easy to understand if we apply the Froggatt-Nielsen
analysis of [17] to (A5) and (A8). Setting all Yukawa
factors to one, we can derive simple expressions for the
Wilsons coefficients by performing an expansion in the
Wolfenstein parameter � � 0:225, which is related to ra-
tios of IR zero-mode profiles [17]

jFðcQ1
Þj

jFðcQ2
Þj � �;

jFðcQ2
Þj

jFðcQ3
Þj � �2; jFðcQ3

Þj �Oð1Þ:
(30)

Thus, we find as a crude approximation

CLL
2 / m2

W

2M2
KK

LFðcQ2
Þ2FðcQ3

Þ2;

CLR
2 / v2

2M2
KK

FðcQ3
Þ

FðcQ2
ÞFðcu2ÞFðcd3Þ /

mcmb

M2
KK

1

FðcQ2
Þ2 ;

CRL
2 / v2

M2
KK

Fðcu2ÞFðcd2Þ /
2mcms

M2
KK

1

FðcQ2
Þ2 : (31)

Note that the importance of CLR
2 grows with increasing UV

localization of the ðcL; sLÞT doublet. The coefficients CAB
1

with A, B 2 fL;Rg are zero at the matching scale, but
generated through operator mixing when running down
to � ¼ �mb. As it turns out, the values of jKAB

1 j are about
a third of the respective values of jKAB

2 j at � ¼ �mb. In the
RS model the contributions from the coefficients CLL

i and
CRL
i can be neglected, just as those of the chirality-flipped

penguins. The coefficients K0RS
i and K00RS

i grow with an
increasing value of cbL and csL � cQ2

. The reason is that

the RS corrections due to penguin operators are dominated
by overlap integrals of left-handed fermions with inter-
mediate KK-gauge bosons and mixing effects of the latter
with Z0. The relevant expressions are given in (B1). As KK
modes are peaked toward the IR-brane, overlap integrals
with UV-localized fermions are exponentially suppressed
and RS-GIM is at work. The leading correction due to Z0

exchange is enhanced by a factor L within the minimal RS
variant. Nevertheless, due to the stringent bounds from
Z0b �b, the total penguin contributions remain smaller than
in the custodial model. In both models, it is sufficient to
consider just the contributions stemming from the coeffi-
cients K0NP

i in the neutral-current sector. The impact of
double penguins is typically about 1% of the leading
correction due to charged currents.
In order to get the overall picture, we have to evaluate

the whole expressions (18) and (28). In terms of

Rð�Þ �
�

MBs

�mbð�Þ þ �msð�Þ
�
2
; (32)

TABLE I. Selected SM penguin and charged-current coefficients contributing to �s
12 compared to the mean absolute values of the

corresponding RS coefficients for MKK ¼ 2 TeV and � ¼ �mb. See text for details.

Model/Coefficient j ~K0
2j j ~K00

2 j jKðLLÞ
2 j jKLR

2 j jKRL
2 j �

SM 0.543 0.016 12.656 10�1

Mean (minimal RS) 0.16 0.03 0.01 4.40 0.04 10�3

Standard deviation 0.17 0.03 0.05 7.41 0.06 10�3

Mean (custodial RS) 0.94 0.06 0.23 2.22 0.03 10�3

Standard deviation 1.39 0.09 1.38 4.98 0.05 10�3
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the matrix elements are given by

hQ1i ¼ 8

3
M2

Bs
f2Bs

B1ð�Þ;

hQ2i ¼ � 5

3
M2

Bs
f2Bs

Rð�ÞB2ð�Þ;

hQ3i ¼ 1

3
M2

Bs
f2Bs

Rð�ÞB3ð�Þ;
hQ4i ¼ 2M2

Bs
f2Bs

Rð�ÞB4ð�Þ;

hQ5i ¼ 2

3
M2

Bs
f2Bs

Rð�ÞB5ð�Þ:

(33)

The bag parameters Bi can be extracted from the lattice.

