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We study numerically the SU(2) Landau gauge transverse and longitudinal gluon propagators at

nonzero temperatures T both in confinement and deconfinement phases. Special attention is paid to the

Gribov copy effects in the IR region. Applying a powerful gauge fixing algorithm, we find that the Gribov

copy effects for the transverse propagator DTðpÞ are very strong in the infrared, while the longitudinal

propagator DLðpÞ shows very weak (if any) Gribov copy dependence. The value DTð0Þ tends to decrease

with growing lattice size; however, DTð0Þ is nonzero in the infinite volume limit, in disagreement with the

suggestion made in [I. Zahed and D. Zwanziger, Phys. Rev. D 61, 037501 (2000).]. We show that in the

infrared region, DTðpÞ is not consistent with the pole-type formula not only in the deconfinement phase

but also for T < Tc. We introduce a new definition of the magnetic infrared mass scale (‘‘magnetic

screening mass’’) mM. The electric mass mE has been determined from the momentum space longitudinal

gluon propagator. We study also the (finite) volume and temperature dependence of the propagators as

well as discretization errors.
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I. INTRODUCTION

One of the most interesting features of the quantum
chromodynamics at finite temperature is the transition
from the confinement to the deconfinement phase. This
transition separates a low-temperature phase, which is ex-
pected to be highly nonperturbative and characterized by
quark and gluon confinement, from a high-temperature—
quark-gluon plasma (QGP)—phase, where color charges
should be deconfined. The conjecture of the existence of the
QGP has been supported by recent observations of the
collective effects in ultrarelativistic heavy-ion collisions
at SPS and RHIC (see, e.g., [1] and references therein).

The nonperturbative—first principle—calculation of
gauge variant gluon (as well as ghost) propagators is of
interest for various reasons. These propagators are ex-
pected to show different behavior in each phase and, there-
fore, to serve as useful ’order parameters’, detecting the
phase transition point Tc. One expects that their study can
shed the light on the mechanism of the confinement-
deconfinement transition. Another reason is that for the
reliable phenomenological analysis of high-energy heavy-
ion collision data, it is important to obtain information on
the momentum dependence of the longitudinal (electric)
gluon propagator DLðpÞ and transverse (magnetic) gluon
propagator DTðpÞ, especially in the (deep) infrared region.
One example is the study of the radiative energy loss in
dense nuclear matter ( jet quenching) which results from
the energy loss of high-energy partons moving through the

plasma (see, e.g., [2–6]). Also, the nonperturbatively cal-
culated lattice propagators are to be used to check the
correctness of various analytical methods in QCD, e.g.,
the Dyson-Schwinger equations (DSE) method. For study
of the gluon propagator using the DSE approach at finite
temperature, see e.g. [7–9].
The lattice study of the finite temperature SU(2) gluon

propagators in Landau gauge has been performed in a
number of papers (see, e.g., [9–14]).1

In Ref. [12], the electric and magnetic propagators were
studied in both coordinate and momentum spaces and in
four and three dimensions. The conclusion was made that
the magnetic propagator had a complicated infrared be-
havior which was not compatible with simple pole mass
behavior. It was also found that this propagator had strong
volume and gauge dependence. In Refs. [9,14], results for
both gluon and ghost propagators in momentum space
were presented, but some important questions, e.g.
Gribov copies effects, infrared behavior and scaling were
not addressed.
In paper [17], it has been suggested that the proximity

of the Gribov horizon at finite temperature forces the
transverse gluon propagator DTð ~p; p4 ¼ 0Þ to vanish
at zero three-momentum. If this is the case, then the

1Interesting and rather unexpected results for the lattice size
dependence ofDL in the close vicinity of Tc have been presented
in Refs. [15,16] after the archive version of this paper has
appeared. We believe that these results are still to be confirmed.
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finite-temperature analog of the Gribov formula
j ~pj2=ðj ~pj4 þM4

MÞ � 1=ðj ~pj2 þm2
effð ~pÞÞ suggests that the

effectivemagnetic screening massmeffð ~pÞ becomes infinite
in the infrared (interpreted as a magnetic gluons
’’’confinement’’).

The Gribov copy effects still remain one of the most
serious problems in the lattice calculations, at least, in the
deep IR region. In our study, we employ the gauge condition
which requires the Landau gauge-fixing functional F (see
the definition in Sec. II) to take extrema as close as possible
to theglobal extremum. This choice for the gauge condition
is supported by the following facts: a) a consistent non-
perturbative gauge fixing procedure proposed byParrinello-
Jona-Lasinio and Zwanziger (PJLZ approach) [18,19] pre-
sumes that the choice of a unique representative of the
gauge orbit should be through the global extremum of the
chosen gauge fixing functional; b) in the case of pure gauge
U(1) theory in theweak coupling (Coulomb) phase, some of
the gauge copies produce a photon propagator with a decay
behavior inconsistent with the expected zero mass behavior
[20–22]. The choice of the global extremum permits to
obtain the physical—massless—photon propagator.

