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We study the charmonium spectrum including higher spin and gluonic excitations. We determine an

upper limit on the mixing of the �c ground state with light pseudoscalar flavor-singlet mesons and

investigate the mixing of charmonia near open charm thresholds with pairs of (excited) D and �D mesons.

For charm and light valence quarks and nF ¼ 2 sea quarks, we employ the nonperturbatively improved

Sheikholeslami-Wohlert (clover) action. Excited states are accessed using the variational technique,

starting from a basis of suitably optimized operators. For some aspects of this study, the use of improved

stochastic all-to-all propagators was essential.
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I. INTRODUCTION

During the past decade several new charmonium reso-
nances were discovered, primarily by experiments at the
two B-factories but also by CLEO-c and at the Tevatron.
With BES-III and the LHC collecting data, possible
Super-B factories and the planned PANDA experiment
[1] at the FAIR facility, experimental prospects to study
these states in more detail and to discover further reso-
nances are very promising. For an overview, see e.g.
Refs. [2–8].

Current phenomenological debates focus on the X, Y,
and Z resonances that are close to or above open charm
thresholds. At least four different frameworks have been
suggested to accommodate these states:

(i) Dð�Þ �Dmolecules (or deusons) [8–13], composed of a

charmed meson Dð�Þ and antimeson �D,
(ii) tetraquark states (or baryonia) [14–18] consisting of

diquark-antidiquark pairs, bound by QCD forces,
(iii) �ccg hybrid (or hermaphrodite) states [19–22] con-

sisting of a charm-anticharm quark pair and addi-
tional gluons, and

(iv) a compact �cc core, bound inside a light meson,
hadro-charmonium [23,24].

One example of a molecule or tetraquark candidate is the
Xð3872Þ. The Yð4260Þ can at present be accommodated as
a hybrid or as a hadro-charmonium state while the
Zþð4430Þ (if confirmed) could either be a molecule or
hadro-charmonium.

The new states also pose novel challenges to lattice
simulations. In the case of standard charmonia that can
be classified according to a nonrelativistic quark model, the
sizeable quark mass mc >�, where � denotes a typical
hadronic binding energy, represents the main difficulty:
lattice artifacts, that in our case are of O½ðmcaÞ2�, are
usually not small at currently available lattice spacings a.

In the� case the b quark mass can be integrated out and an
effective field theory, nonrelativistic QCD (NRQCD), si-
mulated on the lattice [25,26]. However, the charm quark
mass mc is not sufficiently large to allow for this. In this
case higher order perturbative or nonperturbative correc-
tions will be sizeable. Therefore, the charm quark needs to
be simulated using a relativistic action.
One would expect observables that are very sensitive to

the massmc to be more strongly affected by lattice artifacts
than those that are insensitive to the precise value of this
mass. Using effective field theory methods like the
Fermilab approach to heavy quarks [27–29] or NRQCD
[30] and potential NRQCD [31,32] some insight can be
gained into this. For instance, charm quark mass effects on
spin-averaged splittings are suppressed by a factor of the
squared average relative velocity of the charm quarks v2.
Momentum exchanges / mcv in turn become relevant for
the fine structure. Finally, lattice spacing effects on deter-
minations of the mass parameter mc from the charmonium
spectrum are not suppressed by any powers of v. This
means that a computation of the spin-averaged spectrum
will be less demanding with respect to the continuum limit
extrapolation than predictions of the fine structure or of the
charm quark mass.
The standard spectroscopy of charmonium states includ-

ing the continuum limit extrapolation is well understood in
the quenched approximation to QCD, see e.g. [33] and
references therein, and several new results including sea
quark flavors exist, on isotropic lattices [29,34–37] as well
as on anisotropic lattices [38] that employ a smaller tem-
poral than spatial resolution at � as, to lessen the severity
of the scale separation mcv >mcv

2.
An accurate reproduction of the charmonium fine struc-

ture in the continuum limit represents an important test of
QCD and of lattice methods. However, taking the contin-
uum limit may be less vital to reproduce qualitative fea-
tures of loosely bound open charm threshold states that
are spatially more extended. In this case, one needs to
consider the mixing of states created by two-quark and*gunnar.bali@ur.de
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by four-quark operators. Some pioneering studies have
already been done, creating states with �cq �qc operators
[39,40], where q denotes a light quark flavor. However,
so far disconnected quark loop diagrams and hence anni-
hilation channels have been neglected. Moreover, lattice
studies of the light quark sector, see e.g. Ref. [41], and of
string breaking in the static limit [42] teach us that these
diagrams and, in particular, mixing between states created
by �cc and �cq �qc operators can be important.

Here we will explore methods needed to systematically
study charmonium threshold states and apply these to
phenomenology. This article is organized as follows. In
Sec. II, we will introduce our methods, namely, the gauge
ensembles that are being used, the smeared operators that
enter our variational analysis, and the all-to-all propagator
techniques. In Sec. III, we present results on standard
charmonium spectroscopy at a finite lattice spacing, em-
ploying two-quark ( �cc) creation operators only. This in-
cludes higher spin and exotic states and provides us with
the improved operators that are needed in Secs. IVand V. In
Sec. IV, we investigate the mixing between �cc and �qq
operators. This will yield an upper limit to the mixing
between the flavor-singlet �c and � mesons that in princi-
ple could have an effect on the S-wave fine structure.
Finally, in Sec. V, we investigate the contribution of four-
quark �cc �qq components to radially excited charmonium
states, before we conclude in Sec. VI. Some preliminary
results were presented at lattice conferences [43–45].

II. SIMULATION DETAILS AND METHODS

A. Gauge configurations

We base our study on nF ¼ 2 configurations of the
QCDSF Collaboration generated using the nonperturba-
tively improved Sheikholeslami-Wohlert (clover)
Fermion action [46] and the Wilson gauge action, provided
by the QCDSF collaboration. Details can be found in
Ref. [47]. The charm quark mass mc is not sufficiently
heavy to allow for a nonrelativistic action with controllable
systematics. Therefore, we use the same action for the
charm quark as for the light sea/valence quarks, with a
well-defined OðaÞ improved continuum limit. Note that
except for the value of the coefficient cSW ¼ cB ¼ cE the
clover action is identical to the version of the Fermilab
heavy quark action used, e.g., in Ref. [29] and our results at
a finite lattice spacing a may be interpreted accordingly.

We list the ensembles that we employ in Table I, to-
gether with an identifier. The lattice spacing is set from the
value r0 � 0:467 fm. With this choice, the nucleon mass
agrees with the experiment when extrapolated to the physi-

cal light pseudoscalar mass1 [47], mPS ¼ mphys
� . The mea-

sured values of r0=a not only depend on the inverse lattice
coupling � but also on the mass parameter �. One can now
decide to define a lattice spacing að�; �Þ or replace this by
a chirally extrapolated að�Þ. After performing a chiral
extrapolation in the sea quark mass, the results of the two
choices obviously should agree for physical observables.
Since in this exploratory study we do not attempt such an
extrapolation, we decide to set the lattice spacing from the
r0=að�; �Þ values, as determined at the investigated sea
quark � parameters.
This leaves us with the charm quark mass as the only

free parameter, which we set by tuning,

m1 �S ¼
1

4
ðm�c

þ 3mJ=�Þ; (1)

to its experimental value of [50], ð3067:8� 0:4Þ MeV.
The ensembles (1) and (2) are used to optimize the

smearing functions. Our study of mixing between the �c

and the light quark �-meson is performed on (1) where the
mass gap between these states is smallest so that one may
expect the biggest effect. For the mixing with threshold
states, ensemble (3) is used because in this case light
D-meson masses are mandatory.

B. The variational method

We extract energy levels En from the decay of two-point
Green functions in Euclidean time,

TABLE I. Identifier (ID), simulation parameters, charm quark �-value (�charm), and the number of analyzed effectively statistically
independent gauge configurations of our runs.

ID � � volume mPS=GeV a=fm L=fm �charm Nconf

(1) 5.20 0.134 20 163 � 32 1.007(2) 0.1145 1.83 0.1163 100

(2) 5.29 0.136 20 243 � 48 0.400(1) 0.0770 1.84 0.1245 130

(3) 5.29 0.136 32 243 � 48 0.280(1) 0.0767 1.84 0.1244 100

1A recent reanalysis yields somewhat different r0=a-values
[48], in particular, at small quark masses. Here we ignore these
developments. Otherwise, we would have to rerun all simula-
tions, readjusting the charm quark mass by �5%, �6% and
þ8%, on ensembles (1), (2) and (3), respectively. However, most
of the charmonium mass is given by 2mca so that only mass
splittings will be affected by such a readjustment. Fortunately,
the spin-averaged splittings were found to be rather insensitive
to the charm quark mass [49] while the main systematics
regarding the fine structure are the unrealistic sea quark content
and the missing continuum limit extrapolation.
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CijðtÞ ¼ hOiðtÞOy
j ð0Þi (2)

¼ X
n�1

vn
i v

n�
j e�Ent; (3)

where vn
i ¼ h0jÔijni. In the case of the clover action link

reflection positivity is violated and so in principle the
above spectral decomposition with positive real energy
eigenvalues only becomes valid for sufficiently large
Euclidean times. In practice for t � a, we do not detect

any violations. Ôy
i are operators creating states of an iso-

spin I, charm number2 C, a given momentum and SOð3Þ 	
Z2ð	Z2Þ JPðCÞ quantum numbers. Note that on the lattice
the infinite dimensional O(3) group is broken down to its
octahedral Oh subgroup of order 48, with only ten (A1, A2,
E, T1, and T2 times parity) irreducible Bosonic represen-
tations. The mapping between the continuum J spins and
these Oh spins is given in Tables II and III.