We take the values of [42] in the NDR-MS scheme of [28].
They read

B1 ¼ 0:87ð2Þ
�þ5

�4

�
; B2 ¼ 0:84ð2Þð4Þ;

B3 ¼ 0:91ð3Þð8Þ; B4 ¼ 1:16ð2Þ
�þ5

�7

�
;

B5 ¼ 1:75ð3Þ
�þ21

�6

�
;

(34)

where the first (second) number in brackets corresponds to
the statistical (systematic) error. In order to resum large
logarithms we employ �z ¼ �m2

cð �mbÞ= �m2
bð �mbÞ ¼ 0:048ð4Þ

[3] in our numerical analysis. We further use �mbð �mbÞ ¼
ð4:22� 0:08Þ GeV and �msð �mbÞ ¼ ð0:085� 0:017Þ GeV.

In the first panel of Fig. 1 we show the RS corrections to
the magnitude and CP-violating phase of the �B0

s-B
0
s decay

width, R� and ��, for a set of 10 000 parameter points for
MKK ¼ 2 TeV. The blue (dark gray) points correspond to
the minimal RS model, where we plot only those that are in
agreement with the Z0 ! b �b pseudo observables. The
orange (light gray) points correspond to the custodial ex-
tension, where the latter bound vanishes. As we are just
interested in the approximate size of RS corrections, we
work with the LO SM expressions. For precise predictions
for a certain parameter point, one should include the full
NLO corrections to �s

12 and Ms
12. As expected, the RS

corrections to j�s
12j are rather small, typically not exceed-

ing �4%. The corrections to the magnitude and phase of
the dispersive part of the mixing amplitude, RM and �M,
are plotted in the second panel of Fig. 1. At this point, one
should keep in mind the experimental result from the
measurement of the �B0

s-B
0
s oscillation frequency [43]

�m
exp
Bs

¼ ð17:77� 0:10 ðstatÞ � 0:07 ðsystÞÞ ps�1; (35)

which is in good agreement with the SM prediction
ð17:3� 2:6Þ ps�1 [10]. As a consequence, all points with
RM =2 ½0:718; 1:336� are excluded at 95% confidence level,
as indicated by the dashed lines. For a sufficient amount of
scatter points, the phase correction �M can take any value
of ½��;�� within the custodial RS model. Compared to

�M, the new phase �� can be neglected (what we will do
from now on).
We further take into account additional constraints from

�K ¼ �SMK þ �RSK [12,13,40,44,45]. Explicitly, one needs to
satisfy j�Kj 2 ½1:2; 3:2� � 10�3, where

�K ¼ 
�e
i’�ffiffiffi

2
p ð�mKÞexp

ImðMKSM
12 þMKRS

12 Þ; (36)

with ’� ¼ ð43:51� 0:05Þ	 [38] and 
� ¼ 0:92� 0:02
[46]. The neutral kaon mixing amplitude is defined in
analogy to (27). The input data needed for the calculation
is given in Appendix B of [13]. As it turns out, without
some tuning, the prediction for �K is generically too large.
The dangerous contributions from the operators Qsd

4;5

[40,44], which can become comparable to those of Qsd
1

due to RK ¼ ðMK=ð �md þ �msÞÞ2 � 20 for � ¼ 2 GeV and
a more pronounced renormalization group running, can be

0.04 0.02 0.00 0.02 0.04

0.96

0.98

1.00

1.02

1.04

R

3 2 1 0 1 2 3
0.01

0.1
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10

100

1000

M

R
M

FIG. 1 (color online). RS corrections to the magnitude and
CP-violating phase of the �B0

s-B
0
s decay amplitude, R� and ��, as

well as for the mixing amplitude, RM and �M. Blue (dark gray)
points correspond to the minimal, orange (light gray) to the
custodial RS model. The dashed lines mark the 95% confidence
region with respect to the measurement of �mBs

. See text for

details.
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suppressed by imposing a Uð3Þ flavor symmetry in the
right-handed down-quark sector. This symmetry is broken
by the Yukawa couplings to obtain the correct zero-mode
masses [47]. Nevertheless, if all bulk masses are equal,
there are no tree-level FCNCs in the ZMA. This is evident

from (C1), as ðWy
d ÞmjðWdÞjn ¼ 0 for m � n due to the

unitarity of Wd. Nonvanishing contributions from the ex-
change of KK-gauge bosons arise from the mixing of the
right-handed fermion zero modes with their KK excita-
tions, thus involving an additional v2=M2

KK-suppression
factor. For MKK ¼ 2 TeV, one could therefore reduce
Csd
4;5 by a factor of about 100. The same suppression factor

then applies to the B-meson sector. For the coefficient CRS
1 ,

there is no such protection. In our analysis, however, we do
not impose an additional flavor symmetry on the bulk
masses, but rather use the bound from �K as a filter for
our scattering points.