In a series of papers [23–27], we investigated the Gribov
copy effects in the Landau gauge gluon (and/or ghost)
propagators in zero-temperature SU(2) gluodynamics. It
has been demonstrated unambiguously that these effects
are strong in the infrared.2 Thus the Gribov copy effects
reduction is very important for the infrared behavior stud-
ies. Recently it has been pointed out in Ref. [28] that lattice
results for the infrared gluon and ghost propagators free of
Gribov copy effects would help to discriminate between
scaling and decoupling solutions of the Dyson-Schwinger
equations. In this paper, we undertake a careful study of the
Gribov copy effects in the Landau gauge gluon propagator
at finite temperature.We employ the gauge fixing procedure
whichwe used recently in our study at zero temperature [27]
with changes dictated by nonzero temperature (see Sec. III).

We also attempt to make a careful analysis of (finite)
volume and temperature dependence ofDT andDL, as well
as of scaling violations.

Section II contains main definitions as well as some
details of the simulations and gauge fixing procedure we
use. Section III is dedicated to the study of the Gribov copy
effects. Volume and temperature dependence of the propa-
gators as well as discretization errors are discussed in
Sec. IV. Section V is dedicated to the discussion of the
screening masses and Sec. VI is reserved for conclusions
and discussion.

II. GLUON PROPAGATORS: THE DEFINITIONS

We study the SU(2) lattice gauge theory with the stan-
dard Wilson action

S ¼ �
X
x

X
�>�

�
1� 1

2
TrðUx�Uxþ�;�U

y
xþ�;�U

y
x�Þ

�
;

where � ¼ 4=g20 and g0 is a bare coupling constant. The

link variables Ux� 2 SUð2Þ transform under gauge trans-

formations gx as follows:

Ux� �g Ug
x� ¼ gyxUx�gxþ�; gx 2 SUð2Þ: (1)

Our calculations were performed on the asymmetric latti-
ces with lattice volume V ¼ L4 � L3

s , where L4 is the
number of sites in the fourth direction. The temperature
T is given by

T ¼ 1

aL4

; (2)

where a is the lattice spacing. We employ the standard
definition of the lattice gauge vector potential Axþ�̂=2;�

[29]:

A xþ�̂=2;� ¼ 1

2i
ðUx� �Uy

x�Þ � Aa
xþ�̂=2;�

�a

2
: (3)

The Landau gauge-fixing condition is

ð@AÞx ¼
X4
�¼1

ðAxþ�̂=2;� �Ax��̂=2;�Þ ¼ 0; (4)

which is equivalent to finding an extremum of the gauge
functional

FUðgÞ ¼ 1

4V

X
x�

1

2
TrUg

x�; (5)

with respect to gauge transformations gx. After replacing
U ) Ug at the extremum the gauge condition (4) is
satisfied.
The (unrenormalized) gluon propagator Dab

��ðpÞ is de-

fined as follows:

Dab
��ðpÞ ¼ a2

g20
h ~Aa

�ðkÞ ~Ab
�ð�kÞi;

where ~AðkÞ represents the Fourier transform of the gauge
potentials defined in Eq. (3) after having fixed the gauge,
ki 2 ð�Ls=2; Ls=2� and k4 2 ð�L4=2; L4=2�. The physi-
cal momenta p� are given by api ¼ 2 sinð�ki=LsÞ, ap4 ¼
2 sinð�k4=L4Þ.
In what follows, we consider only soft modes p4 ¼ 0.

The hard modes (p4 � 0) have an effective thermal mass
2�Tk4 and behave like massive particles.3

As is well known, on the asymmetric lattice there are
two tensor structures for the gluon propagator [30]:

Dab
��ðpÞ ¼ �abðPT

��ðpÞDTðpÞ þ PL
��ðpÞDLðpÞÞ; (6)

2Unfortunately, authors of [14] cite our paper [24] in a
completely misleading context.

