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It is possible that at low temperatures and large density there exists a confining matter with restored

chiral symmetry, just after the dense nuclear matter with broken chiral symmetry. Such a phase has, so far,

been studied within a confining and chirally symmetric model, assuming a rigid quark Fermi surface. In

the confining quarkyonic matter, however, near the Fermi surface, quarks group into color-singlet baryons.

Interaction between quarks leads to a diffusion of the quark Fermi surface. Here, we study effects of such

diffusion and verify that it does not destroy a possible existence of a confining but chirally symmetric

matter at low temperatures.
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I. INTRODUCTION

The QCD phase diagram is an old and very intriguing
question. What will happen with the strongly interacting
matter at large temperatures and/or densities? The most
interesting question is the interconnection of the deconfine-
ment and the chiral restoration phase transitions (cross-
overs). For many years, it was considered as almost self-
evident that the deconfinement and chiral restoration lines
on the QCD phase diagram coincide. The reason for such
expectation was the belief that, in the confining mode,
mass of hadrons is directly related to the quark condensate
of the vacuum. Consequently, beyond the chiral restoration
line, hadrons cannot exist, and the QCDmatter should be in
a deconfined plasma form. At low densities, it is indeed
established on the lattice that both chiral restoration and
deconfinement crossovers coincide or are rather close to
each other [1,2]. What happens with these lines at larger
densities is unknown.

In the large Nc world at low temperatures, confinement
persists up to arbitrary large densities [3]. This is because
both the quark-antiquark and quark-quark hole loops are
suppressed at large Nc. Consequently, there is no back-
reaction of quarks on gluonic dynamics (no Debye screen-
ing of the confining gluonic field) and confinement persists
like in vacuum. In such system, the only allowed excitation
modes are of the color-singlet hadronic type. The uncorre-
lated single quark excitations are not allowed. In this case,
it is possible to define a quarkyonic matter as a dense
confining matter with baryonic excitation modes [3].

In the real Nc ¼ 3 world at some large critical density,
the confining gluonic field might be screened, and a de-
confining transition (crossover) would appear. Then a key
question is how big is this critical density? Lattice simu-
lations for the Nc ¼ 2 QCD suggest that at low tempera-
tures, the deconfinement transition happens at densities
�100 times bigger than the normal nuclear matter density
[4]. Since the Nc ¼ 3 world is between the two known
limiting cases (Nc ¼ 2; Nc ¼ 1), we expect that at Nc ¼
3, the deconfinement at low temperatures happens at the

very high densities, much larger than can be achieved in
our laboratories or in the neuteron stars.
Note, by definition, the quarkyonic matter is a dense cold

matterwith confinement. Nothing can be a priori concluded
about existence or nonexistence of the chiral restoration
phase transition within such a dense matter. If the chiral
restoration transition does exist within the quarkyonic mat-
ter, then it would imply that at some conditions, there exists
a QCD matter with confinement and with unbroken chiral
symmetry (we imply for simplicity the chiral limit). The
mass origin in such a matter is obviously not related to
dynamical chiral symmetry breaking in the vacuum.
Asmentioned above, such a possibility had not even been

considered in the past on a priori grounds. Indeed, the old
Casher argument [5] claims that the chiral symmetry break-
ing is required for quarks to be confined. In addition, it is
understood that chiral symmetry breaking in the vacuum is
important for the mass generation of hadrons such as N, �,
or�. Then, naively, hadronswith nonzeromass cannot exist
in a world with unbroken chiral symmetry.
However, the Casher argument is not general and can be

easily bypassed [6]. Recent lattice simulations have con-
vincingly demonstrated [7] that in the world without the
low-lying eigenmodes of the Dirac operator (i.e. with the
artificially restored chiral symmetry), hadrons still exist,
and confinement persists. Finally, if effective chiral resto-
ration in highly excited hadrons is correct [8–11], then it is
possible to have hadrons with the mass that is not directly
related to the quark condensate of the vacuum.
A key question is to clarify whether existence of con-

fining but chirally symmetric dense cold matter is possible.
We cannot solve QCD and answer this question from first
principles. In this situation, an important step would be
to construct a model for such a matter and see what
mechanism could be at work. Clearly, the model must be
manifestly confining, chirally symmetric, and provide dy-
namical breaking of chiral symmetry. Constructions that
are based on the Nambu–Jona-Lasinio model or the linear
sigma model and their extensions are not suited because of
lack of confinement of quarks.
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The simplest possible model that satisfies all
required criteria is the model of Refs. [12,13]. This 3þ
1-dimensional model can be considered as a straightfor-
ward generalization of the QCD in 1þ 1 dimension in the
large Nc limit—the ’t Hooft model [14]. It is assumed
within the model that the only gluonic interaction between
quarks is an instantaneous linear potential of Coulomb
type. Such a potential is indeed observed in variational
[15] as well as lattice Coulomb gauge simulations [16]. An
important aspect of this model is that it exhibits effective
chiral restoration in hadrons with large spins J [11,17,18].

