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Axial couplings in heavy-hadron chiral perturbation theory at the next-to-leading order
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We present calculations of axial-current matrix elements between various heavy-meson and heavy-
baryon states to the next-to-leading order in heavy-hadron chiral perturbation theory in the p-regime.
When compared with data from lattice computations or experiments, these results can be used to
determine the axial couplings in the chiral Lagrangian. Our calculation is performed in partially quenched
chiral perturbation theory for both SU(4|2) and SU(6|3). We incorporate finite-size effects arising from a
single Goldstone meson wrapping around the spatial volume. Results for full QCD with two and three
flavors can be obtained straightforwardly by taking the sea-quark masses to be equal to the valence-quark
masses. To illustrate the impact of our chiral perturbation theory calculation on lattice computations, we
analyze the SU(2) full-QCD results in detail. We also study one-loop contributions relevant to the heavy-
hadron strong-decay amplitudes involving final-state Goldstone bosons, and demonstrate that the quark-
mass dependence of these amplitudes can be significantly different from that of the axial-current matrix

elements containing only single-hadron external states.
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L. INTRODUCTION

The physics of b hadrons is an important and active field
of research, both experimentally and theoretically. B me-
sons have played an important role in our understanding of
flavor physics in the standard model (SM) and its possible
extension. The ongoing LHCb experiment and possible
future B factories will produce significantly improved
experimental information for B mesons which will, in
turn, lead to better constraints on the relevant SM parame-
ters or reveal deviations from the SM. In addition, a large
amount of polarized single-bottom baryon data will be
produced. This will allow extensive studies of the spectrum
and the decays of these baryons. Since the baryons carry
different spin quantum numbers, they may offer additional
opportunities for probing the coupling structure of physics
beyond the SM. In performing such investigations, it is
necessary to compare experimental results to precise theo-
retical calculations in which nonperturbative strong-
interaction effects are well controlled. This is becoming
achievable because of the progress in lattice QCD.

Calculations in lattice QCD are often performed at un-
physical light-quark masses due to the limited computing
resources. In order to obtain high-precision theoretical
predictions for spectral quantities and matrix elements, it
is essential to use chiral perturbation theory (yPT) to
extrapolate to the physical quark masses. For systems of
hadrons containing a single valence b or b quark, the
relevant chiral effective field theory is heavy-hadron yPT
(HHYPT) [1-5]. In addition to the low-energy constants in
the chiral Lagrangian of the Goldstone boson sector, there
are three unknown coupling constants in this effective
theory at the leading order (LO). These constants, defined
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explicitly as g;,3 in Eq. (24) in Sec. II, accompany axial
couplings of heavy hadrons to the Goldstone boson sector
and appear in all chiral extrapolations using HHyPT.
Therefore, the accurate determination of g;,3 is one of
the most important tasks in the lattice QCD calculations for
b-physics phenomenology.

In this work, we compute the matrix elements of the
quark-level axial currents,

jud,,u = C?YMYSM: and jus,,u, = 5’)/#’)/514, (1)

between various heavy-light meson and single-b baryon
states to the next-to-leading order (NLO) in HHYPT. In
particular, we calculate the relevant one-loop contributions
to these matrix elements. When compared with data from
lattice calculations or experiments, our results can be used
to extract the above-mentioned three axial couplings in
HHYPT. Our calculation is performed in partially
quenched chiral perturbation theory (PQyPT) using the
supersymmetric formulation [6], for both SU(4|2) and
SU(6]3). The “full-QCD” limit can be taken straightfor-
wardly from our results by setting the sea-quark masses to
be equal to the valence-quark masses. Our one-loop com-
putation is carried out for finite spatial volume in the
p—regime,l following the same method as in Refs. [9,10].
As pointed out in Ref. [11], in heavy-light meson systems,
finite-volume effects arising from higher-order terms in the
chiral expansion can be estimated. This requires high-
precision information on the B* — B — 77 coupling beyond
that which is currently available. Nevertheless, such

'Studies of the heavy-meson systems in the e-regime can be
found in Refs. [7,8].
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higher-order effects are insignificant for current and future
lattice calculations, since computations with small pion
masses in large volumes are becoming standard.