3Let us note that the fourth Euclidian component p4 � 0 has
no physical meaning.
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where (symmetric) orthogonal projectors PT;L
�� ðpÞ are de-

fined at p ¼ ð ~p � 0;p4 ¼ 0Þ as follows:

PT
ijðpÞ ¼

�
�ij �

pipj

~p2

�
; PT

�4ðpÞ ¼ 0; (7)

PL
44ðpÞ ¼ 1; PL

�iðpÞ ¼ 0: (8)

Therefore, two scalar propagators—longitudinal DLðpÞ
and transverse DTðpÞ—are given by

DTðpÞ ¼ 1

6

X3
a¼1

X3
i¼1

Daa
ii ðpÞ; DLðpÞ ¼ 1

3

X3
a¼1

Daa
44 ðpÞ;

(9)

For ~p ¼ 0, propagators DTð0Þ and DLð0Þ are defined as
follows:

DTð0Þ ¼ 1

9

X3
a¼1

X3
i¼1

Daa
ii ð0Þ; DLð0Þ ¼ 1

3

X3
a¼1

Daa
00 ð0Þ:

(10)

The transverse propagator DTðpÞ is associated to the
magnetic sector, and the longitudinal one DLðpÞ—to the
electric sector.

We define the renormalized propagators DT
renðpÞ and

DL
renðpÞ in such a way that their dressing functions are

equal to unity at the normalization point � ¼ 2 Gev. In
the rest of this paper, we will omit the subscript ‘‘ren’’;
therefore, DTðpÞ and DLðpÞ will denote transverse and
longitudinal renormalized propagators, respectively.

We generated ensembles of up to 2000 independent
Monte Carlo lattice field configurations. Consecutive

configurations (considered as independent) were separated
by 100 (for Ls < 32) or 200 (for Ls � 32) sweeps, each
sweep being of one local heatbath update followed by Ls=2
microcanonical updates. In Table I, we provide the full
information about the field ensembles used throughout this
paper.
In order to keep finite-volume effects under control, we

considered a few different lattice volumes for each tem-
perature. The choice of the 6� 483 lattice at � ¼ 2:635 is
important for the check of the scaling behavior (see
Sec. IV).
For gauge fixing, we employ the Zð2Þ flip operation as

has been proposed in [25]. It consists of flipping all link
variables Ux� attached and orthogonal to a 3D plane by

multiplying them with �1.
Such global flips are equivalent to nonperiodic gauge

transformations and represent an exact symmetry of the
pure gauge action. The Polyakov loops in the direction of
the chosen links and averaged over the 3D plane obviously
change their sign. At finite temperature, we apply flips only
to directions � ¼ 1, 2, 3. In the deconfinement phase,
where the Zð2Þ symmetry is broken, the Zð2Þ sector of
the Polyakov loop in the � ¼ 4 direction has to be chosen
since on large enough volumes all lattice configurations
belong to the same sector, i.e. there are no flips between
sectors. We choose sector with positive Polyakov loop. In
the confinement phase, one may use a flip in the � ¼ 4
direction. However, in a test run we have found that at
� ¼ 2:26 studied in this paper the maximal gauge fixing
functional (5) has been found in the positive Polyakov loop
sector in more than 90% of cases. To save computer time,
we stick to this sector for all configurations at this �.

TABLE I. Values of �, lattice sizes, temperatures, number of measurements, and number of gauge copies used throughout this paper.
To fix the scale, we take

ffiffiffiffi
�

p ¼ 440 MeV.

� a�1[Gev] a [fm] L4 Ls T=Tc Nmeas Ncopy

2.260 1.073 0.184 4 40 0.9 800 40

2.260 1.073 0.184 4 48 0.9 800 40

2.300 1.192 0.165 4 26 1.0 1200 24

2.300 1.192 0.165 4 40 1.0 300 40

2.300 1.192 0.165 4 48 1.0 400 40

2.350 1.416 0.139 4 16 1.1 2000 24

2.350 1.416 0.139 4 20 1.1 2000 24

2.350 1.416 0.139 4 26 1.1 1200 24

2.350 1.416 0.139 4 32 1.1 800 40

2.350 1.416 0.139 4 40 1.1 800 40

2.350 1.416 0.139 4 48 1.1 800 40

2.512 2.397 0.082 4 20 2.0 2000 24

2.512 2.397 0.082 4 32 2.0 800 40

2.512 2.397 0.082 4 40 2.0 800 40

2.512 2.397 0.082 4 48 2.0 800 40

2.635 3.596 0.055 6 40 2.0 800 40

2.635 3.596 0.055 6 48 2.0 800 40
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Therefore, in our study the flip operations combine for
each lattice field configuration the 23 distinct gauge orbits
(or Polyakov loop sectors) of strictly periodic gauge trans-
formations into one larger gauge orbit.