This model was used in Ref. [19] to answer the question
about a possible mechanism that could be responsible for
the confining but chirally symmetric dense cold matter.
Assuming a liquid phase, i.e. that the rotational and trans-
lational symmetries are not broken (as it is in the nuclear
matter), the Pauli blocking of the positive energy levels by
valence quarks prevents the gap equation to generate a
nontrivial solution with broken chiral symmetry above
some critical quark Fermi momentum. At the same time,
confinement still persists in the system, so that the uncor-
related colored single quark excitations are not possible.

In the latter work, a rigid quark Fermi surface was
assumed, like for the noninteracting fermions at T ¼ 0.
If such a phase exists, however, relevant degrees of free-
dom near the Fermi surface are baryons. Quarks interact
inside baryons. Consequently, the quark distribution func-
tion near the Fermi surface must be smooth. Here, we study
effects of such diffusion of the quark Fermi surface and
solve the corresponding gap and Bethe-Salpeter equations.
We conclude that, for any reasonable diffusion, there al-
ways exists such a critical ‘‘Fermi momentum’’ of quarks
at which the chiral restoration phase transition persists,
and, hence, elementary excitations above this critical
Fermi momentum are the color-singlet chirally symmetric
hadron modes.

II. OVERVIEW OF CONFINEMENTAND CHIRAL
SYMMETRY BREAKING IN AVACUUM

The SUð2ÞL � SUð2ÞR �Uð1ÞA �Uð1ÞV symmetric
Hamiltonian,

Ĥ ¼
Z

d3x �c ð ~x; tÞð�i ~� � ~5Þc ð ~x; tÞ þ 1

2

�
Z

d3xd3yJa�ð ~x; tÞKab
��ð ~x� ~yÞJb�ð ~y; tÞ; (1)

relies on the quark current-current Ja�ð ~x; tÞ ¼
�c ð ~x; tÞ��

�a

2 c ð ~x; tÞ interaction via the instantaneous linear
interquark potential of the Coulomb type,

Kab
��ð ~x� ~yÞ ¼ g�0g�0�

abVðj ~x� ~yjÞ;
�a�a

4
VðrÞ ¼ �r;

(2)

where a, b are color indices. This model was intensively
used in the past to study chiral symmetry breaking,
chiral properties of hadrons, etc. (see, for example,
Refs. [12,13,20]). In the following, we redefine for sim-
plicity the total confining potential that includes all re-
quired color factors to be VðrÞ ¼ �r.
The Fourier transform of the linear potential and any

loop integral are not defined in the infrared region, p� 0.
Hence, an infrared regularization is required. Physical
color-singlet observables, such as hadron masses, chiral
condensate, etc., must be independent of the infrared regu-
lator �IR in the infrared limit �IR ! 0.
There are several physically equivalent ways to perform

this infrared regularization. Here, we follow Ref. [21] and
define the potential in momentum space as

VðpÞ ¼ 8��

ðp2 þ�2
IRÞ2

: (3)

This potential in the configuration space contains the
required �r term, the infrared divergent term ��=�IR, as
well as terms that vanish in the infrared limit.
The self-energy operator

�ð ~pÞ ¼ Ap þ ð ~� ~̂pÞðBp � pÞ (4)

consists of the Lorentz-scalar chiral symmetry-breaking

part Ap and chirally symmetric part ð ~� ~̂pÞðBp � pÞ. The
unknown functions Ap and Bp are to be determined from

the gap equation for the chiral angle ’p,

Ap cos’p � Bp sin’p ¼ 0; (5)

where

Ap ¼ 1

2

Z d3k

ð2�Þ3 Vð ~p� ~kÞ sin’k; (6)

Bp ¼ pþ 1

2

Z d3k

ð2�Þ3 ð ~̂p
~̂kÞVð ~p� ~kÞ cos’k: (7)

These integrals contain both the infrared-divergent and
the infrared-finite parts

Ap ¼ �

2�IR

sin’p þ Af
p; (8)

Bp ¼ �

2�IR

cos’p þ Bf
p: (9)

The same is true for the single quark energy:

!p ¼ ffiffiðp A2
p þ B2

pÞ ¼ �

2�IR

þ!f
p: (10)

Consequently, the single-quark Green function is divergent
and the single-quark energy is infinite in the infrared limit.
Actually, energy of any color-nonsinglet state is infinite.
At the same time, the infrared divergence exactly cancels
out in any color-singlet quantity, and these quantities are
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finite and well-defined [19]. This is a manifestation of
confinement within this model.