Neglecting the small SM phases, the width difference (5)
can be written as

��s ¼ ��SM
s R� cos2�s; (37)

where 2�s � ��RS
M [4]. The preliminary CDF analysis [5]

uses the older SM prediction ��SM
s ¼ ð0:096�

0:039Þ ps�1 [3], which we will take as central value for
our calculation. Taking the more recent value will not
change our conclusions. The resulting RS predictions for
��s are plotted against �s in the upper panel of Fig. 2.
Comparing to the CDF results in the lower panel, we
conclude that the RS model can enter the 68% confidence
region and come close to the best-fit value. It stays below
the desired value for ��s, as there are no sizable positive
corrections to j�s

12j.
It should be noted that the latest LHCb result for the

phase �J=c�
s ¼ �2�J=c�

s ¼ 0:03� 0:16� 0:07 agrees
with the SM prediction (3) within errors. The above num-
ber combines measurements of B0

s decays into J=c� and
J=c f0 [48,49]. In agreement with the Tevatron results, an
enhancement of the width difference compared to the SM
value has been found. The best-fit value is given by ��s ¼
ð0:123� 0:029� 0:011Þ ps�1 [48].

The SM prediction ðAs
SLÞSM ¼ ð1:9� 0:3Þ � 10�5 [10],

which is often named assl or a
s
fs in the literature, agrees with

the direct measurement ðAs
SLÞexp ¼ �0:0017� 0:0092

[50] within the (large) error. However, recent measure-
ments of the like-sign dimuon charge asymmetry Ab

SL

[51], which connects As
SL to its counterpart Ad

SL of the

B0
d-meson sector [52], imply a deviation of almost 2�. If

one neglects the tiny SM phases and the NP phase correc-
tions related to decay, As

SL is proportional to the quantity

Sc� [6], which is given by the amplitude of the time-

dependent asymmetry in B0
s ! J=c� decays, As

CPðtÞ ¼
Sc� sinð�mBs

tÞ. Setting just the NP phase in decay to

zero, one obtains the well-known expression Sc� ¼
sinð2�J=c�

s ��MÞ [53], and thus

As
SL � � j�sSM

12 j
jMsSM

12 j
R�

RM

Sc�: (38)

The RS result is shown in Fig. 3, where we have sketched
the experimental favored values Sc� ¼ 0:56� 0:22 [54]

and As
SL ¼ �0:0085� 0:0058 [50]. The latter number

combines the direct measurement with the results derived
from the measurement of Ab

SL in semileptonic B-decays
together with the average Ad

SL ¼ �0:0047� 0:0046 from

B-factories. It is evident from the plot that the best-fit value
of Sc� can be reproduced (with some tuning in the mini-

mal RS variant), which has already been noted in [12,13].
Furthermore, the custodial RS model can enter the 1�
range of the measured value of As

SL. The same conclusion

has been drawn in [16] recently, using a different approach.
Here, the authors did not produce any concrete sets of input

SM

1.5 1.0 0.5 0.0 0.5 1.0 1.5
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FIG. 2 (color online). Upper panel: Corrections within the
��SM

s =�s-plane for the minimal (blue/dark gray) and custodial
(orange/light gray) RS model. Bounds from Z0b �b, �mBs

, and �K
are satisfied. See text for details. Lower panel: Experimental
constraints from flavor-tagged B0

s ! J=c� decays. Figure taken
from [5].
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parameters, but scanned FCNC vertices across the allowed
range subject to bounds from ��s and �mBs

.

Note that due to Sc� � sin2�s, the corrections in the

��SM
s =�s-plane and the A

s
SL=Sc�-plane are correlated. An

improvement in the former leads to an improvement in the
latter.