The expectation value Eq. (2) will depend on the time
difference between creation and destruction of the state so
that for convenience we have set the source time to zero.
Obviously, CijðtÞ ¼ C�

jiðtÞ is Hermitian and in our case we

will use operators with phases so that it is real and positive
definite for t � a. For large times t the exponential decay
of the CijðtÞ entries will be governed by the ground state

energy E1, or, for a momentum p ¼ 0, by the ground state
mass. Because of the translational invariance of the expec-
tation value, it is sufficient to perform this momentum
projection at the sink. We do this for the standard spec-
troscopy so that we only need to generate point-to-all
propagators in this case. Note that we still have the sym-
metry CijðtÞ ¼ CjiðtÞ in the limit of infinite statistics, how-

ever, the statistical errors of CijðtÞ and CjiðtÞ for i � j will

not be of similar sizes. Replacing off-diagonal elements so
that more smearing iterations (see Sec. II C) are applied at
the source than at the (momentum-projected) sink reduces
the statistical errors.

The convergence in Euclidean time of effective masses,

mij;effðtþ a=2Þ ¼ a�1 ln
CijðtÞ

Cijðtþ aÞ ; (4)

towards the ground state mass is affected by the quality of

the ground state overlap ci ¼ jv1
i j2 ¼ jh1jÔy

i j0ij2 of the

operator Ôi. Having many different such operators at our
disposal enables us not only to determine the ground state
energy at small t-values where statistical errors are small
but also allow us to access excited states, using the varia-
tional approach [51–53], also known as the generalized
eigenvalue approach.

We choose a basis of operators Ôi, i ¼ 1; . . . ; N, de-
stroying a color singlet state within a given lattice repre-
sentation. These operators may differ, for example, by their
spatial extents or their Fock structures and they are usually
not mutually orthogonal. These are then used to construct
the correlation matrix Eq. (2). We now solve the symme-
trized eigenvalue problem,

C�1=2ðt0ÞCðtÞC�1=2ðt0Þc nðt; t0Þ ¼ �nðt; t0Þc nðt; t0Þ: (5)

Note that C�1=2ðt0ÞCðtÞC�1=2ðt0Þ ¼ 1 at the normalization
time t ¼ t0: everything is expressed relative to the eigen-
basis of Cðt0Þ. We order �1ðtÞ> �2ðtÞ> 
 
 
> �NðtÞ> 0
at large t. To ensure consistency over jackknife samples, in
the statistical analysis we also monitor the directions of the
eigenvectors. Note that the original nonsymmetrized
definition of Ref. [51] yields the same eigenvalues but
different, nonorthogonal eigenvectors, �nðt; t0Þ ¼
C�ð1=2Þðt0Þc nðt; t0Þ,

C�1ðt0ÞCðtÞ�nðt; t0Þ ¼ �nðt; t0Þ�nðt; t0Þ: (6)

If we choose t0 overly large then excited states will have
died out in Euclidean time and the rank of Cðt0Þ will not be
maximal, within the given statistical errors. For t0 chosen
too small, CðtÞ will receive contributions from more than
theN lowest lying states, resulting in unstable eigenvectors
and eigenvalues. It can be shown that the eigenvalues
behave like [53],

�nðt; t0Þ / e�ðt�t0ÞEn½1þOðe�ðt�t0Þ�EnÞ�; (7)

TABLE III. The ‘‘inverse’’ of Table II. Lattice spins that are
‘‘embedded’’ within each continuum spin.

J Oh rep. dimensions

0 A1 1

1 T1 3

2 E, T2 2þ 3
3 A2, T1, T2 1þ 3þ 3
4 A1, E, T1, T2 1þ 2þ 3þ 3
. . . . . . . . .

TABLE II. Continuum spins that contribute to a given lattice
representation.

irrep. dimension continuum J

A1 1 0,4,. . .
A2 1 3,. . .
E 2 2,4,. . .
T1 3 1,3,4,. . .
T2 3 2,3,4,. . .

2Here we do not consider strangeness, beauty, etc.
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where �En is the energy difference between the energy of
the first state not contained in the operator basis,3 ENþ1 and
En. The correction factor arises from the finite dimension-
ality and nonorthogonality of the operator basis. Ideally
one will aim at a set of operators that dominantly couple to
the first N states and that are as orthogonal as possible to
each other. The eigenvectors, up to the rotation and the
change in the normalization of Eq. (5), approach their
physical counterparts vn of Eq. (3) too, with similar ex-
ponential corrections in Euclidean time [53].

From the eigenvalues we can also define effective en-
ergy levels, or, for p ¼ 0, masses,

mt0
n;effðtþ a=2Þ ¼ a�1 ln

�nðt; t0Þ
�nðtþ a; t0Þ ; (8)

that, for sufficiently large t0 and t > t0, should exhibit
plateaus which we then fit to a constant to obtain the
masses mn.

C. Fermion field smearing

The variational method is the central tool of our analysis.
It needs to be supplied with suitable building blocks in
terms of operators, from which good approximations of the
physical eigenstates can be obtained. The wave functions
of physical eigenstates will not be ultralocal objects and
spatially extended interpolators need to be considered. We
generate such extended operators by applying Wuppertal
smearing [54] to a Fermion field c ,

c ðnÞ
x ¼ 1

1þ 6�

�
c ðn�1Þ

x þ �
X�3

j¼�1

�Ux;jc
ðn�1Þ
xþa|̂

�
: (9)

n ¼ 1; . . . ; nwup counts the iteration number and � > 0 is a

free parameter. The (arbitrary) normalization convention is
chosen to avoid numerical overflows for large iteration
counts nwup. �Ux;j is a gauge covariant transporter, connect-

ing the lattice point x with its spatial neighbor in the
j-direction, xþ a|̂, for instance a gauge link Ux;j. In our

implementation, we used APE smeared [55] links for �Ux;j;

see Sec. II D below. Note that the Wuppertal smearing
operator is gauge covariant. It transforms as a singlet under
Oh, parity and charge transformations, it is Hermitian,
translationally invariant and spin-diagonal.

We can rewrite the above equation by defining a cova-
riant spatial lattice Laplacian,

a2ðr2c Þx ¼ �6c x þ
X�3

j¼�1

�Ux;jc xþa|̂; (10)

to obtain,

c ðnÞ ¼ c ðn�1Þ þ �

1þ 6�
a2r2c ðn�1Þ: (11)

We introduce a fictitious time t ¼ nwup�t,

@c ðtÞ
@t

� c ðtþ �tÞ � c ðtÞ
�t

¼ k
a2

�t
r2c ðtÞ; (12)

where

k ¼ �

1þ 6�
: (13)

The diffusion equation Eq. (12) is formally solved by,

c ðtÞ � ekðt=�tÞa2r2
c ð0Þ: (14)

Starting from a �-source c xð0Þ ¼ �x0 on a free configura-
tion Ux;j ¼ 1, this results in a Gauss packet with the root

mean square (rms) radius of c yc ,

�r

a
¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffi
kt=�t

p
¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1þ 6�

s ffiffiffiffiffiffiffiffiffiffi
nwup

p
: (15)

The diffusion speed is maximal for � ! 1 (k ! 1=6)
while the resulting wave function is more continuumlike
for � ! 0 (k ! 0). As a compromise we choose � ¼ 0:3
(k � 1=9:3).
By adjusting nwup, we can control the overlap of our trial

wave functions with the physical states. Using a point
operator will lead to an effective mass with a significant
curvature at small Euclidean times. A few iterations of
smearing can help to flatten this out, suppressing the over-
lap with high excitations that have many nodes in their
wave functions. Our strategy is to use an operator basis
with a point operator that couples well to excited states, a
narrow operator that couples well to the ground state, and
one operator that is somewhat wider.

0 2 4 6 8 10
t/a

1

1.2

1.4

1.6

1.8

am
ef

f

point
narrow
wide

FIG. 1 (color online). Effective masses of correlation functions
between a point source and point, narrow and wide smeared
sinks.

3At least to first order in perturbation theory. To second order
states with energies � En can contribute as well, at t � t0. In
Ref. [53], it has been shown that these effects are negligible for
t � 2t0. In general the maximum admissible value of t at a given
t0 depends on the underlying spectrum and on the basis of trial
wave functions used.
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In Fig. 1, we display effective masses for the pseudo-
scalar charmonium state, with a �c�5c point source and with
a point as well as with smeared sinks, on ensemble (2); see
Table I. Note that since creation and destruction operators
differ, in the smeared cases the effective masses do not
need to decrease monotonically. We employed nwup ¼ 20

and 80 smearing iterations for the narrow and wide sinks,
respectively. Note that we smeared both quark and anti-
quark fields so that the effective radius of the charmonium

creation operator is by a factor
ffiffiffi
2

p
bigger than the expec-

tation in Eq. (15).

D. Gauge field smearing

It was already suggested in Ref. [54] to replace the
gauge links within Eq. (9) by other covariant transporters

�Ux;j, that depend on spatial links within the given time

slice. The ground state wave function is smooth and so we
may wish to reduce the gauge field fluctuations as well, to
enhance the overlap with low lying states. Following
Ref. [42], we employ spatial APE smearing [55] to the
gauge links that enter the Wuppertal smearing, iteratively
replacing a link by a linear combination of the link and the
sum of the four surrounding spatial staples,

VðnÞ
x;i ¼ Uðn�1Þ

x;i þ 	
X
jjj�i

Uðn�1Þ
x;j Uðn�1Þ

xþa|̂;iU
ðn�1Þy
xþa{̂;j ;

UðnÞ
x;i ¼ PSUð3ÞV

ðnÞ
x;i :

(16)

	> 0 is a weight factor and PSUð3ÞA projects A onto U 2
SUð3Þ so that ReTrðUAyÞ is maximal. This procedure
somewhat deviates from the definition of Ref. [42] but
also preserves gauge covariance.
The spatial plaquette hPsi measures the curvature of the

gauge fields. Maximizing this means a smoother gauge
background. In Fig. 2, 1� hPsi is plotted against the
number of APE smearing iterations on lattices of ensemble
(1) (see Table I) for three values of 	. The approach to
unity depends very little on the gauge configuration or on
the gauge ensemble that we use. We decide to terminate the
APE smearing after nape ¼ 15 iterations, using 	 ¼ 2:5, as

a compromise between gauge field smoothness and the
computer time spent.
APE smearing brings the links close to unity while

preserving the gauge covariance of the Wuppertal smear-
ing. This means that Eq. (15), which is valid for�r � a on
trivial gauge fields, is satisfied with good accuracy. In
Fig. 3, we display a color component after applying nwup ¼
100 smearing iterations to a �-source in Coulomb gauge,
without and with APE smearing. Indeed, the trial wave

0 5 10 15 20 25 30
niter

0.001

0.01

0.1
1 

- 
<

P 
>

s

FIG. 2 (color online). Deviations of the average spatial pla-
quette from unity, against the number of APE smearing iterations
Eq. (16) on a lattice of ensemble (1) for different 	 values.