Following Ref. [27] in what follows, we call the com-
bined algorithm employing simulated annealing (SA) al-
gorithm (with finalizing overrelaxation) and Zð2Þ flips the
‘‘FSA’’ algorithm. For every configuration, the Landau
gauge was fixed Ncopy ¼ 24ð40Þ times (3ð5Þ gauge copies

for every flip sector) on lattices with Ls � 26ðLs � 32Þ,
each time starting from a random gauge transformation of
the mother configuration, obtaining in this way Ncopy

Landau gauge-fixed copies. We take the copy with maxi-
mal value of the functional (5) as our best estimator of the
global maximum and denote it as best (bc) copy. In order to
demonstrate the Gribov copy effect, we compare this with
the results obtained from the randomly chosen first (fc)
copy. Other details of our gauge-fixing procedure are de-
scribed in our recent papers [25–27]

To suppress ‘‘geometrical’’ lattice artifacts, we have
applied the ‘‘�-cut’’ [31], i.e. �ki=Ls < �, for every com-
ponent, in order to keep close to a linear behavior of the
lattice momenta pi � ð2�kiÞ=ðaLsÞ, ki 2 ð�Ls=2; Ls=2�.
We have chosen � ¼ 0:5. Obviously, this cut influences
large momenta only. We did not employ the cylinder cut in
this work.

III. GRIBOV COPY EFFECTS AND LARGE Ls

BEHAVIOR OF DTð0Þ
As has been already pointed above, the Gribov copy

problem still remains acute, at least, in the deep infrared
region and the choice of the efficient gauge fixing method
is very important. The importance of this choice is dem-
onstrated in Fig. 1 taken from our recent paper [27]. In this
figure, we compare our bc FSA results for the bare gluon
propagator DðpÞ calculated on a 444 lattice with those of

the standard fc OR method obtained for an 804 lattice and
also with the fc SA results. In particular, we observe that
the OR method with one gauge copy produces completely
unreliable results for the range of momenta jpj &
0:7 GeV. (The detailed discussion can be found in [27].)
Let us define the normalized difference of the fc and bc

transverse propagators �TðpÞ:

�TðpÞ ¼ Dfc
T ðpÞ �Dbc

T ðpÞ
Dbc

T ðpÞ ; (11)

where the numerator has been obtained by averaging over
all configurations of the difference between fc and bc
transverse propagators calculated for every configuration,
this average being normalized to the bc (averaged) trans-
verse propagator. In a similar way, one can define also the
normalized difference of the fc and bc longitudinal propa-
gators �LðpÞ.
The longitudinal propagators DLðpÞ demonstrate very

weak dependence on the choice of Gribov copy. In Fig. 2,
we show the momentum dependence of �LðpÞ on the
4� 483 lattice at � ¼ 2:35, 2.512 and � ¼ 2:26, i.e. at
temperatures both above and below transition. One can see
that values of �LðpÞ are consistent with zero for all
�-values shown in the figure. This was observed on all
other lattices employed in our study.
In contrast, the Gribov copy dependence of the trans-

verse propagator is rather strong. In Fig. 3 we show the
momentum dependence of �TðpÞ on various lattices at
� ¼ 2:35 (T=Tc ¼ 1:1). One can see that for fixed physical
momentum p, the effect of Gribov copies tends to decrease
with increasing volume. Such behavior is in agreement
with the absence of the Gribov copy effects (within
Gribov region) in the infinite volume limit, suggested by
Zwanziger [32]. On the other hand, on given lattice there
are always three or four minimal values of momentum for
which these effects are substantial. In particular, �TðpÞ
varies between 0.35 and 0.55 for p ¼ 0, between 0.09 and

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

|p|;  Gev
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D
(p

);
  G

ev
-2

80
4
;  OR;    fc

80
4
;   SA;    fc

44
4
;   FSA;  bc

β=2.3β=2.3

FIG. 1. Comparison of data obtained for bc FSA gauge fixing
with those obtained with the standard fc OR method and the fc
SA algorithm (this figure from paper [27]).
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3

FIG. 2. The momentum dependence of �LðpÞ for three tem-
peratures.
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0.12 for jpj ¼ pmin � ð2=aÞ sinð�=LsÞ and between 0.03
and 0.04 for momentum next after pmin. Similar observa-
tions were made at zero temperature as well [27].

In Fig. 4, we show the parameter �TðpÞ for two tem-
peratures, T=Tc ¼ 1:1 and T=Tc ¼ 2, on lattices with ap-
proximately equal physical volumes. One can see that there
is rather weak (if any) dependence of the Gribov copy
effects on the temperature T.

The comparison of the results for �TðpÞ obtained on
lattices 4� 323 at � ¼ 2:512 and 6� 483 at � ¼ 2:635
(both corresponding to the same temperature T=Tc ¼ 2
and the same physical volume) shows that the Gribov
copy effects depend weakly on the lattice spacing a.