In this paper, we present our results in the isospin limit.
However, in the case of SU(6|3), we include the SU(3)
breaking? effects, both in the external states and in the axial
currents. At NLO in HHYPT, the axial-current matrix
elements for heavy hadrons can be written in the general
form

g(1 + gL + g”L’ + L") + analytic terms,  (2)

where g and g’ are variously g, g», and g in Eq. (24), and
L, L', and L" are the contributions from one-loop dia-
grams. The determination of g; using lattice QCD has
been attempted by various groups [12—17]. However, the
correct quark-mass dependence (based on the symmetries
of QCD) of the axial matrix elements was not previously
known. Using the current work, extrapolations to the
physical quark masses can be made rigorously.

This paper is organized in the following way. Section II
contains an introduction to HHYPT. In Sec. III, we first
present the general structure of the one-loop contributions
to the axial-current matrix elements, before giving the
results in the case of SU(2) in Sec. IV. Results for
SU(4]2) and SU(6|3) HHYPT are presented in Sec. V,
emphasizing the quark-flavor flow picture. In Sec. VI, the
strong-decay amplitudes involving final-state Goldstone
mesons are also computed before we conclude. Technical
details of the results are included in the Appendices.

II. HEAVY-HADRON CHIRAL
PERTURBATION THEORY

The partially quenched (PQ) chiral Lagrangian® for the
Goldstone mesons is

2
Lo= %Str[(aﬂET)(a“E) ESty ot T3]
+ [a(d, Do) (94 Dy) — MFDE], 3)

where 3 = exp(2i®/f) is the nonlinear Goldstone particle
field, with & being the matrix containing the standard
Goldstone fields in the quark-flavor basis. We use f =
132 MeV. In this work, we follow the supersymmetric
formulation of PQ chiral perturbation theory (PQyPT)
[6]. Therefore, under SU(4|2);, ® SU(4|2)g or SU(6|3), ®
SU(6|3)g, 2 transforms as

S — U SU, 4)

“More precisely, we consider identical SU(3) breaking effects
in the sea, valence, and ghost sectors of SU(6|3) but for sim-
plicity, refer to this as SU(3) breaking.

*In this paper, we only address situations where there are no
multiparticle thresholds involved in loops. Therefore, in spite of
the sickness pointed out in Ref. [18], we can still use the
Minkowski formalism of PQ chiral perturbation theory.
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where

U, € SU4|2), or
Ugr € SU4|2)z or

SU(6[3).,
SU(6I3)x. )
The symbol “‘str”” in the above equation means ‘‘super-
trace.” The variable y is defined as

X =2ByM,, ©6)
where B is a low-energy constant related to the chiral

condensate and, in the isospin limit, the quark-mass matrix,
M, is

M, = diag(m,, m,, my, m,, m,, m,), @)
— e
valence sea ghost

in the SU(4/|2) theory, and is

M, = diag(m,, m,, mg, m,, m,, mg, m,, m,, my), (8)
|- A AN J
h'd h'd h'd
valence sea ghost

in the SU(6|3) theory. We keep the strange quark mass
different from that of the up and down quarks in the
valence, sea, and ghost sectors. Notice that the flavor-
singlet state ®, = str(®)/~/6 is rendered heavy by the
U(1), anomaly in PQQCD [19,20] and can be integrated
out, resulting in residual “‘hairpin” structures.