FIG. 3 (color online). The Wuppertal smearing function (nwup ¼ 100, � ¼ 0:3) with the original gauge links as parallel transporters
(left) and with APE smeared transporters (right).
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function looks smoother and moreover, we obtain the rms
radius expected from Eq. (15).

Note that the APE smeared fields are only used to
improve the operators but not to propagate the quarks.
The inversions of the lattice Dirac operator are performed
on the original gauge configurations.

E. All-to-all propagators

We first introduce the stochastic method to estimate
all-to-all propagators. We then describe the improvement
methods that we employ, namely, staggered spin partition-
ing (SSP) [44], the hopping parameter expansion (HPE)
[56], and recursive noise subtraction (RNS) [44]. We fi-
nally investigate the efficiency of combinations of these
methods for a realistic example. Note that on top of this we
also employ the truncated solver method (TSM) [57,58];
see also Ref. [59], that turns out to be beneficial even for
masses as heavy as that of the charm quark. We restrict its
use to light quark propagators, though.

1. Definitions and basics

We denote the improved lattice Wilson-Dirac operator
by,

M ¼ 1

2�
ð1� �DÞ: (17)

This will depend on the quark mass through �. For each of
the 12�-sources j0; 	; ai at spacetime position 0, spin 	
and color a, we can compute solutions js0;	;ai of the linear
systems,

Mjs0;	;ai ¼ j0; 	; ai: (18)

This defines the point-to-all propagator,

Sðxj0Þba�	 ¼ s0;	;aðx; �; bÞ: (19)

Because of translational invariance of expectation values,
point-to-all propagators are often sufficient to calculate
hadronic two-point Green functions. However, if one had
all-to-all propagators at one’s disposal, one would gain
statistics from self-averaging over different source points.
Moreover, some Wick contractions inevitably lead to dia-
grams containing disconnected quark loops whose evalu-
ations require more than a few source points. Solving the
12 equations Eq. (19) for all V lattice points (in our case,
V ¼ 131 072 and 663 552) instead of for a single x0 ¼ 0 is
prohibitive in terms of computer time and memory.

However, we encounter statistical errors anyway from
the path integral importance sampling in the calculation of
expectation values. Hence, it is sufficient to aim at an
unbiased estimate, which can be obtained using stochastic
methods [60,61]. We introduce the following notation,

�A ¼ �AN :¼ 1

N

XN
j¼1

Aj; (20)

and define random noise vectors j�ji, j ¼ 1; . . . ; N with
components,

�jðx; 	; aÞ ¼ hx; 	; aj�ji 2 1ffiffiffi
2

p ðZ2 	 iZ2Þ: (21)

This complex Z2 noise has the properties,

�j�i N ¼ Oð1= ffiffiffiffi
N

p Þ; (22)

j�ih�j N ¼ 1þOð1= ffiffiffiffi
N

p Þ: (23)

By solving,

Mjsji ¼ j�ji; (24)

for jsji, j ¼ 1; . . . ; N, one can construct an unbiased esti-
mate; see Eq. (23),

M�1
E

:¼ jsih�j � M�1; (25)

M�1
E ¼ M�1 �M�1

�
1� j�ih�j

�
: (26)

1� j�ih�j is an off-diagonal matrix with entries of

Oð1= ffiffiffiffi
N

p Þ. Hence, the difference between the approxima-
tion of Eq. (25) above and the exact result reduces like

1=
ffiffiffiffi
N

p
. When averaging over nconf gauge configuration, the

additional stochastic errors of an estimated observable
reduce like 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nnconf

p
since the estimate is unbiased.

One would like to achieve some sort of balance where
this stochastic error becomes smaller than the unavoidable
gauge error / 1=

ffiffiffiffiffiffiffiffiffiffi
nconf

p
from averaging over the configu-

rations. Since the ratio of these sources of errors is inde-
pendent of nconf , once this is large enough for the central
limit theorem to hold, this optimization can be performed
on a small number of configurations. Depending on the
observable, a large number of estimatesN may be required,
unless the difference Eq. (26) can be reduced. Indeed,
many methods of improving estimates exist, see, e.g. [58]
and references therein.
Below we introduce the improvement methods that we

use in this article.

2. Staggered spin partitioning

One source of large uncertainties of the naı̈ve estimate is
that the noise source vectors have entries on all lattice sites.
The site, where the propagator ends, is surrounded by
components of the source vector that may not contribute
to the signal but that will contribute to the noise. To see this
more clearly, consider the estimation of a propagator
Eqs. (18) and (19) connecting the point x with the point
y [see also Eq. (26)],

SEðyjxÞba�	¼SðyjxÞba�	�
X
z;�;c

SðyjzÞbc��
�
1�j�ih�j

�
ðzjxÞca�	;

(27)
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where only entries with either z � x, � � 	 or c � a give
nonvanishing contributions to the noise sum, see Fig. 4.

Since signals decrease exponentially with Euclidean
distances,

jjSðyjzÞjj 
 e�jy�zj=
; (28)

the source components located in the nearest neighborhood
of y contribute most to the noise4 and thus it is desirable to
reduce or to remove these terms entirely. Likewise, con-
tributions that are off-diagonal in spin or color at y should
be avoided. A brute force way of achieving this is by
‘‘partitioning’’ [62–64]. For the special case of spin parti-
tioning, this is also known as the spin explicit method [63].

Partitioning amounts to decomposing R ¼ V 	
colour 	 spin into m subspaces Rj: R ¼ �m

j¼1Rj. One

can set the source vectors j�i
jji to zero, outside of the

subspace Rj, and label the corresponding solutions as

jsijji. The estimate of the all-to-all propagator is then given

by the sum,

M�1
E ¼ Xm

j¼1

jsjjih�jjj : (29)

Clearly, this results in an m-fold increase of the total
number of solver applications. If the stochastic noise re-
duction exceeds a factor 1=

ffiffiffiffi
m

p
, then this computational

overhead is justified.
Here we utilize spin and color partitioning. So far within

each spin partitioning set the same spinor component was

dialed on every lattice site; see Fig. 5. Depending on the
observable, however, it may be favorable to alter the com-
ponent to be filled within a specific set as a function of the
spacetime position. For heavy quarks, the coupling be-
tween the upper and the lower two components of the
Dirac spinor is small. One may exploit this by separating
in spacetime components that couple strongly, only allow-
ing for weakly coupled components to share a link. We call
such nontrivial spin partitioning schemes staggered spin
partitioning (SSP) [44]. In Fig. 6, we sketch two SSP
versions, off-diagonal SSP (odSSP) and off-block-diagonal
SSP (obdSSP). Figure 7 illustrates the coupling strengths
between the four spinor components. Red lines indicate

y

 x

FIG. 4 (color online). Two-dimensional sketch of a global
noise source. For the propagator from x to y, only the green
(light) line contributes to the signal; the black ones contribute to
the noise.

FIG. 5. Two-dimensional schematic sketch of standard spin
partitioning. The numbers indicate the spinor component filled
at the specific lattice site for set 1 (out of 4).

FIG. 6. Two-dimensional schematic sketch of odSSP (left) and
obdSSP (right). The numbers indicate the spinor component
filled at the specific lattice site for set 1 (out of 4).

FIG. 7 (color online). The coupling strengths between the
spinor components of standard (left), off-diagonal (center), and
off-block-diagonal (right) spin partitionings. Red (dark) indi-
cates a strong (i.e. nearest neighbor) coupling, green (light) a
weak (i.e. next-to-nearest neighbor) coupling.

4This heuristic argument is over-simplistic since S is not a
gauge invariant quantity. However, similar calculations can be
performed for errors of physical observables, with the same
result.
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nearest neighbors (strong coupling) and green lines next-
to-nearest neighbors (weak coupling).

The obdSSP scheme should be particularly well-suited
to heavy quarks. However, this also depends on the dis-
cretization of the Dirac matrix and on the �- and
derivative-structure of the creation operators. Hence, pre-
dicting the efficiency of a specific scheme is difficult. An
object frequently appearing in this work is the pseudosca-
lar loop Trð�5M

�1Þ. In our spinor representation, �5 is
diagonal so that the naı̈ve picture presented above may
apply. For other, nondiagonal �-structures, different SSP
schemes may be more effective. The picture becomes
further obscured since within all the partitioning schemes
there will be residual couplings between different color
components on the same site too. Fortunately, these terms
are suppressed by the fact that SðyjyÞ will be quite color-
diagonal, in particular, in the heavy quark limit. We also
investigate combinations of (S)SP and color partitioning.

3. Hopping parameter expansion

We have seen above that stochastic noise components
that are close to the diagonal of the inverse Fermionic
matrix M�1 are accompanied by larger amplitudes than
terms that are far off the diagonal. Therefore, the cancella-
tion of near-diagonal noise requires a comparatively larger
number of estimates. The HPE noise subtraction [56] is
based on the observation that one can expand, see Eq. (17),

M�1 ¼ 2�
X1
i¼0

ð�DÞi ¼ 2�
Xk�1

i¼0

ð�DÞi þ ð�DÞkM�1; (30)

where k � 1. For distances between source and sink that
are composed of more than k links, the first term on the
right-hand side does not contribute since D only connects
nearest spacetime neighbors. Therefore, M�1

xy ¼
½ð�DÞkM�1�xy for sufficiently large source and sink sepa-

rations. However, their estimates will differ, M�1
E;xy �

½ð�DÞkM�1
E �xy. The variance of the latter estimate of M�1

xy

will be reduced since less noise terms contribute and, in
particular, the dominant sources of noise have been re-
moved. This was for instance exploited in Refs. [42,65].