V. CONCLUSIONS

In this paper, we investigated the impact of RS models
on the width difference ��s of the �B0

s-B
0
s system and the

related CP-violating observables As
SL and Sc�. Therefore

we calculated the leading corrections to �s
12 in terms of NP

Wilson coefficients and took the known analytic expres-
sion forMs

12. As we use an effective Hamiltonian approach,
our result for �s

12 can be applied to other NP models. Our

analysis involves a scan over a set of 10 000 random points
reproducing the correct low-energy spectrum as well as the
CKM mixing angles and phase. Bounds from Z0b �b, �K,
and �mBs

have been taken into account. Because of the

protection of the Z0bL �bL vertex, the custodial extension
allows for bulk masses cbL >�1=2, which enlarges the

contribution of RS penguin operators and LL charged
currents. While corrections to the magnitude and phase
of �s

12 turn out to be small, where for both RS variants the

biggest contribution comes from QLR
2 for most of the

allowed parameter space, the new CP-violating phase in
Ms

12 allows to relax the disagreement between theory and

experiment. Concerning the combined ��s=�s analysis, it
is possible to enter the 68% confidence region. In order to
reach the best-fit value however, moderate corrections to
j�s

12jwould be required [9], which are unlikely to appear in
the models at hand. For the case of the semileptonic CP
asymmetry As

SL, agreement can be obtained within 1�,
where, at the same time, the best-fit value of Sc� can be

reached.
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APPENDIX A: WILSON COEFFICIENTS OF
CHARGED-CURRENT OPERATORS

The effective four-quark charged-current Hamiltonian
can be written as

H ðWÞ
eff ¼ 2

ffiffiffi
2

p
GFf½ �dmL


�ðVy
LÞmnunL þ �dmR


�ðVy
RÞmnunR�


 ½ �um0
L

�ðVLÞm0n0dn0L þ �um0

R

�ðVRÞm0n0dn0R�

ðþH:c:Þg; (A1)

where m, n, m0, n0 2 f1; 2; 3g, and a summation over the
repeated indices is understood. Here, we have already
absorbed a universal correction factor ð1þm2

W=ð2M2
KKÞ�½1� 1=ð2LÞ�Þ into the Fermi constant due to the normal-

ization to muon decay, from which GF is extracted [17].
The tensor symbol merely indicates that the full analytic
result contains terms that cannot be separated into inde-
pendent matrix products. This is due to the sum over
W-gauge boson profiles, which in the minimal model reads

2�
X
n¼0

�nðtÞ�nðt0Þ
m2

n

¼ 1

m2
W

þ 1

2M2
KK

�
Lðt2< � t2 � t02Þ þ 1� 1

2L

�
; (A2)

where t2< � minðt2; t02Þ [17], and we dropped terms of
Oðv4=M4

KKÞ. The term / t2< prevents a factorization into
separate vertex factors. Performing the overlap integrals
with the corresponding fermion profiles and employing the
ZMA gives the rather simple result

ðVy
LÞmn 
 ðVLÞm0n0

¼ ðUy
dUuÞmnðUy

uUdÞm0n0

�
1þO

�
v2

M2
KK

��

þ m2
W

2M2
KK

LðUy
d ÞmiðUuÞinð ~�QQÞijðUy

u Þm0jðUdÞjn0 (A3)

with the nonfactorizable correction [45]

ð ~�QQÞij ¼
F2ðcQi

Þ
3þ 2cQi

3þ cQi
þ cQj

2þ cQi
þ cQj

F2ðcQj
Þ

3þ 2cQj

: (A4)

For B0
s-meson decays, the whole expression has to be

evaluated for (m ¼ 2, n ¼ 2, m0 ¼ 2, n0 ¼ 3). Here, the
leading term in (A3), together with factorizable corrections
of the form v2=M2

KKð� � �Þmn � ð� � �Þm0n0 [26], should be
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FIG. 3 (color online). Corrections within the As
SL=Sc�-plane

for the minimal (blue/dark gray) and custodial (orange/light
gray) RS model. Bounds from Z0b �b, �mBs

, and �K are satisfied.

See text for details.

RANDALL-SUNDRUM CORRECTIONS TO THE WIDTH . . . PHYSICAL REVIEW D 84, 095016 (2011)

095016-9



identified with �bs
c . Concerning the custodial RS model,

one would find additional factorizable terms, which also
will be absorbed into CKM-matrix elements. Thus, we find
at LO in v2=M2

KK

CLL
2 ðMKKÞ ¼ m2

W

2M2
KK

L� ðUy
d Þ2iðUuÞi2
ðUy

dUuÞ22
ð ~�QQÞij

� ðUy
u Þ2jðUdÞj3
ðUy

uUdÞ23
; (A5)

independent of the chosen scenario, and CLL
1 ðMKKÞ ¼ 0.