The inclusion of the heavy-light mesons in chiral per-
turbation theory was first proposed in Refs. [1-3], with the
generalization to quenched and partially quenched theories
given in Refs. [21,22]. The 1/Mp and chiral corrections
were studied by Boyd and Grinstein [23]. The B and B*
meson fields appear in this effective theory through the
“superfield”

1-
>
where v, is the 4-velocity of the meson fields, B; and B u

annihilate pseudoscalar and vector mesons containing an
anti-b quark® and a light quark of flavor i. Under the heavy-
quark spin transformation S; and the unbroken light-flavor
transformation U(x), the field H® transforms as

H" = (B}, y* — Bvs) ©))

HP(0) = U/ 0HP (08, . (10)

Also, the conjugate field, which creates heavy-light me-
sons containing an anti-b quark and a light quark of flavor
i, 1s defined as

A =1y, (1)
and transforms under S, and U(x) as
AP0 — 8,8 @)UY (). (12)

“We follow the standard notation [24] for the flavor content of
B mesons, so that e.g. B, = B™ = ub.

094502-2



AXTAL COUPLINGS IN HEAVY-HADRON CHIRAL ...

The introduction of the single-b baryons to yPT was
pioneered by authors of Refs. [3-5], and the effective
theory was generalized to the PQ scenario in Ref. [25].
Since the two valence light quarks in such baryons may
carry total spin quantum numbers’ s; =0 ors; =1, there
are two types of heavy baryons. At the quark level, these
two types of baryons carrying light flavors i and j are
described by the interpolating fields

Y c a,a Bb Bvb
T ~b7[q; +4q;
S?;'u yc[qaa Bh

qlq,a]eabc(c’}/S)aﬁ for S = O;
— 47" 4 Ve (CY*)ap fors; =1,
(13)

where C is the charge-conjugation matrix, «, 8, and 7y are
the Dirac indices, and a, b, and ¢ are color indices. In full
QCD, the 7T fields are antisymmetric and the S fields are
symmetric under the exchange of the light-flavor indices.
In the PQ theory, the flavor structure of these interpolating
fields has the properties

T, =nmmT Si=(=D'*mmsh (14

where

(15)

{ 1 when i € valence and sea,
ni =

Owhen i € ghost,

accounts for different statistics of quarks in PQQCD. These
fields transform as 39- and 42-plets under the SU(6|3)
flavor rotation, while they transform as 17- and 19-plets
under the SU(4|2) flavor rotation. The baryon fields are
included in heavy-hadron chiral perturbation theory
(HHYPT) according to the flavor properties in Eq. (14).
In the case of Ny = 3 (N refers to the number of sea-quark
flavors), the pure valence-valence sector of the s, =0

baryons is related to the physical states of A, and £ H*l/ 2
via
=+1/2
. 0 Ab 1:;— /
T(valence-valence)z\/_i _Ab 0 E;l/z , (16)
_=+12 _=-1/2 0
=b =bp

where the superscript indicates the 3-component of the
isospin. Since the light-light diquark is of spin-1 in the
Sl’-; fields, such baryons can be in spin 1/2 or 3/2 states

which are degenerate in the heavy-quark limit. Therefore,
they are best described by the superfield

1 "
st = \g(vﬂ + y*)ysB; + Bl (17)

where B;; and ij" are spin-1/2 and 3/2 baryons. In the
pure valence-valence sector,

The total spin of the light degrees of freedom is a conserved
quantum number because of the heavy-quark symmetry.
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1 '—1/+l/2

3 53 5B
530 3,0 BES L )
ST o

B (valence-valence) —

and similarly for the B}kj“ fields. The S}; and T}; fields have

the same property as Hﬁ”) under the heavy-quark spin
transformation S;,. For the unbroken light-flavor transfor-
mation,

Sk(x) —
Tij(x) -

— U, I(x) St (x),

VAU, (T ), 19

with the flavor indices satisfying Eq. (14). These S“ and T;;
are annihilation field operators and we denote the corre-
sponding creation fields by S’f; and T, i

The Goldstone mesons couple to the above heavy-meson
and baryon fields in the HHYPT Lagrangian via the non-
linear realization