We illustrate the HPE technique in Fig. 8: one applica-
tion of �D reduces the blue contributions, two applications
the green ones, three applications the yellow ones, and so
forth. However, note that unlike in the case of partitioning,
these are not completely removed since they can propagate
along a longer path to reach the sink, weakening their
effect. It is self-evident that the HPE will be particularly
effective for heavy quarks.

Here we also study closed loops, i.e. x ¼ y. Obviously,
only even powers ofD contribute to TrðM�1�Þ, where � 2
f1; ��; ��
; ���5; �5g. We can write, TrðM�1�Þ ¼
�kTrðDkM�1�Þ for k � kmax. For � ¼ �5 and � ¼ �i for
the clover action, kmax ¼ 2. Moreover, the lowest nonvan-
ishing terms have been calculated analytically and can be

computed and corrected for exactly (unbiased noise sub-
traction) [56,66–68]. Here we do not attempt to do this but
we restrict ourselves to k ¼ 2 instead.
The HPE comes with very little computational overhead

and, unlike in the case of partitioning, no additional solves
are required.

4. Recursive noise subtraction

Within the RNS method [44], the off-diagonal terms of
Eq. (26) are estimated and subsequently corrected for,

M�1 ¼ jsih�j þM�1

�
1� j�ih�j

�

� jsih�j þ jsih�j
�
1� j�ih�j

�
; (31)

in the hope to arrive at an improved estimate. The second
term of the last line of the above equation involves addi-
tional inner products h�ij�ji. For i � j, these fluctuate

randomly, but we sum over 12V � N2 such terms, where
N is the number of estimates. Clearly, the procedure can
only work if this inner product is taken over a smaller
subspace. Therefore, we compute the random matrix

j�ih�j only in the spin- color subspace, setting all elements
connecting different sites to zero.
In Fig. 9, we display the correlation between the two

terms of Eq. (31) for the pseudoscalar loop TrðM�1�5Þ.
Since the two quantities are anticorrelated, adding them
together reduces the statistical error. So far we have as-
sumed the coefficient of the second term of Eq. (31) to be
unity. However, realizing that this term is an unbiased
estimate of zero, one can generalize this method, e.g. by
allowing for an adjustable coefficient. Moreover, different

terms involving powers of 1� j�ih�j and/or a different

y

 x

FIG. 8 (color online). Two-dimensional sketch of the effect of
HPE. y indicates the sink and x an arbitrary source site. One
application of �D reduces the blue (dark), two applications the
green (medium dark), and three applications the yellow (light)
contributions to the noise.
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subspace where this matrix assumes nontrivial values
could be implemented. However, we have not explored
these possibilities any further.

5. Comparison of methods

We will apply the methods presented so far, to calculate
disconnected quark loop contributions to the charmonium
spectroscopy. An important example is the correlation of
two zero-momentum-projected disconnected loops, e.g.,X

x;y

hTr½ð�M�1�Þyy�5�Tr½ð�M�1�Þxx�5�i; (32)

for the �c mass where y4 ¼ x4 þ t. � ¼ �y denotes a
Wuppertal smearing function and the traces are over spin
and color. Note that the above traces are real, due toMy ¼
�5M�5. We also remark that we used two separate sets of
noise vectors to estimate the two traces, as one has to do.
To compare the methods, we choose t ¼ a and nwup ¼ 10

on ensemble (1).
The improvements in terms of the real computer time

spent to achieve the same stochastic error are displayed in
Table IV for different combinations of methods. All over-

heads are included, except for the (negligible) cost of the
two �D applications. k denotes the power of �D applied to
the solution vector. The biggest net gain factor amounts to
almost 12. Based on these numbers, we decide to use the
obdSSP and color partitioning, together with the HPE for
this type of diagram.

III. THE SPECTRUM

In this section, we calculate the spectrum created by �cc
quark bilinears, neglecting charm quark annihilation and
light quark creation diagrams. We first discuss our operator
basis and then the spectroscopy results. The variational
method also reveals information about the spatial structure
of the underlying states. We will discuss this as well as the
mixing between S- and D-wave operators in the JPC ¼
1�� vector channel.

A. Extraction of masses

The operators that we employ to create the charmonium
states are based on Ref. [69]. We restrict ourselves to the
subset of these operators for which we are able to obtain
meaningful signals. These are displayed in Table V, to-
gether with their irreducible lattice representations and the
corresponding lowest continuum spin assignments; see
Table II. These assignments are, of course, not unique.
For instance, a radial T1 excitation can, in the continuum
limit, very well correspond to J ¼ 3 or J ¼ 4; see
Table III. We label the operators by the names of the
corresponding isovector mesons (which in nature are no
charge eigenstates) since we are most familiar with these.
Note that in the nonrelativistic quark model,

P ¼ ð�ÞLþ1; C ¼ ð�ÞLþS; (33)

where S 2 f0; 1g and J 2 fLþ S; L; jL� Sjg. The states
that cannot be accommodated in this way, namely
0��; 0þ�; 1�þ; 2þ�; 3�þ; . . . , are commonly referred to

-0.02 -0.01 0 0.01 0.02

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

FIG. 9. Scatter plot for the RNS; see Eq. (31) for the pseudo-
scalar loop.

TABLE IV. Gain factors of the noise reduction methods tested
for the pseudoscalar disconnected correlator Eq. (32) at the
charm quark mass. k denotes the number of �D applications.

k 0 2

no partitioning 1 2.89

spin 1.43 6.32

color 1.80 5.06

spinþ color 2.52 10.24

odSSP 2.30 5.42

obdSSP 1.97 7.16

obdSSPþ color 3.63 11.80

RNS 1.87 5.44

TABLE V. Quark bilinears that we use (sijk ¼ j�ijkj, also see
Eq. (34)).

name Oh repr. JPC state operator

� A1 0�þ �c �5

� T1 1�� J=� �i

b1 T1 1þ� hc �i�j

a0 A1 0þþ �c0 1

a1 T1 1þþ �c1 �5�i

ð��rÞT2
T2 2þþ �c2 sijk�jrk

ð��DÞT2
T2 2�þ �4�5Di

ða1 �rÞT2
T2 2�� �5sijk�jrk

ð��DÞA2
A2 3�� �iDi

ðb1 �DÞA2
A2 3þ� �4�5�iDi

ða1 �DÞA2
A2 3þþ �5�iDi

ða1 � BÞT2
T2 2þ� exotic �5sijk�jBk

ðb1 �rÞT1
T1 1�þ exotic �4�5�ijk�jrk
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as ‘‘spin-exotic’’ states. As one can see from the 1�þ
example of Table V, these exotic states do not need to be
tetraquarks/molecules or hybrid mesons. With relativistic
quarks, local bilinears are not restricted to 0�þ and 1��
anymore but e.g. 1þ� can be created with L ¼ 0. In this
case, the ‘‘exotic’’ 1�þ state is merely a 1þ� quark bilinear
in a P-wave. We also remark that, in QCD with finite quark
masses, L is not a good quantum number. However, it may
still provide us with some guidance if the quarks are heavy.
We will address this issue in Sec. III D below.

In Table V, r represents a covariant spatial derivative
and D and B the symmetrized and antisymmetrized com-
binations,

Di ¼ sijkrjrk; Bi ¼ �ijkrjrk; (34)

with sijk ¼ j�ijkj, and we sum over j and k. All operators

containing a covariant derivative implicitly also include
gluonic contributions but then any P- or D-wave will
include derivatives and one would hardly call these hybrid
mesons. However, the Bi-operators not only contain the
vector potential, but they are proportional to components
of the field strength tensor itself. This is as close to a
valence gluon as one can get. A strong coupling of a
physical state to this operator may then indicate a large
hybrid meson content. The 1�þ charmonium is considered
a prime hybrid candidate. However, we find the operators

�ijk�jBk (T1 representation, not listed in the Table) to be

very noisy, with no compelling evidence of a coupling to
the ground state created by b1 �r.
For each operator listed in the table, we construct a

three-by-three cross-correlator matrix, see Sec. II B, with
different smearing levels, see Sec. II C. We apply the same
smearing to quark and antiquark. The smearing parameters
have been optimized for several states as described in
Sec. II C, so that point-smeared effective masses are rela-
tively constant for the narrow operator and approach their
asymptotic values from below for the wide operator. We
only consider the two lowest lying masses reliable since
the highest state contained in the basis may be polluted by
even higher excitations. In Ref. [70], a similar approach
was used to calculate the spectra of excited states in the
quenched approximation.

B. Discussion of the results

We display effective masses for ensemble (1) (see
Table I), obtained after diagonalizing the correlation ma-
trices at the normalization time t0; see Eq. (5), for some of
the channels in Fig. 10. Only the lowest two masses are
fitted and the fit ranges are indicated by the blue lines. The
extracted mass values, together with these fit ranges,
are displayed in Table VI. In this table, we also assign
the lowest possible continuum spin to each channel. Note,
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FIG. 10 (color online). Effective masses for some operators of Table V obtained on ensemble (1). The fit ranges and errors are
indicated by horizontal lines. The t0 values (in lattice units) refer to the respective normalization times Eq. (5).

GUNNAR S. BALI, SARA COLLINS, AND CHRISTIAN EHMANN PHYSICAL REVIEW D 84, 094506 (2011)

094506-10



however, that radial excitations of both J ¼ 1 ( ¼ T1) and
J ¼ 2 ( ¼ T2) states could in principle correspond to
J ¼ 3. In particular, this possibility cannot be excluded
for the excitations of the T1 states that we have labeled as
1þ� and 1þþ and for the T2 state labeled as 2þþ.

The ground states and first excitations of the standard S-
and P-wave states �c, J=�, hc, and �cJ exhibit good
signals and stable plateaus. The effective masses of higher
spin states are naturally noisier and thus complicate the
fits.