Let us note that results for �TðpÞ discussed above are
obtained with the gauge-fixing algorithm we have chosen,
i.e., FSA. The value of �TðpÞ will be essentially higher if
one uses the OR algorithm to compute the fc propagator

Dfc
T ðpÞ.
In Fig. 5, we show the 1=aLs dependence and Gribov

copy sensitivity of the zero-momentum transverse propa-

gatorDTð0Þ in the deconfinement phase (for T ¼ 1:1Tc and
for T ¼ 2Tc). The difference between bc values (filled
symbols) and fc values (open symbols) is rather big, as
has been already discussed above. However, with increas-

ing size Ls the values of D
bc
T ð0Þ and Dfc

T ð0Þ demonstrate a
tendency to decrease; moreover, our data, especially for

T ¼ 2Tc, suggest that D
bc
T ð0Þ and Dfc

T ð0Þ seem to (slowly)
converge in the limit Ls ! 1. This convergence is again in
accordance with a conjecture made by Zwanziger in [32]
and in accordance with the zero-temperature case studied
numerically in [24,27].
On the other hand, our data also suggest that DTð0Þ is

nonzero in the infinite volume limit for both values of T, in
disagreement with the suggestion made in [17]. There is no
indication for a vanishing transverse propagator at zero
momentum for increasing volume, similar to the situation
for the zero-temperature case [24,27]. This is in agreement
with the refined Gribov-Zwanziger formalism [33,34].
Let us note that one still cannot exclude that there are

even more efficient gauge fixing methods, superior to the
one we use, which could make this decreasing more
drastic.

IV. VOLUME AND TEMPERATURE DEPENDENCE
AND FINITE SPACING EFFECTS.

A. Volume dependence

As is well known, the finite volume dependence is very
strong near the second order phase transition point Tc. For
the transverse propagator DTðpÞ, this dependence can be
seen from Fig. 6 and for the longitudinal propagatorDLðpÞ
from Fig. 7, both calculated at � ¼ 2:3 (slightly above Tc)
on various lattices.
Deeper inside in the deconfinement phase, the finite

volume effects are much less pronounced, at least at
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FIG. 4. The momentum dependence of �TðpÞ on two lattices
with approximately equal physical volume.
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FIG. 3. The momentum dependence of �TðpÞ at � ¼ 2:35 on
various lattices.

0 0.02 0.04 0.06 0.08 0.1 0.12

1/aL
s
;   Gev

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
T
(0

);
   

G
ev

-2

β=2.35;    bc
β=2.35;    fc
β=2.512;  bc
β=2.512;  fc

L
4
=4

FIG. 5. The 1=aLs dependence and Gribov copy sensitivity of
the transverse propagator DTð0Þ at � ¼ 2:35 (circles) and � ¼
2:512 (squares). Values of Ls are given in Table I. Filled symbols
correspond to the bc ensemble, open symbols to the fc ensemble.
The lines are to guide the eye.
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nonzero values of momentum. In Fig. 8, we show the
momentum dependence of the transverse propagators
DTðpÞ on various lattices in the deconfinement phase at
T ¼ 1:1Tc and T ¼ 2Tc. Apart from the strong volume
dependence at p ¼ 0, we see that finite volume effects are
rather weak, the sizable effects are seen only for the
minimal nonzero momentum pmin on a given lattice.

The volume dependence of the longitudinal propagators
DLðpÞ at T ¼ 1:1Tc and at T ¼ 2Tc is presented in Fig. 9.
Evidently, the volume dependence ofDLðpÞ is even weaker
than that of DTðpÞ; it is rather weak even at p ¼ 0. Note
that at T ¼ 1:1Tc, DLð0Þ slowly increases with increasing
volume, contrary to the decreasing of DTð0Þ.

For every lattice we observed, a well-pronounced maxi-
mum of the transverse propagator DTðpÞ at nonzero mo-
mentum p0 with jp0j 	 0:4–0:5 Gev. Deep in the
deconfinement phase, the maximum has been found before
[9,12,14]. We observed it for the first time at T ¼ Tc and
T < Tc, as one can see in Fig. 10. In our recent papers

[26,27], we reported the existence of the maximum of the
scalar propagator DðpÞ at nonzero momentum on the sym-
metric lattices (zero-temperature case) when lattice size is
big enough. Therefore, we conclude that the transverse
propagator DTðpÞ has its maximum at p0 � 0 for all
temperatures, and the behavior of the transverse propagator
in the deep infrared is not consistent with the simple pole-
type behavior both in confinement and deconfinement
phases.
It is instructive to compare our results for DTðpÞ at T ¼