The biggest corrections are found for cQ2;3
>�1=2. For the

mixed-chirality currents we have

ðVy
LÞmn 
 ðVRÞm0n0 ¼ 1

M2
KK

ðUy
dUuÞmnðmuU

y
u Þm0jfðcQj

Þ

� ðUdmdÞjn0 ;
ðVy

RÞmn 
 ðVLÞm0n0 ¼ 1

M2
KK

ðmdU
y
d ÞmifðcQi

ÞðUumuÞin
� ðUy

uUdÞm0n0 : (A6)

Here, mu and md are 3� 3 diagonal matrices containing
the SM-like quark masses, and

fðcÞ ¼ 1

F2ðcÞð1� 2cÞ �
1

1� 2c
þ F2ðcÞ

ð1þ 2cÞ2

�
�

1

1� 2c
� 1þ 1

3þ 2c

�
: (A7)

Modifications due to the custodial model are of higher

order. We find the general RS prediction CLR=RL
1 ¼ 0 and

CLR
2 ¼ 1

M2
KK

ðmuU
y
u Þ2ifðcQi

ÞðUdmdÞi3
ðUy

uUdÞ23
;

CRL
2 ¼ 1

M2
KK

ðmdU
y
d Þ2ifðcQi

ÞðUumuÞi2
ðUy

dUuÞ22
;

(A8)

where the coefficients should be matched at the KK scale.
The evolution down to the bottom mass is treated in
Appendix D.

APPENDIX B: WILSON COEFFICIENTS OF
PENGUIN OPERATORS

At Oðv2=M2
KKÞ the Wilson coefficients of the penguin

operators in Eq. (14) are explicitly given by [13]

CRS
3 ¼ ��s

M2
KK

ð�0
DÞ23

2Nc

� ��

6s2wc
2
wM

2
KK

ð�DÞ23;

CRS
4 ¼ CRS

6 ¼ � ��s

2M2
KK

ð�0
DÞ23;

CRS
5 ¼ ��s

M2
KK

ð�0
DÞ23

2Nc

;

CRS
7 ¼ 2��

9M2
KK

ð�0
DÞ23 �

2��

3c2wM
2
KK

ð�DÞ23;

CRS
8 ¼ CRS

10 ¼ 0;

CRS
9 ¼ 2��

9M2
KK

ð�0
DÞ23 þ

2��

3s2wM
2
KK

ð�DÞ23;

(B1)

where sw (cw) is the sine (cosine) of the Weinberg angle,
and

� D � !dL
Z L

�
1

2
� s2w

3

�
�D þM2

KK

m2
Z

�D: (B2)

These results are to be evaluated at the KK scale and are

valid for the minimal RS variant for !dL
Z ¼ 1. In the

custodial RS model with PLR-symmetry, one finds

!dL
Z ¼ 0 [26]. Exact analytic expressions for �D, �

0
D,

and �D can be found in [17]. However, as we only deal
with light SM quarks in the initial and final state, it is
convenient to apply the ZMA to the above expressions.
Therefore we have to replace

�D ! Uy
d diag

�
F2ðcQi

Þ
3þ 2cQi

�
Ud;

�0
D ! Uy

d diag

�
5þ 2cQi

2ð3þ 2cQi
Þ2 F

2ðcQi
Þ
�
Ud;

(B3)

as well as

�D ! 1

M2
KK

mdW
y
d

� diag

�
1

1� 2cdi

�
1

F2ðcdiÞ
� 1þ F2ðcdiÞ

3þ 2cdi

��
Wdmd:

(B4)

In the custodial model with extended PLR-symmetry, the
term / 1=F2ðcdiÞ in �D is zero [26]. All other expressions

hold for both scenarios. The running of the penguin coef-
ficients is also treated in Appendix D.