A particularly interesting channel is the 1�þ. Although
this is a spin-exotic state, it can be well-accessed by the
b1 �r operator that does not contain an explicit chromo-
magnetic field. However, r contains a link variable and
may allow for a gluonic excitation. The quality of the
effective masses arising from the b1 �r operator is not
high, but the fit yields reasonable errors. The two lowest
lying states are very close. In fact, within their errors the
effective masses are overlapping so that in the statistical
analysis it was necessary to sort the jackknifes according to
the proximity of the eigenvectors to the ones obtained on
the original ensemble. This may hint at a hybrid nature of
this channel. Static hybrid potentials are repulsive at short
distances so that, within a potential model, we may expect
smaller energy gaps between radial excitations [71–73].

The computed spectrum is displayed in Fig. 11, together
with the experimental values.5 We have used the spin-
averaged 1 �S mass Eq. (1) to fix the charm quark mass.
The other states are predictions. Note, however, that we
underestimated m1 �S by about 15 MeV. The main effect of
this is that all the predictions should be shifted up by
15 MeV. Keeping this in mind, we observe all spin-

averaged states below threshold coming out in qualitative
agreement with the experimental data [50]. We indicate the
experimental D �D and D �D�� open charm thresholds as
horizontal lines. Negative parity states cannot decay into
D �D and the D �D�� threshold is believed to play a more
prominent rôle in the decay of hybrid mesons than D �D�.
The spin-averaged 1 �P-1 �S splitting is underestimated,

relative to experiment while the 2 �S-1 �S splitting comes
out right. There may be issues with the scale setting, due
to the unrealistic sea quark content. We have also remarked
in Sec. II A above that there are reasons to believe [48] that
the lattice spacing should be set to a�1 � 1:81 GeV rather
than to the a�1 � 1:72 GeV that we used. This change
would bring the 1 �P-1 �S splitting in line with experiment but

TABLE VI. Fitted masses obtained on ensemble 1 for the first two eigenvalues in each channel. The normalization time t0 and the
corresponding fit ranges are also given. The errors are only statistical and we give the lowest continuum JPC from which the lattice
representation can be subduced.

operator JPC t0=a m1= MeV range m2=MeV range

� 0�þ 1 2993 (4) 5–12 3645 (19) 1–8

� 1�� 1 3070 (6) 7–12 3699 (24) 1–7

b1 1þ� 2 3457 (22) 2–7 4060 (65) 1–5

a0 0þþ 2 3381 (19) 4–12 3996 (48) 1–5

a1 1þþ 2 3462 (20) 3–11 4011 (52) 1–5

ð��rÞT2
2þþ 1 3471 (19) 1–6 3917 (46) 1–6

ð��DÞT2
2�þ 1 3756 (32) 1–9 3995(141) 1–6

ða1 �rÞT2
2�� 2 3706 (27) 1–10 4076 (83) 1–6

ð��DÞA2
3�� 1 3782 (35) 1–8 4815 (92) 1–6

ðb1�DÞA2
3þ� 1 3995 (50) 2–6 5365 (76) 1–3

ða1 �DÞA2
3þþ 2 3993 (54) 1–5 5008(287) 1–4

ðb1 �rÞT1
1�þ 1 4154 (54) 1–5 4297(181) 1–4

ða1� BÞT2
2þ� 1 4614(220) 1–9 4643(254) 1–8
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FIG. 11 (color online). The predicted spectrum, together with
the experimental values on ensemble (1); see Table I.

5In some cases, their JPC assignment is still under debate. For
instance, for the Xð3872Þ that we list as a 1þþ state, a 2�þ
assignment is not ruled out.
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result in an overestimated 2 �S mass. This, in turn, could
then be due to a combination of finite size effects and
interferences with the D �D threshold in nature that do not
occur on our ensemble, due to the heavy sea quark mass.

From potential NRQCD one would, to leading nontrivial
order in 1=mc, expect the S-wave fine structure to be
determined by the matrix element [74,75],

c2F
3m2

c

h�jV4ðrÞj�i; (35)

where to leading order in perturbative QCD,

V4ðrÞ ¼ 32�

3
	s�

3ðrÞ: (36)

� is the nonrelativistic charmonium wave function, 	s the
strong coupling parameter and cF ¼ 1þOð	sÞ is a
matching coefficient that has only recently been deter-
mined in lattice schemes [76].

This illustrates the very short-distance nature of the
S-wave fine structure that should be affected significantly
both by lattice spacing effects and by differences in the
running of the coupling depending on the sea quark con-
tent. It is also very sensitive to the charm quark mass.
Reducing this by 5% would increase the splitting by
10%. So it is not surprising that we underestimate the
experimental number of 117 MeV for the 1S fine structure
splitting. We obtain �m1S ¼ mJ=� �m�c

¼ 77ð2Þ MeV

on ensemble (1), �m1S ¼ 88ð4Þ MeV on ensemble (2),
and �m1S ¼ 130ð9Þ MeV on ensemble (3). Indeed, with
lighter sea quark masses, this value increases.

For the 2S fine structure splitting, we obtain �m2S ¼
m�ð2SÞ �m�0

c
¼ 54ð6Þ MeV on ensemble (1) and �m2S ¼

56ð8Þ MeV on ensemble6 (2), in agreement with the ex-
perimental value of 49(4) MeV. In view of the disagree-
ment of the 1S splitting, this is quite surprising since one
would have expected a lot of the systematics to cancel from
the ratio of the 2S hyperfine splitting over the 1S splitting;
see Eq. (35). We may therefore wonder whether either the
physical �c or the �ð2SÞ states are unusually low, due to
contributions from quark line disconnected diagrams. In
the first case, our neglection of �cc annihilation diagrams
may be relevant while in the second case omitting �qq
creation (and the use of unphysically heavy light quark
masses) would be the dominant effect(s); see Secs. IV and
V below, respectively.

We remark that we also underestimate the P-wave fine
structure. This is expected too and again mostly due to
lattice spacing effects and an unrealistic sea quark content.
We also notice that, in our approximation where the open
charm thresholds are much higher than in nature, the
Zð3934Þ (recently renamed into �c2ð2PÞ [50]) may indeed
be associated with the �0

c2 state while the Xð3872Þ certainly

is lighter than one would have expected from an excited
P-wave. However, in the first case, we cannot exclude the
possibility that we have misidentified a 3þþ state as 2þþ,
in particular, since this comes out lighter than the other two
�0
c multiplet masses. Finally, the proximity of the two 1�þ

states as well as of the two 2þ� states may indicate a
hybrid nature of these spin-exotic charmonia. We have
not detected such indications in any of the other channels.
With the exception of the A2 (J ¼ 3), in these cases the
radial excitations are lower in energy than these spin-exotic
states.

C. ‘‘Wave functions’’

In Sec. II B, we have introduced couplings between an

operator Ôi, i ¼ 1; . . . ; N, and a physical state jni, vn
i ¼

h0jÔijni. These will be approximated, up to a rotation and
normalization; see below, by the c nðt; t0Þ of Eq. (5). We
employ the normalization,

P
ijc n

i ðt; t0Þj2 ¼ 1. In the pseu-
doscalar channel, our operators read,

Ôi ¼
X
x;y

�cðyÞ�iðy � xÞ�5cðxÞ: (37)

Here �i denotes the square of the Wuppertal smearing
operator, Eq. (9), since we apply this to quark and anti-
quark fields. �i is translationally invariant and will only
depend on the difference y � x.
We employ aN ¼ 4 dimensional trial basis consisting of

nwup ¼ 0, 5, 10, and 40 iterations. This means that the �i

contain twice these numbers of iterations. Folding these
smearing functions with the asymptotic eigenvectors re-
sults in a new smearing function,

�nðxÞ ¼ X
i

c n
i
~�iðxÞ; (38)

where

~�i ¼ 1

di

X
j

�jUji: (39)

U 2 SOðNÞ diagonalizes Cðt0Þ and dj > 0 are the square

roots of its eigenvalues,

½C�1=2ðt0ÞCðtÞC�1=2ðt0Þ�ij ¼
½UyCðtÞU�ij

didj
; (40)

see Eq. (5). In particular, this means that the operators

constructed from ~�j, ~̂Oj [see Eq. (37)] create states that

are orthonormal at7 t ¼ t0: h ~Oiðt0Þ ~Oy
j ð0Þi ¼ �ij. Also note

that if we neglect the coupling of the operator Ôi to states
with energies bigger than EN , di / expð�Eit0=2Þ.

6On ensemble (3), where the radial excitations are seriously
affected by the finite volume, we get �m2S ¼ 177ð66Þ MeV.

7If corrections from truncating the basis can be neglected
for t0 ¼ 0 (which is unlikely) then, at this t0, c

n
i ! vn

i at large
times t.
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If we had perfect overlap with the respective physical
states, then we could choose t0 ¼ t ¼ 0. In this case, in the
nonrelativistic limit, where we do not encounter particle-
antiparticle creation, one may identify j�nyðxÞ�nðxÞjwith
the quantum mechanical probability density. On a qualita-
tive level, we may still think of�nðxÞ as the wave function
of the nth state. The used ensemble (1) is unfortunately too
coarse to resolve the node structure of the gauge invariant
j�ny�nj. However, one can also plot a diagonal color
component of �nðxÞ, after fixing to Coulomb gauge. In
fact, the APE smeared gauge links are so close to unity that
it is hard to resolve the differences between Coulomb
gauge fixing and a nongauge fixed component from a plot.

In Fig. 12, we show a two-dimensional cross section of
one color component of the normalized wave functions
�nðxÞ, n ¼ 1, 2, 3. In spite of the small basis and lattice
volume, the node structure is consistent with the 1S, 2S,
and 3S assignments, with no visible pollution from higher
Fock states or D-waves. For the 1S ‘‘wave function’’ we

obtain an rms radius, �r ¼ hrirms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Vr
2j�j2

q
� 0:39

fm. This compares reasonably well with the infinite vol-
ume continuum potential model expectation of about
0.4 fm [49].