1:1Tc on Ls ¼ 48 lattices with the respective results of
Ref. [14] obtained at this temperature on the lattices with
L4 ¼ 4 and Ls ¼ 46 and presented in their Fig. 1. To make
this comparison, we made renormalization at � ¼ 2 GeV
as it was made in [14]. In the infrared region, we found
both qualitative and substantial quantitative disagreement
between our results and the results of Ref. [14]. In particu-
lar, the clear maximum we see in our Fig. 8 at T ¼ 1:1Tc

cannot be seen from Fig. 1 of Ref. [14]. The differences
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FIG. 6. The momentum dependence of the transverse propa-
gators DTðpÞ on various lattices at � ¼ 2:3.
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FIG. 7. The momentum dependence of the longitudinal propa-
gators DLðpÞ on various lattices at � ¼ 2:3.
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gators DLðpÞ on various lattices at � ¼ 2:35 and � ¼ 2:512.
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between our results and the results of Ref. [14], which are
just Gribov copy effects, are more essential than differ-
ences between our bc and fc results discussed in Sec. III.

In contrast with DTðpÞ, the longitudinal propagator
DLðpÞ does not show any trace of maximum at jpj � 0
both above and below Tc, as one can see in Figs. 9 and 11 in
agreement with results of Refs. [9,14]. This gives an idea
that it can be fitted by the pole-type behavior (see Sec. V).
The pole-type behavior at high temperature is not surpris-
ing since at high enough temperature the effective theory is
the Higgs 3D theory with A4 playing a role of the Higgs
field.

B. Temperature dependence

The temperature dependence of the transverse propaga-
tor DTðpÞ near the critical point Tc is very smooth.
Figure 10 makes comparison of the momentum depen-
dence of DTðpÞ for three temperatures: T ¼ 0:9Tc, T ¼
Tc, and T ¼ 1:1Tc. Indeed, there is no sign of sensitivity to
the phase transition.

Thus, the transverse gluons in Landau gauge are not
directly related to confinement [9,35].

In contrast, the longitudinal propagator DLðpÞ demon-
strates a drastic jump in its values in the infrared when the
critical temperature is crossed from above (see Fig. 11).
Therefore, DLðpÞ at small momenta can be considered as
an order parameter signaling the phase transition.

Note that the study of the related quantity �A2 �
hg2A2

E � g2A2
Mi suggests that in the vicinity of Tc, the

temperature dependence of DLðpÞ can have rather non-
trivial (nonmonotonous) character [36]. Further studies at
T very close to Tc are necessary to clarify this issue. Let us
note also that for the first time, the fast change of the
longitudinal propagator near the transition point has been
observed in [35] (in the SU(3) case). This fast change has
been recently demonstrated in Ref. [14] both in SU(2) and
SU(3) theories.

Deep into the deconfinement phase, the decreasing of
the transverse propagator DTðpÞ at p	 0 with increasing
temperature (see Fig. 8) is in a qualitative agreement with
dimensional reduction since according to dimensional re-
duction at high temperature, DTðpÞ is to be proportional to
ðg2ðTÞTÞ�2. The quantitative agreement is not yet expected
at temperatures considered here. Similarly, the electric
propagator DLðpÞ for small momenta decreases quickly
with increasing temperature, see Fig. 9.

C. On the discretization errors

To estimate discretization errors at T ¼ 2Tc, we calcu-
lated transverse and longitudinal propagators on two differ-
ent lattices corresponding to the same physical 3D volume
ðaLsÞ3 but with different lattice spacing. These are lattices
L4 ¼ 4, Ls ¼ 32, � ¼ 2:512 and L4 ¼ 6, Ls ¼ 48, � ¼
2:635. In Fig. 12, we show the momentum dependence of
the transverse propagatorDTðpÞ for these two lattices. One
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FIG. 11. The momentum dependence of the longitudinal gluon
propagators DLðpÞ near Tc on the 4� 483 lattices.
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can see good agreement between results obtained on these
lattices for all included momenta. This implies that at T ¼
2Tc, the discretization effects are small even on lattices
with L4 ¼ 4. We expect that this is true also at higher
temperatures.

Let us note that at this temperature we have employed
larger L4-values and larger �-values (i.e., smaller spac-
ings) as compared to that employed in Ref. [9]. This
explains the fact that the discretization effects we find are
much smaller than in that paper.

Contrary to the transverse propagator, the data for the
longitudinal propagator DLðpÞ show substantial scaling
violations in the infrared. This can be seen from Fig. 13
where propagatorsDLðpÞ computed on the same lattices as
used in Fig. 12 are depicted. Evidently, the discretization
errors are large at momenta smaller than 1 GeV. To reduce
the finite cutoff effects, one should increase L4 or use
improved lattice action (see, e.g. [11]).