Similarly, the infrared divergence in Ap and Bp cancels

in the gap equation, and this equation can be solved
directly in the infrared limit. The gap equation can be
solved numerically and a nontrivial solution with the chiral
(Bogoliubov) angle ’p � 0 signals dynamical breaking of

chiral symmetry. Hence, the single quark Green function is
not chirally symmetric, Ap � 0; there appears the quark

condensate and dynamical mass of quarks

h �qqi ¼ �NC

�2

Z 1

0
dpp2 sin’p; MðpÞ ¼ p tan’p:

(11)

III. CHIRAL SYMMETRY BREAKING AND
CONFINEMENT IN A DENSE MATTER AT T ¼ 0

WITH A RIGID QUARK FERMI SURFACE

It is practically impossible to solve exactly the model in
a dense matter. Indeed, that would imply to solve it first for
a single baryon; then to obtain a baryon-baryon interaction;
given this interaction to construct a nuclear matter and then
slowly to increase its density. Obviously, it is a formidable
problem. In order to proceed and get some insight, one
needs justifiable simplifications.

In the large Nc limit, the nucleon is infinitely heavy,
translational invariance is broken and a many-nucleon
system is certainly in a crystal phase. Whether a (dense)
nuclear matter will be a liquid or a crystal at Nc ¼ 3 is
subject to dynamical calculations. Such microscopical cal-
culations cannot be pursued for any ‘‘realistic’’ model in
3þ 1 dimensions with confinement and (broken) chiral
symmetry. However, in the real world Nc ¼ 3, we do
know that the nuclear matter is in a liquid phase; both
translational and rotational invariances are intact. We then
assume a liquid phase with manifest translational and rota-
tional invariances in a dense quarkyonic matter.

We also assume that confinement persists up to large
densities at Nc ¼ 3. At T ¼ 0, deconfinement could hap-
pen through the Debye screening of the confining gluon
propagator: A gluon creates the quark-quark hole pair that
again annihilates into a gluon. If this vacuum polarization
diagram is finite, then at some density, there should happen
a complete screening of the confining gluon field.
However, in the confining mode, energy of the colored
quark-quark hole pair is infinite [22]. The allowed excita-
tions in the confining mode are the color-singlet excitations
like baryon-baryon hole pairs, etc. These excitation modes
cannot screen the confining colored gluon propagator. In
this sense, the T ¼ 0 physics is rather different from the
deconfinement at zero density and large temperature. In the
latter case, a screening proceeds via the incoherent thermal
gluon loops.

One could expect that the deconfinement should happen
in a dense medium at T ¼ 0 due to perlocation of baryons.

Such a reasoning is too naive, however, because the perlo-
cation does not yet imply screening of the confining gluon
field. For example, deconfinement never happens at T ¼ 0
in QCD at large Nc or in the ’t Hooft model. In both cases,
baryons ‘‘sit’’ on top of each other in a very dense medium,
but it is still a system with confinement.
We want to address the chiral symmetry-breaking prop-

erties of a dense matter with confinement. In the vacuum,
dynamical chiral symmetry breaking happens because
there is an attractive interaction between the left quarks
and the right antiquarks and vice versa. This attractive
interaction shifts the energy of the vacuum with broken
chiral symmetry below the energy of the perturbative Dirac
vacuum.
Consequently, in a dense matter at T ¼ 0, the most

important physics that leads to the restoration of chiral
symmetry is the Pauli blocking (by the valence quarks)
of the positive energy levels required for the very existence
of the quark condensate.
In our previous work [19], the effect of the Pauli blocking

was studied assuming a rigid valence quark Fermi sphere,
like for the ideal Fermi gas at T ¼ 0 (see Fig. 1(a)). In this
case, all quark positive energy levels below the Fermi
momentum pf are occupied by the valence quarks, and

one has to replace the vacuum density matrix vð ~pÞvyð ~pÞ
by the density matrix in the medium:

�ð ~pÞ ¼ �ðpf � pÞuð ~pÞuyð ~pÞ þ vð ~pÞvyð ~pÞ: (12)

Hence, within the mean field approximation, one has to
remove from the integration in the gap equation all
quark momenta below pf since they are Pauli blocked

(see Fig. 1(b)). The modified gap equation is then the
same as in Eqs. (5)–(7), but the integration starts not from
k ¼ 0, but from k ¼ pf.