D. Mixing in the vector channel

Because of its direct production in electron-positron
annihilation, the vector channel is rich in experimentally
confirmed resonances, as can be seen in Fig. 11. Of great
interest is the inner structure of these states, in particular, of
the �ð2SÞ and the �ð3770Þ states, which have a mass
difference of only about 90 MeV and both are close to
theD �D open charm threshold. While J=� is dominated by
1S quark-antiquark configurations, its excitations may ex-
hibit a more complex structure.

As the name suggests, the�ð2SÞ is thought to be a radial
excitation. Since �ð3770Þ is so close in mass, it is very
improbable that it is excited in a further, higher radial
vibration mode. One possibility, which we investigate
here, is an orbital excitation where the quark-antiquark
pair is in a relative D-wave. We start from an operator
basis consisting of three S-wave and two D-wave interpo-
lators,

ð �c�icÞ0; ð �c�icÞ20; ð �c�icÞ80;
ð �csijk�jDkcÞ0; ð �csijk�jDkcÞ80; (41)

where Dk is defined in Eq. (34) and sijk ¼ j�ijkj. The
subscripts denote the numbers of smearing iterations,
both for the quark and antiquark. Initially, we planned to
include hybrid operators like �c�5Bic into our basis but
unfortunately these provided very poor signals throughout,
independent of the smearing levels.

This mixing analysis is performed on ensemble (2); see
Table I, with t0 ¼ 3a. We display the lowest four effective
masses in Fig. 13. Indeed, the second and third eigenvalues

FIG. 12 (color online). The 1S, 2S, and 3S pseudoscalar wave
functions.
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lie very close. The fourth eigenvalue may be identified with
the �ð4040Þ.

The eigenvector components reveal the overlaps be-
tween the trial operators and the physical eigenstates.
The correlation matrix that is real in our case has the
normalization ambiguity CijðtÞ � eiejCijðtÞ, where i ¼
1; . . . ; N and N is the dimension of the operator basis.
One convenient choice is Ciið0Þ ¼ 1. The orthogonal trans-
formation U that diagonalizes the correlation matrix at the
time t0 and the eigenvalues at this time d2i of Eq. (40)
depend on this initial normalization of CðtÞ. Following the
discussion of Secs. II B and III C, see Eqs. (5) and (40), we
can define effective overlaps,

vn
i ðt; t0Þ ¼

�X
k

�
c n

k

dk

�
2
��1=2X

j

Uij

c n
j ðt; t0Þ
dj

; (42)

that in the limit t0 � 0, t � t0 will approach vn
i ¼

h0jÔijni, up to an overall factor. The effective overlaps
do not depend on the normalization choices ei of CijðtÞ.
Our normalization

P
ijvn

i ðt; t0Þj2 ¼ 1 also impliesP
njvn

i ðt; t0Þj2 ¼ 1, which is equivalent to ignoring any
effects of higher lying states. In Figs. 14–16, we display
the first three vn

i ðt; t0 ¼ 3aÞ.
As one would expect the ground state, the J=�, does not

receive any contributions from the two D-wave operators.
Interestingly, the second eigenstate, that is energetically
very close to the third one (in fact for most t-values we can
only differentiate between these states by tracing their
eigenvector components), does not ‘‘see’’ any D-wave
operators either. We remark that at the t-values where these
second and third energy eigenvalues differ from each other
we encounter more ‘‘mobility’’ of the eigenvector compo-
nents; see Figs. 13, 15, and 16. Note the relative sign
change in the case of the first excitation between the
local/narrow and the wide operators, resulting in a node
of the spatial wave function, similar to the 2S state of
Fig. 12. This strongly suggests a �ð2SÞ assignment for
this state. Conversely, the third eigenvalue only couples to
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FIG. 13 (color online). Effective masses of the four lowest
lying states in the vector channel on ensemble (2).
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FIG. 15 (color online). Components of the second 1��
eigenvector.
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FIG. 14 (color online). Components of the first 1�� eigenvec-
tor; see Eq. (42).
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FIG. 16 (color online). Components of the third 1��
eigenvector.

GUNNAR S. BALI, SARA COLLINS, AND CHRISTIAN EHMANN PHYSICAL REVIEW D 84, 094506 (2011)

094506-14



the wide smeared D-wave operator, which obviously
leaves it as a candidate for the �ð3770Þ. These results
compare reasonably well with the ones of Ref. [70]. We
conclude that the charm quark is sufficiently heavy for S-
andD-waves to undergo only very mild mixing. So, at least
for charmonia of masses below 3.8 GeV, it is meaningful to
label states by their angular momenta. However, we have
not yet considered the effect of open charm thresholds. We
will address this question in Sec. V below.

IV. MIXING BETWEEN THE �c AND THE
LIGHT � MESON

Charmonia are flavor-singlet states, however, so far we
have neglected the charm quark annihilation diagram that
arises from Wick contracting the correlation function,
h½ �c�c�ðtÞ½ �c�c�yð0Þi. The inclusion of quark line discon-
nected diagrams may affect charmonium masses. In par-
ticular, the proximity of the mass of the �c meson to that of
the pseudoscalar glueball, which may propagate as an
intermediate state after �cc annihilation, may have some
effect [77]. This glueball mass was consistently determined
in simulations of pure gauge theories on isotropic lattices
to be [78] ð2630� 290Þ MeV and on anisotropic lattices
as8 [79] ð2637� 26Þ MeV. We also know that the light
quark analogue of the �c, the �0 meson is much heavier
than the light octet pseudoscalar mesons, due to the UAð1Þ
anomaly. Naturally, chiral symmetry will not play a promi-
nent role for charm quarks. However, this does not exclude
a remnant effect of the vacuum topology that may lift the
�c mass by a few MeV.

First, calculations of the disconnected contribution both
with nF ¼ 2 sea quarks and in the quenched approximation
are consistent with no mass shift of the �c mass [80,81],
within statistical errors of about 20 MeV. More recently, in
the quenched approximation the �c mass was estimated to
increase by 1–2 MeV [82] due to disconnected diagrams
and, including sea quarks, this effect may become
1–4 MeV [82].

Naturally, when sea quarks are included both physical
eigenstates, the �c and the �0, will contain light as well as
charm valence quarks. The charm-anticharm component
will be dominant within the �c while the �0 will almost
exclusively contain light quarks. In our case, we employ
nF ¼ 2 sea quarks and therefore an isosinglet � state
assumes the role of the �0. In addition, we have an iso-
vector � triplet, instead of the octet. When the discon-
nected quark loop is included then, at large Euclidean
times, the �c state will decay to the ground state in the
JPC ¼ 0�þ channel, which is the � meson. The physical
�c will only appear within the tower of excitations of this
ground state. Following Ref. [42], we call this effect ‘‘im-
plicit’’ mixing: the �c�5c state already intrinsically contains

a �q�5q contribution. However, one would expect the cou-
pling of the �c�5c creation operator to this state to be very
weak. Otherwise, charmonia would not be stable in nature
either. This means that we can treat this as a perturbation.
We decompose the physical Hamiltonian H ¼ H0 þ
�H1 þ 
 
 
 , into a part H0 with9 �cc and �qq eigenstates,
without pair creation. The small perturbation �H1 is then
responsible for the mixing. Neglecting radial, gluonic, or
multiquark excitations, the physical �c wave function of
this two-state system reads, to first order in the small
parameter �,

j�ci ¼ j �cci þ �
h �qqjH1j �cci
E �cc � E �qq

j �qqi: (43)

While we do not know the functional form of H1 or of the
unperturbed wave functions, we can evaluate all the rele-
vant matrix elements on the lattice. Figure 17 depicts the
graph responsible for this mixing to lowest order in per-
turbative QCD.
Obviously, the mixing will depend on the light quark

mass value mq. With decreasing mq, the denominator of

Eq. (43) will become larger. However, we would also
expect the matrix element in the numerator to increase
since the probability of creating a light quark-antiquark
pair may increase with decreasing quark mass. Thus,
ideally one would realize several light quark masses to
clarify this issue.
Similar to our investigation of mixing in the vector

channel of Sec. III D, we also calculate a correlation matrix
here. We choose the basis states,

ð �c�5cÞ0; ð �c�5cÞ10 ð �c�5cÞ80;
ð �q�5qÞ0; ð �q�5qÞ5 ð �q�5qÞ40; (44)

where the subscripts denote the number of Wuppertal
smearing iterations. The diagonalization of this matrix at
large times will not only allow us to extract the energy
levels, but it will also provide us with qualitative informa-
tion on the charm and light quark content of the physical
states. In Fig. 18, we sketch the structure of the mixing
matrix between the �cc and �qq sectors, omitting the differ-
ent smearing levels. Red lines represent charm quark
propagators and blue lines light quark propagators. The

FIG. 17 (color online). The lowest order perturbative QCD
graph responsible for the mixing between �c�5c and �q�5q states.
The red lines correspond to charm quarks, the black ones to light
quarks, the twiddly ones to gluons.

8We converted the numbers into units of r0 ¼ 0:467 fm and
ignore the uncertainty in this scale setting. 9We omit the � structure for convenience.

CHARMONIUM SPECTROSCOPY AND MIXING WITH LIGHT . . . PHYSICAL REVIEW D 84, 094506 (2011)

094506-15



prefactors are due to the nF ¼ 2mass degenerate sea quark
flavors. The upper left corner contains the �cc sector, the
lower right corner the �qq sector. The off-diagonal elements
quantify the mixing.

Note that already in the pure charmonium sector implicit
mixing will occur, due to intermediate light quark loops in
the disconnected part; see Fig. 19, or even intermediate
glueball states. If the explicit mixing encoded in the Oð�Þ
off-diagonal elements of the mixing matrix is small, then
we will not be able to resolve the Oð�2Þ decay of �cc states
into states dominated by �qq within any sensible Euclidean
time distances. This further justifies and motivates our
mixing matrix approach.