The results of our study of the scaling behavior at zero
temperature [27] suggest that for smaller values of � (i.e.,
� ¼ 2:35, � ¼ 2:3 and � ¼ 2:26), discretization errors
are substantial for both propagators.

V. ON THE SCREENING MASSES

One of the interesting features of the high temperature
phase is the appearance of the infrared mass scale parame-
ters : mE (‘‘electric’’) and mM (‘‘magnetic’’). These pa-
rameters (or ‘‘screening masses’’) define screening of
electric and magnetic fields at large distances and, there-
fore, control the infrared behavior of DLðpÞ and DTðpÞ.
The electric screening mass mE has been computed in the
leading order of perturbation theory long ago:m2

E ¼ 2
3g

2T2

for SU(2) gluodynamics. But at the next order, the problem
of the infrared divergencies has been found. On the other
hand, the magnetic mass mM is entirely nonperturbative in
nature. Thus, a first-principles nonperturbative calculations

in lattice QCD should play an important role in the deter-
mination of these quantities.
As has been already mentioned above, the momentum

dependence of the longitudinal propagator DLðpÞ in the
deep infrared is expected to fit the pole-type behavior.
Indeed, as an illustration, in Fig. 14 we show the momen-
tum dependence of the inverse propagator D�1

L ðpÞ at T ¼
0:9Tc and T ¼ 1:1Tc. Since the volume effects are small
enough at least, at p � 0, we use data obtained on all
lattices listed in Table I with exception for p ¼ 0. For
this momentum, we included data for the largest lattice
only.
One can see that at small momenta, the dependence on

p2 is linear. Thus, in the infrared region we have used the
fitting formula

D�1
L ðpÞ ¼ A � ðp2 þm2

EÞ: (12)

The results of the fits are presented in Table II. At T ¼
2Tc, we can compare our results with results of Ref. [11]
shown in their Fig. 3. We find thatmE computed on lattices
with L4 ¼ 4 is in good agreement with respective result of
Ref. [11]. For finer lattice spacing (L4 ¼ 6), our value is
only slightly smaller than the value for L4 ¼ 4 (see
Table II), indicating small scaling violations of the electric
mass mE. Therefore, the substantial scaling violations of
the longitudinal propagator mentioned above are mainly
due to the scaling violation of the normalization factor A.
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FIG. 13. The momentum dependence of the longitudinal
propagator DLðpÞ on two different lattices corresponding to
the same temperature and the same physical volume.
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TABLE II. Values of parameters mE and A obtained from fits
to Eq. (12) and maximal momenta used in the fit pmax.

� T=Tc mE [Gev] mE=T A p2
max [GeV2]

2.260 0.9 0.41(1) 1.53(4) 0.26(1) 0.15

2.300 1.0 0.46(1) 1.54(4) 0.27(3) 0.10

2.350 1.1 0.73(2) 2.06(6) 0.58(2) 0.30

2.512 2.0 1.23(2) 2.05(4) 0.57(2) 1.0

2.635 2.0 1.15(3) 1.92(6) 0.86(3) 1.0
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In Table II, we also show the maximal momenta pmax

included into a fit. This value was defined by condition that
the �2=dof value for the fit was smaller than 2. One can see
that pmax seems to increase with T.

In contrast, the transverse propagator DTðpÞ has a form
which is not compatible with the simple pole-type behav-
ior, so for mM another, different from pole mass, definition
is necessary. We applied two fitting functions to our data
for DTðpÞ. One of them, a Gaussian function with shifted
argument

fGðpÞ ¼ Ce�ðjpj�jp0jÞ2=m2
M (13)

has been used recently in Ref. [27] to fit the T ¼ 0 gluon
propagator in the infrared region of momenta. In (13), mM

is a massive parameter, jp0j is momentum shift, and C a
normalization constant. Another fitting function is shifted
pole propagator of the form

fPðpÞ ¼ C

ðm2
M þ ðjpj � jp0jÞ2Þ

(14)

(we keep the same notations for fitting parameters). The
zero momentum was excluded from the fitting range, the
maximal momentum was determined by requirement that
respective �2=Ndof was smaller than 1. We found that both
fits work well in the infrared with better performance
(larger range) for the fit function (14).

In Table III, we show fitting parameters for fit function
Eq. (14). The second error for mM is the difference from
the result for fit to Eq. (13), in which case mM was bigger.
The difference in values of jp0j for two fits was less than
1%.

We can compare our value for mM at T=Tc ¼ 2 with the
result from Ref. [11] presented in Fig. 4. In that paper, the
result for T=Tc ¼ 2 was obtained on a 322 � 64� 8 lat-
tice. They foundmM=T ¼ 2:0ð3Þ, i.e. much higher than our
value. Apart from the difference in the definition of mM,
this deviation might be explained by the Gribov copy
effect, which is much stronger for mM than for mE. We
need to make computations at higher temperatures to make
a more detailed comparison with results of Ref. [11].