At the critical Fermi momentum pcr
f � 0:109

ffiffiffiffi
�

p
, the

chiral phase transition is observed (see Fig. 2) because
the nontrivial solution with broken chiral symmetry dis-
appears. Above this phase transition, the chiral angle ’p,

the quark condensate h �qqi, the dynamical mass of quarks
MðpÞ, as well as the chiral symmetry-breaking part Ap of

the quark Green function identically vanish. At the
same time, the chirally symmetric part Bp of the quark

Green function does not vanish and is still, in fact,
infrared divergent. The single quark energy is infinite,

a) b)

FIG. 1 (color online). Valence quark distribution and the cor-
responding integration weight.
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and confinement persists even in the chirally symmetric
phase. The color-singlet hadronic excitations have finite
and well-defined energy.

IV. EFFECTS OFA DIFFUSION OF THE QUARK
FERMI SURFACE

In reality, valence quarks near the Fermi surface interact
and cluster into the color-singlet baryons. This interaction,
in general, would lead to a diffusion of the rigid Fermi
surface for quarks. Some levels above the Fermi momen-
tum must be occupied with some probability, as well as
some levels below the Fermi momentum with some proba-
bility must be empty.

In principle, the quark distribution function near the
diffused Fermi surface could be obtained self-consistently
from the full solution of the problem. It is a formidable
task, and such a program cannot be pursued. With the
present state of the arts, it is difficult to obtain a micro-
scopic insight into the dynamics of the diffusion. However,
it is clear that the realistic distribution function will be
smooth, of the form on Fig. 3(a). A goal of the present
study is to clarify the effect of the diffusion on the very
existence of the chiral phase transition. Then, for our
present goal, it will suffice to parameterize such a smooth
distribution in a simple form and study effect of the diffu-
sion on the solution of the gap equation.

We parameterize a smooth valence quark distribution
function by

�vðpÞ ¼ �ð�pþ pf � �Þ
þ�ðp� pf þ �Þ 1

eðp�pfÞ=� þ 1
: (13)

Given the valence distribution function we multiply the
integrands in Eqs. (6) and (7) by the weight function
1� �vðkÞ and solve the gap equation for different pf and

diffusion width �.
If the diffusion width is much smaller than the

critical Fermi momentum for a rigid Fermi surface, � �
pcr
f ð� ¼ 0Þ (what should be considered as a realistic situ-

ation), then the evolution of the chiral condensate with pf

is similar to the case of the rigid quark Fermi surface. This
situation is represented by the curve � ¼ 0:02 on Fig. 4.
The phase transition happens at the ‘‘Fermi momenta’’
that are rather close to the critical Fermi momentum,
pcr
f ð� ¼ 0Þ ¼ 0:109 from Fig. 2 (see also the curve

� ¼ 0 on Fig. 4). This can be easily understood. At all
momenta p � pf, the Pauli blocking on Fig. 3 is the same

as for the rigid quark Fermi surface. At momenta just
below the pf, the effect of the Pauli blocking is weaker

than for the rigid Fermi surface. However, this is compen-
sated by additional Pauli blocking of the levels that are just
above the Fermi momentum for the rigid quark distribu-
tion. Consequently, with small diffusion widths, the ‘‘criti-
cal Fermi momentum’’, pcr

f ð�Þ, at which the phase

transition happens, is shifted to slightly lower values of pf.

However, if a diffusion width becomes larger and even-
tually comparable with the Fermi momentum, then the
critical Fermi momentum, at which the phase transition
happens, increases.
For each fixed diffusion width�, there always exist such

Fermi momenta where the Wigner-Weyl mode of chiral
symmetry is realized. This can be seen from Fig. 5, where a

FIG. 2 (color online). Quark condensate in units of �3=2 as a
function of the Fermi momentum, which is in units of

ffiffiffiffi
�

p
.

FIG. 4 (color online). Quark condensate (in units of �3=2) as a
function of the Fermi momentum (in units of

ffiffiffiffi
�

p
) and the

diffusion width � (in units of
ffiffiffiffi
�

p
).

a) b)

FIG. 3 (color online). Diffused step valence quark distribution
and the corresponding integration weight.
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FIG. 5 (color online). Critical line that separates the quar-
kyonic matter with broken and restored chiral symmetry.

FIG. 6 (color online). Chiral angle ’p as a function of the
momentum p for a Fermi momentum pf ¼ 0:2 at different fixed

values of smoothing �. p and � are in units of
ffiffiffiffi
�

p
.