Our strategy is as follows. We first determine the eigen-
values and eigenstates of the three by three submatrices
within each of the flavor sectors, separately, in order to
obtain an ‘‘unperturbed’’ approximation to the spectrum.
We will then compare the spectrum and the eigenvector
components of this reference point to the situation with the
mixing elements switched on.

The all-to-all propagator estimates for both, the charm
and light disconnected loops have been improved by HPE,
obdSSP and color partitioning, see Sec. II E. For the light
quark propagators, in addition the TSM [57,58] with nt ¼
25 has been applied. We analyze ensemble (1), see Table I,
with a pseudoscalar mass of about 1 GeV. At this heavy
mass, we find an �-� mass splitting of only 52(13) MeV.
Within the diagonal three-by-three submatrices, we find
the disconnected charmonium loops to be very noisy. Since
the statistical errors are bigger than the expected splitting
of a few MeV, we ignore these contributions. If we were to

detect significant off-diagonal contributions to the full
correlation matrix, then of course we would have to revisit
this issue at a later stage.
The masses of the light � meson and of its first radial

excitation10 �0 can be extracted from the largest two
eigenvalues of the submatrix containing the light quark
creation and annihilation operators while the �c and �0

c

masses can be approximated from the �cc sector. We find a
diagonalization of the full six-by-six matrix to be numeri-
cally unstable and hence restrict ourselves to the basis of
the states ð �c�5cÞ10, ð �c�5cÞ80, ð �q�5qÞ5, and ð �q�5qÞ40 for our
subsequent full-fledged mixing analysis.
In Fig. 20, we display the effective masses of the �, �0,

�c, and �0
c states, with the off-diagonal matrix elements

switched off (squares). These are compared to the lowest
three effective masses obtained from the four-by-four ma-
trix with the mixing switched on, as explained above. We
shift the latter effective masses slightly to the right. No
relevant deviations can be seen.
The mixing can be studied in more detail by investigat-

ing the respective effective eigenvector components that
are defined in Eq. (42) where U diagonalizes Cðt0Þ that has
the eigenvalues d2i . We display these effective overlaps for
the ground state � meson in Fig. 21 and for the �c in
Fig. 22. The fitted components are displayed in Table VII.
Indeed, the � does not receive any statistically relevant �cc
contribution and vice versa. The summed probability to
find the � meson in a state that can be created by the �cc
operators amounts to ð4� 25Þ 
 10�4 and to find the�c in a
state created by �qq to ð4� 22Þ 
 10�4. These tiny upper
limits on possible mixing effects also render a relevant
coupling of the �c state to the pseudoscalar glueball ex-
tremely unlikely since this glueball can appear as an inter-
mediate state in diagrams of the type depicted in Fig. 17.

FIG. 18 (color online). Correlation matrix for the mixing be-
tween states created by �c�5c and by �q�5q operators. Red (gray)
lines represent charm quarks, black lines light quarks.

FIG. 19 (color online). The lowest order perturbative QCD
graph responsible for implicit mixing between states created
by �c�5c and by �q�5q operators.
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FIG. 20 (color online). Effective masses from the eigenvalues
of the full matrix. As a reference point, the effective masses from
the (unmixed) submatrices are plotted too (black squares).

10This should not be confused with the pseudoscalar flavor-
singlet meson in the nF ¼ 2þ 1 theory.
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Obviously, the energy shift from explicitly admitting �cc
annihilation and light quark creation cannot significantly
differ from zero either. We find a mass difference,mmixed

�c
�

munmixed
�c

¼ 11ð24Þ MeV. After this demonstration of the

feasibility of such studies, we wish to further reduce the
statistical errors and to vary the light quark mass in the near
future. We address contributions from higher Fock states
that may be relevant, e.g. for the �0

c state in the following
section.

V. MIXING BETWEEN �cc AND D �D MOLECULAR
OR TETRAQUARK STATES

Charmonia can decay into pairs of (excited) D and �D
mesons if their masses are above the allowed decay thresh-
olds. Charmonia near these thresholds may, however, also
contain significant Fock admixtures of D �D molecules, see
e.g. Ref. [83], or of �c �qqc tetraquarks. We will study these
effects in three different JPC channels, 0�þ, 1��, and 1þþ.
The first two channels are interesting with respect to the
experimental overpopulation of the vector channel and the
fact that the�ð2SÞ-�0

c fine structure splitting is very small,
compared to that of the ground states; see the discussion of
Secs. III B and IV above. The 1þþ is phenomenologically
relevant to disentangle the nature of the Xð3872Þ state.
We will address the question of higher Fock state con-

tributions to the spectrum by creating and destroying states
employing both, the �cc operators corresponding to �c,
J=�, and �c1 charmonia as well as the four-quark opera-
tors corresponding to D1

�D� in J ¼ 0, D1
�D, and D� �D

molecules, respectively. The analysis method is exactly
the same as outlined in Sec. IV. However, in the present
situation, the dependence of the mixing strength of Eq. (43)
(replacing �cc � �cq �qc, �qq � �cc) on the light quark mass
is evident: again, with decreasing light quark masses the
numerator is likely to increase, however, the denominator
will decrease as the energy gaps between open charm states
and the first radial charmonium excitations become
smaller. Therefore, we analyze ensemble (3) (see Table I)
that, with a light pseudoscalar mass of about 280 MeV, is
closest to the physical point. Note that, with the product
mPSL � 2:6, this L � 1:84 fm lattice is quite small so that,
in particular, for radial excitations we may expect signifi-
cant finite size effects.
We start from a six-dimensional operator basis contain-

ing three �cc and three molecular interpolators, differing by
their Wuppertal smearing levels. We label these as p(oint),
n(arrow), and w(ide). The generic form of the meson
operators centered at the spacetime position x reads,

Mx ¼ ð �c�McÞx; (45)

where for readability we omit the smearing functions.
Within the molecular operators, we allow for a spatial
separation r,

YxðrÞ ¼ 1ffiffiffi
2

p ½ð �q�1
YcÞxð �c�2

YqÞxþr

þ ð�Þsð �c�1
YqÞxð �q�2

YcÞxþr�: (46)

The � structures and s 2 N0 values for the states of interest
are displayed in Table VIII; see also Ref. [84]. Note that in
this exploratory study we restrict ourselves to operators
with molecular contractions and ignore the possibility of
arranging the quarks into tetraquarklike �c �q and qc
diquark-antidiquark structures.
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FIG. 21 (color online). Eigenvector components of � in the
full basis.
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FIG. 22 (color online). Eigenvector components of �c in the
full basis.

TABLE VII. Fitted eigenvector components of the � and �c

states from the diagonalization of the full matrix.

ðc �cÞ10 ðc �cÞ80 ðq �qÞ5 ðq �qÞ40
� �0:017ð37Þ 0.009(63) �0:806ð1Þ 0.591(9)

�c 0.333(30) 0.943(11) 0.000(41) 0.021(47)
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In Fig. 23, we sketch the structure of the mixing matrix.
The different smearing levels are again omitted for clarity.
Red lines represent charm quark propagators and blue lines
light quark propagators. The prefactors are due to the
nF ¼ 2 mass degenerate light sea quark flavors. The upper
left corner contains the �cc, the lower right corner the
molecular sector. The off-diagonal elements encode ex-
plicit mixing. In our calculation, we omit the charm anni-
hilation diagrams of the second lines within each of the
correlation matrix sectors; based on our experience of
Sec. IV above, we deem these numerically irrelevant. A
similar matrix was constructed, e.g. in Refs. [41,85] in
order to investigate the � meson decay width and light
tetraquark states, respectively. Note that all the depicted
diagrams that include light quark propagators include more
than one quark line contraction since for r � 0 Eq. (46)
contains two terms.

The spatial separation within the molecular operators
was tuned to maximize the correlation function of the
molecular sector. This led us to employ the on-axis sepa-
ration r ¼ 4a � 0:3 fm. After some experiments, we de-
cided to employ point-to-all propagators for all diagrams,
with the exception of the top right diagram within the
molecule-to-molecule sector; see Fig. 23. This necessitates
to implement a light all-to-all propagator at the sink. For
this purpose, we generated the equivalent of 100 complex
Z2 stochastic estimates, employing the obdSSP, HPE, and
TSM methods.

We first diagonalize the submatrices separately within
the �cc and molecular sectors to obtain a reference spec-
trum. This provides us with up to four reliable eigenvalues,
two within each sector. However, the excited molecular
channels are quite noisy so that in these cases we are only
able to extract acceptable plateaus for the ground states.
The remaining three states within each of the JPC channels
are plotted in Fig. 24. Next to the isospin11 I ¼ 0molecular
masses we also display the sums of the masses of the
corresponding individualD and anti-Dmesons. The result-
ing masses are also displayed in Table IX where the errors
are statistical only. Because of the finite volume, the radi-
ally excited S-wave states are significantly higher than the
corresponding experimental masses and the excited
P-wave suffers even more from this effect, being by almost
1 GeV heavier than the corresponding D� �D molecule that
is already heavier than in the real world due to the unphysi-
cally large light quark mass.
Within errors of about 30 MeV, we do not find any

significant mass differences between molecules and their
open charm constituent mesons in the pseudoscalar and
vector channels. Of particular interest is the mass of the
1þþ molecule that is by almost 200 MeV heavier than the
Xð3872Þ. However, this can easily be attributed to the light
quark mass since the light pseudoscalar is still by 140 MeV
heavier than the physical one. We find a significant binding
of this axialvector molecule, mD� �D � ðmD� þmDÞ ¼
88ð26Þ MeV. There will be some volume and light quark
mass dependence of this value that needs to be studied.
Note that this binding energy is much bigger than the mass
differences between the experimental Xð3872Þ of a fraction
of an MeV with respect to electrically neutral open charm
states and of a few MeV with respect to charged D and D�

TABLE VIII. � structures of meson and molecule interpolat-
ing fields; see Eqs. (45) and (46).