VI. CONCLUSIONS

In this work, we studied numerically the behavior of the
Landau gauge longitudinal and transverse gluon propaga-
tors in pure gauge SU(2) lattice theory in the infrared
region of momentum values. The special accent has been

made on the study of the dependence of these ‘‘observ-
ables’’ on the choice of Gribov copies.
The simulations have been performed using the standard

Wilson action at temperatures from 0:9Tc up to 2Tc on
lattices with L4 ¼ 4 and spatial linear sizes up to L ¼ 48.
For T ¼ 2Tc, simulations were repeated on lattices with
L4 ¼ 6. For gauge-fixing gauge orbits enlarged by Zð2Þ,
flip operations were considered with up to five gauge
copies in every flip sector (in total, up to 40 gauge copies).
The maximization of the gauge functional was achieved by
the simulated annealing method always combined with
consecutive overrelaxation.
Our findings can be summarized as follows.
Similar to the gluon propagator at T ¼ 0, the Gribov

copy dependence of the transverse propagators DTðpÞ is
very strong in the infrared, more precisely, at a few mini-
mal (for given lattice) momenta. At the same time for fixed
physical momentum p the effect of Gribov copies de-
creases with increasing volume in agreement with [32].
We found no dependence of the Gribov copies effects on
the temperature or lattice spacing.
The Gribov copy dependence of the longitudinal propa-

gators DLðpÞ is very weak, at least, at nonzero momenta,
and is comparable with the statistical errors (so-called
‘‘Gribov noise’’).
We have to emphasize that our conclusions for Gribov

copy effects are relevant for our gauge-fixing algorithm
and they might change if another, less efficient algorithm is
used.
With increasing size Ls, the bc-values of DTð0Þ and fc-

values ofDTð0Þ demonstrate a tendency to decrease; more-

over, Dbc
T ð0Þ and Dfc

T ð0Þ seem to (slowly) converge in the
limit Ls ! 1 which is in accordance with a conjecture
made by Zwanziger in [32] and in accordance with the
zero-temperature case studied numerically in [24,27].
However, DTð0Þ is nonzero in the infinite volume limit,
in disagreement with the suggestion made in [17].
We observed the existence of the maximum of theDTðpÞ

at momenta jpj 	 0:4–0:5 Gev not only in the deconfine-
ment phase but also for T � Tc. Thus, we confirmed that
there is no possibility to explain the IR behavior of the
transverseDTðpÞ gluon propagator on the basis of a simple
pole-type behavior 	1=ðp2 þm2Þ. Instead, we fitted this
propagator to fitting functions Eq. (13) and (14) with
massive parameter mM. mM=T is slowly decreasing with
increasing temperature. To check if this decreasing is
compatible with gT behavior, as expected for the magnetic
screening mass, as well as to compare our results for this

TABLE III. Values of the mass parameter mM obtained from fits to Eq. (14) and maximal
momenta used in the fit pmax.

� T=Tc mM [Gev] mM=T pmax [GeV] jp0j [Gev]
2.350 1.1 0.56(1)(4) 1.59(3)(12) 1.3 0.40(1)

2.512 2.0 0.78(1)(7) 1.30(2)(11) 1.3 0.51(1)
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parameter with results for magnetic screening mass, ob-
tained by other authors, we need to repeat our computa-
tions at higher temperatures.

For DLðpÞ, we found good agreement with ‘‘polelike’’
behavior at small enough momenta p < pmax with pmax

increasing with T. Our value formE at T ¼ 2Tc agrees well
with result from [11] obtained also on lattices with L4 ¼ 4.
Again, we need results at higher temperatures to compare
with other results and with the perturbation theory
predictions.

Away from the transition temperature, the longitudinal
propagators DLðpÞ demonstrate very weak volume depen-
dence. The volume dependence of the transverse propaga-
tors DTðpÞ is strong at p ¼ 0 and it is weak at p > 0.

We found very small scaling violations for DTðpÞ at
T ¼ 2Tc comparing results obtained on lattices with
L4 ¼ 4 and 6. In opposite, for DLðpÞ scaling violations
in the infrared are substantial.

We confirmed the observation made in Ref. [14] that the
longitudinal propagator DLðpÞ in the infrared increases
quickly when temperature crosses transition from
above. From the results presented in Ref. [14] for T <
Tc, it is clear that DLðpÞ has a maximum near to Tc. This
is also in agreement with findings for �A2 � hg2A2

E �
g2A2

Mi [36].
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