APPENDIX C: WILSON COEFFICIENTS FOR
�B ¼ 2 OPERATORS

The �B ¼ 2 operators that contribute to the �B0
s-B

0
s

mixing amplitude at tree-level are given by Q1,
~Q1, Q4,

and Q5. There is no mixing between Q1 and ~Q1 under
renormalization. The anomalous dimension for both cases

is given by 
ð0ÞVLL ¼ 6� 6=Nc [55]. The operators Q4;5

mix under renormalization and the anomalous dimension
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matrix can be taken from [55,56]. The running of the
coefficients is described by the general formula (D1).

Defining ~�dd and ~�Qd in analogy to (A4), the RS coef-

ficients evaluated at the KK scale are given by [13]

CRS
1 ¼ �L

M2
KK

ðUy
d Þ2iðUdÞi3ð ~�QQÞijðUy

d Þ2jðUdÞj3

�
�
�s

2

�
1� 1

Nc

�
þQ2

d�þð!dLdL
Z ÞðT

d
3 �s2wQdÞ2�

s2wc
2
w

�
;

~CRS
1 ¼ �L

M2
KK

ðWy
d Þ2iðWdÞi3ð ~�ddÞijðWy

d Þ2jðWdÞj3

�
�
�s

2

�
1� 1

Nc

�
þQ2

d�þð!dRdR
Z Þðs

2
wQdÞ2�
s2wc

2
w

�
;

CRS
4 ¼�2�s

�L

M2
KK

ðUy
d Þ2iðUdÞi3ð ~�QdÞijðWy

d Þ2jðWdÞj3

CRS
5 ¼ �L

M2
KK

ðUy
d Þ2iðUdÞi3ð ~�QdÞijðWy

d Þ2jðWdÞj3

�
�
2�s

Nc

�4Q2
d�þ!dLdR

Z

4s2wQdðTd
3 �s2wQdÞ�
s2wc

2
w

�
:

(C1)

Here we have introduced the correction factors!qq0
Z , which

are equal to 1 in the minimal RS model, and given by

!qq0
Z ¼ 1þ 1

c2w � s2w

�
s2wðT3q

L �QqÞ � c2wT
3q
R

T3q
L � s2wQ

q

�

�
�
s2wðT3q0

L �Qq0 Þ � c2wT
3q0
R

T3q0
L � s2wQ

q0

�
(C2)

in the custodial RS variant with PLR-symmetry.

Numerically we find !dLdL
Z � 2:9, !dRdR

Z � 150:9, and

!dLdR
Z � �15:7. The quantum numbers T3q

R can be found

in [26], and T3dL
L � Td

3 .

APPENDIX D: RUNNING OF THE �B ¼ 1
COEFFICIENTS

Concerning the evolution of the RS Wilson coefficients,
we will restrict ourselves to the LO running in �s. Within

the operator basis ~Q ¼ ðQ1; Q2; Q3...10Þ, the anomalous

dimension matrix 
ð0Þ, which is a function of Nc, nf, nu,

and nd (number of colors, flavors, up-, and down-type
quarks), can be found in [57,58]. The running of the
coefficients is given by

~CðmbÞ ¼ Uð5Þðmb;mtÞUð6Þðmt;MKKÞ ~CðMKKÞ; (D1)

where

UðnfÞð�1; �2Þ ¼ V̂

��
�
ðnfÞ
s ð�2Þ

�
ðnfÞ
s ð�1Þ

�
~
ð0Þ=2�0ðnfÞ�

D
V̂�1: (D2)

Here, V̂ diagonalizes 
ð0ÞT via 
ð0Þ
D ¼ V̂�1
ð0ÞT V̂, and ~
ð0Þ

contains the entries of 
ð0Þ
D. The QCD beta function is

given by �0ðnfÞ ¼ ð11Nc � 2nfÞ=3, and we fix the run-

ning of �sð�Þ at � ¼ mt ¼ 171:2 GeV and � ¼ MKK ¼
2 TeV. As it turns out, there is a mixing between Q1 and
Q2 independent of nf, nu, and nd. The evolution in the

penguin sector gets a small admixture from charged cur-

rents. The operatorsQLR=RL
1 andQLR=RL

2 do not mix into the
penguin sector. Their internal mixing is identical to that of
the LL operators, and there is no mixing between charged
currents of different chiralities. For the running of the
LR=RL coefficients, we insert


ð0Þ ¼ � 6
Nc

6

6 � 6
Nc

 !
(D3)

into Eq. (D1), where this formula also holds for the LL
coefficients separately.
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