JPC �M �1
Y �2

Y s

0�þ �5 �i �i�5 0

1�� �i �5 �i�5 1

1þþ �i�5 �5 �i 1
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− 2
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FIG. 23 (color online). Correlation matrix for the mixing of
charmonia with D �D molecules. Red (dark) lines represent charm
quark propagators, blue (light) lines light quarks.
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FIG. 24 (color online). Mass spectrum from separately diago-
nalizing the submatrices within the different sectors. The right
points for the D �D states correspond to the sums of noninteract-
ing D mesons, the left points to interacting I ¼ 0 D, and �D
mesons.

11Note that the I ¼ 1 channel has been studied by Liu [86].
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mesons. However, on a qualitative level, the increased
attraction deserves some attention.

We base our fully fledged mixing study on a four-by-
four submatrix with the operator basisMp,Mn, Yp, and Yn.

The normalization time is t0 ¼ 2a for all channels. We
start the discussion with the vector state and display the
resulting lowest two effective masses, together with the
unmixed reference masses in Fig. 25. The corresponding
effective overlaps Eq. (42) are plotted in Fig. 26 for the
J=� and in Fig. 27 for the D1

�D molecule. The J=�
receives the dominant contributions from the �cc sector.
However, the molecular configurations contribute signifi-
cantly too. In contrast, the D1

�D state only contains a small
(but nonvanishing) �cc admixture. This is very similar to the
observation of Ref. [42] that the ground state potential
between two static sources Q and �Q receives a significant
light quark contribution also for distances much smaller
than the string breaking distance while its �Qq �qQ excitation
contains almost no �QQ component. We obtain the same
qualitative picture for the pseudoscalar.

For the axialvector, the situation is different. We display
the mixed and unmixed effective masses in Fig. 28. Note
that in this case the mixed D� �D mass slightly increases,
relative to the unmixed result. The corresponding effective
overlaps are displayed in Figs. 29–31. The fitted results on
the operator overlaps are summarized in Table X. The
relative probability of creating the �c1 by a four-quark
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FIG. 26 (color online). Eigenvector components of J=� in the
full basis.
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FIG. 25 (color online). Effective masses from the eigenvalues
of the full matrix in the 1�� channel. As a reference point, the
effective masses from the submatrices are plotted too (black
symbols).

TABLE IX. Mass spectrum in MeV, neglecting the mixing
between the two- and four-quark sectors.

JPC ¼ 0�þ 1�� 1þþ

�cc ground state 3045 (8) 3175(10) 3660 (40)

�cc first excitation 3991(46) 4168(67) 5043(120)

Dð1Þ þ �Dð�Þ 4848(39) 4715(39) 4152 (38)

Dð1Þ �Dð�Þ molecule 4822(23) 4712(23) 4064 (28)
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FIG. 27 (color online). Eigenvector components of D �D1 in the
full basis.

t/a
2 3 4 5 6 7 8 9 10 11 12

0

0,5

1

1,5

2

2,5

3

am
ef

f

1000

2000

3000

4000

5000

6000

7000

FIG. 28 (color online). Effective masses of the eigenvalues of
the full matrix in the 1þþ channel. As a reference point, the
effective masses from the submatrices are plotted too (black
symbols).
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operator is 0.29(5). For the first excitation that we identify
as a D� �D molecule, it is 0.53(7), and for the �0

c1, it is 0.36
(10): all these states appear to undergo strong mixing.
This casts doubt onto the validity of the mixing model

Eq. (43). Setting this problem aside for the moment, we
define unmixed �c1 wave functions, projecting onto the �cc
components of the space spanned by our operator basis,

j�c1iun ¼ d�c1

ð �ccÞp jð �ccÞpi þ d�c1

ð �ccÞn jð �ccÞni; (47)

and similarly for the excitation, �0
c1, while for the D� �D

state we can define the projection onto its four-quark
components, jD� �Diun. Of physical interest are the overlaps
between these idealized unmixed states and the respective
physical states. These can be obtained by computing,

hD� �Dj�c1iun ¼ d�c1

ð �ccÞpd
D� �D
ð �ccÞp þ d�c1

ð �ccÞnd
D� �D
ð �ccÞn : (48)

The resulting probabilities read as follows,

jhD� �Dj�c1iunj2 ¼ 0:01ð1Þ;
jh�c1jD� �Diunj2 ¼ 0:01ð1Þ;
jh�0

c1j�c1iunj2 ¼ jh�c1j�0
c1iunj2 ¼ 0:01ð1Þ;

jhD� �Dj�0
c1iunj2 ¼ 0:22ð5Þ;

jh�c1jD� �Diunj2 ¼ 0:41ð7Þ

(49)

while for the normalizations we obtain,

jh�c1j�c1iunj2 ¼ 0:47ð7Þ;
jhD� �DjD� �Diunj2 ¼ 0:30ð6Þ;

jh�0
c1j�0

c1iunj2 ¼ 0:34ð5Þ:
(50)

Because of cancellations, the ground state axialvector
charmonium does not actively participate in the mixing
while the radial excitation and the molecular state strongly
mix with each other. However, the truncation of the mixing
model atOð�Þ is only justifiable on a qualitative level, as is
obvious from jh�c1j�c1iunj2 < 1.

VI. SUMMARYAND OUTLOOK

We introduced the tools necessary to study the mixing of
standard charmonium states with states created by four-
quark operators and with light quark flavor-singlet states.
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FIG. 30 (color online). Eigenvector components of D �D� in the
full basis.
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FIG. 31 (color online). Eigenvector components of �0
c1 in the

full basis.
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FIG. 29 (color online). Eigenvector components of �c1 in the
full basis.

TABLE X. Eigenvector components in the full basis.

ð �ccÞp ð �ccÞn ð �cq �qcÞp ð �cq �qcÞn
�c 0.87 (5) �0:03ð2Þ �0:02ð1Þ �0:50ð7Þ
D1

�D� 0.14 (2) 0.02(2) �0:95ð15Þ 0.29 (4)

J=� 0.91 (7) �0:05ð2Þ 0.16 (2) 0.38(11)

D1
�D 0.14(11) 0.07 (2) �0:32ð2Þ 0.93 (8)

�c1 0.41 (4) 0.72 (3) �0:23ð3Þ �0:51ð4Þ
D �D� 0.63 (4) �0:23ð3Þ �0:73ð4Þ 0.12 (3)

�0
c1 �0:55ð6Þ 0.53 (5) �0:49ð5Þ 0.41 (6)
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Of particular importance was the use of the variational
generalized eigenvalue method as well as of improved
stochastic all-to-all propagator methods. We introduced
the staggered spin partitioning (SSP) and the recursive
noise subtraction (RNS) methods (see also Ref. [44]). We
also made use of the hopping parameter expansion (HPE)
subtraction method [56] and of the truncated solver method
(TSM) [57,58].

Our spin-averaged charmonium spectrum agrees fairly
well with the experimental data. However, due to our
unphysically heavy sea quark masses with light pseudo-
scalar masses ranging from 1 GeV down to 280 MeV, due
to the fact that we are simulating with nF ¼ 2 sea quarks
only, and possibly due to the use of somewhat coarse lattice
spacings of a � 0:115 fm and a � 0:077 fm, we signifi-
cantly underestimate fine structure splittings. The ratio of
the 2S fine structure splitting over the 1S splitting from
which we expect some of the systematics to cancel comes
out significantly larger than in experiment. One reason may
be a distortion of the radial excitations due to their prox-
imity to open charm thresholds, which lie higher in our
simulations than in the real world.

The lowest spin-exotic state is a 1�þ vector with a mass
of 4.15(5) GeV where the error is statistical only. The next
highest such state can be found at 4.61(22) GeV with
quantum numbers 2þ�. We interpret the small mass dif-
ferences that we find with respect to radial excitations in
these sectors as evidence of a charm-anticharm-gluon hy-
brid nature of these states. In other JPC sectors, we do not
see such evidence. At least for masses below 3.8 GeV, we
do not detect any mixing between S- and D-waves, indi-
cating that L is a relatively good quantum number for this
mass range. This conclusion is also supported by examin-
ing the spatial structure of the optimized creation operators
that we employ.

We realize that, to exclude mass shifts that are due to the
flavor-singlet nature of charmonium states, it is not suffi-
cient just to incorporate quark line disconnected charm
annihilation diagrams, but that we also have to consider
mixing with light flavor-singlet states. However, within
errors of less than one per mille, we do not detect any light
quark contributions to charmonium wave functions and

vice versa. Moreover, within statistical errors of 24 MeV,
we do not find any significant mass shift: mmixed

�c
�

munmixed
�c

¼ 11ð24Þ MeV. Clearly, in future studies we

will aim at reducing this error.
We then moved on to investigate the binding between

pairs of D and anti-D mesons in the pseudoscalar, vector,
and axialvector sectors. Only the axialvector channel was
clearly attractive, however, we emphasize that the volume
scaling still needs to be investigated for definite conclu-
sions. Subsequently, the mixing between isoscalar charmo-
nium states created by two- and four-quark operators was
investigated.Within the vector and pseudoscalar sector, at a
light quarkmass value that is 4 times as large as the physical
one, these effects exist, but they are small. However, in the
axialvector channel, the state that is dominated by the radial
charmonium excitation strongly couples to the D� �D mo-
lecular state and vice versa. This is very interesting in view
of the nature of the experimental Xð3872Þ state.
We plan to apply the methods that we developed and

tested here in high precision studies of charmonium states
with nF ¼ 2þ 1 sea quarks of different masses on various
volumes and lattice spacings, within a large collaboration.
First results of these systematic investigations were pre-
sented at the Lattice 2011 conference [37].
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[37] P. Pérez-Rubio et al., Proc. Sci., LATTICE2011 (2011)
135 [arXiv:1108.6147].

[38] S.M. Ryan (Hadron Spectrum Collaboration), Proc. Sci.,
LATTICE2010 (2010) 124.

[39] T.-W. Chiu and T.-H. Hsieh (TWQCD Collaboration),
Phys. Rev. D 73, 094510 (2006).

[40] T.-W. Chiu and T.-H. Hsieh (TWQCD Collaboration),
Phys. Lett. B 646, 95 (2007).
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