FIG. 7 (color online). Dynamical mass MðpÞ as a function of
the momentum p for a Fermi momentum pf ¼ 0:2 at different

fixed values of smoothing �. MðpÞ, p, and � are in units of
ffiffiffiffi
�

p
.

FIG. 8 (color online). Masses of the pseudoscalar (solid) and
scalar (dashed) mesons in units of

ffiffiffiffi
�

p
as functions of the ‘‘Fermi

momentum’’ pf and of the diffusion width � (in units of
ffiffiffiffi
�

p
).
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line of critical Fermi momenta is depicted. The area above
this critical line corresponds to the chirally symmetric
phase, while all points below the critical line represent a
matter with broken chiral symmetry.

The chiral angle’p and dynamical mass of quarksMðpÞ
in the Nambu—Goldstone mode of chiral symmetry at
some Fermi momentum and different diffusion widths �
are shown on Figs. 6 and 7.

V. CHIRAL RESTORATION IN MESON SPECTRA

Another explicit illustration of chiral symmetry of a
dense matter above the chiral restoration phase transition
are properties of hadronic excitations. In the Nambu-
Goldstone mode of chiral symmetry, there must be a
massless excitation mode that is associated with the mass-
less pion. At the same time, energies of all other mesons
must be finite. In particular, there must be a finite splitting
of the excitations with quantum numbers I, JPC ¼ 1, 0�þ
and I, JPC ¼ 0, 0þþ, that will be referred to as the pion
and the � meson, respectively, according to the standard
nomenclature. In contrast, these excitations must be ex-
actly degenerate in the Wigner-Weyl mode of chiral sym-
metry and form the ð1=2; 1=2Þa representation of the
SUð2ÞL � SUð2ÞR chiral group [11].

To obtain the quark-antiquark bound states, we solve the
homogeneous Bethe-Salpeter equation in the rest frame

	ðm; ~pÞ ¼ �i
Z d4q

ð2�Þ4 Vðj ~p� ~qjÞ�0

� Sðq0 þm=2; ~p� ~qÞ	ðm; ~qÞ
� Sðq0 �m=2; ~p� ~qÞ�0ð1� �vðqÞÞ: (14)

Here, S is the dressed single quark propagator, that is the
solution of the gap equation,m is the meson mass, and ~p is
the relative momentum. The Bethe-Salpeter equation is
solved by means of expansion of the vertex function
	ðm; ~pÞ into a set of all possible independent amplitudes
consistent with I, JPC, and it transforms into a system of
coupled equations. The infrared divergence cancels exactly
in these equations, and they can be solved numerically
[17]. The Pauli blocking by valence quarks is taken into
account via the weight function 1� �vðqÞ.

In the Wigner-Weyl mode, i.e. when dynamical quark
mass and chiral angle vanish, MðpÞ ¼ 0; ’p ¼ 0, the

Bethe-Salpeter equations for the 1, 0�þ and 0, 0þþ bound
states become identical [17] and, consequently, energies of
these states coincide.
On Fig. 8, we show masses of both pseudoscalar and

scalar modes for different Fermi momenta pf and diffusion

widths �. For each � there is a critical pcr
f ð�Þ at which the

chiral restoration phase transition takes place. Below this
pcr
f ð�Þ, there is a massless pion and a massive � meson.

Above the critical pf, both the pion and the � meson are

massive and exactly degenerate.

VI. CONCLUSIONS

In the confining mode, the valence quarks interact, and
near the Fermi surface, cluster into the color-singlet bary-
ons. This implies that there cannot be a rigid quark Fermi
surface. The valence quark distribution function near the
Fermi surface must be smooth. The valence quark levels
above the Fermi momentum are occupied with some
probability, as well as the levels below the Fermi momen-
tum must be, with some probability, empty. We assume
unbroken translational and rotational invariances, i. e. a
liquid phase. We parameterize such a diffused ‘‘Fermi
surface’’ by a simplest-possible function and solve the
corresponding gap and Bethe-Salpeter equations. By this,
we verify whether a chiral phase transition, previously
observed for a rigid quark Fermi surface, survives or not.
It turns out that, for any reasonable diffusion width, there
always exists such a Fermi momentum that the chiral
restoration phase transition does take place. This recon-
firms our previous conclusions about possible existence of
the confining but chirally symmetric phase. Below the
phase transition, the elementary excitation modes of a
matter are hadrons with broken chiral symmetry, while
above the phase transition, such excitations are chirally
symmetric hadrons.
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