£ = =43, (20)
which transforms as
£(x) = ULEWUT (x) =

The ¢ field can be used to construct vector and axial-vector
fields

UWEXUL D)

Vi = (g ongl) Ak = (e ane - gane)
@2)

The vector field can then serve as the gauge field in defin-
ing the chiral covariant derivative which acts on the heavy
hadrons,

DrHP = orH® + (Vi) HY,
DHT;j= 04T, + (V")-kaj +(— 1)7]i(7]j+77k)(VM)jkTik’
DrSY = o- Sy + (V) ESy + (= 1)mmtmd (v ksy
(23)
The leading-order HH yPT Lagrangian is then

(LO)
Ly XPT —

= —itrp[APiv, DHP ]+ i(Tv,, DHT);
—i(§"v, D*S,); + AB(S"S,);
T8 U”D[HEE)Y“ YsH,('E)Ai{]
- igzew,,p(gf’“v”A"Sp)f
+283[(TA#S,,); + (S ,A#T)], (24)

where v, is the velocity of the heavy hadrons, trp[ | means
taking the trace in Dirac space, and ( ); is the implementa-
tion of the PQ-theory flavor contraction rules [25]
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(TYT); = TVY'Ty;,  (SHYS,)e = S™IY/!S, 1),
(TYRS,)r = TH(Y),!S,, 1) (25)

The parameter A® is the mass difference between the S
and T fields with the same light-flavor indices,

A(B) = MSi,j - MT”'

It is grouped together with the definition of other mass
parameters in Eq. (A1) in Appendix A. This mass differ-
ence is of O(Aqcp), and does not vanish either in the chiral
limit or in the heavy-quark limit.

The LO Lagrangian for HH yPT contains terms of O(p)
and no light-quark-mass dependence. To generate the
flavor SU(3) breaking effects in heavy-meson and baryon

spectrum, which give rise to the mass differences o fﬂf) and
5(8 ikl in Eq. (A1), one introduces
£gr)1XPT = ArtrD[Hgb)X;:]H;'b)] + AztrD[H(E)iHEb)]Str(Xg)

+ A3(8# xS, )r + Ag(S#S, )pstr(x,)

+ As(TxeT)p + A6(TT)gstr(x ), (26)
where

Xe = Exé + ETxEN 27

In the computation of the axial-current matrix elements,
the flavor breaking effects in Eq. (26) are formally sub-
leading compared to those encoded in the pure Goldstone
Lagrangian, Eq. (3). Nevertheless, we keep them in our
calculation as they can be numerically significant.

In this work, we also include the heavy-quark spin
symmetry breaking term

22 i [ADig, , HY o], 28)
B
where M is the B meson mass. This counterterm leads to
the mass difference between the B* and B mesons with the
same light flavor,

AM = My — My,

which vanishes in the heavy-quark limit. This mass differ-
ence is also grouped together with other mass parameters
in Eq. (A1) in Appendix A. In principle, there are also such
heavy-quark spin breaking terms in the baryon sector,
resulting in mass differences between B;; and B;; ; baryons
in Eq. (17). However, these mass differences are numeri-
cally much smaller than AM) [26].

III. AXTAL-CURRENT MATRIX ELEMENTS AT
THE NEXT-TO-LEADING ORDER

Applying the Noether theorem to the chiral Lagrangian in
the previous section, one can derive the leading-order axial
currents corresponding to their quark-level counterparts in
Eq. (1). For matrix elements involving external states of
single heavy hadrons, the relevant LO currents are

PHYSICAL REVIEW D 84, 094502 (2011)

(V) 5
o = gitip[ Ay ysHP (7 )]

— igzeﬂwp(SVv”TE;L;Sp)f + \/§g3[(§MT§;g:T)f

+(T7)S,)5) (29)

J

where the subscript ij means the current changes the light-
quark flavors from i to j, and

1) = WETryé + gr8h), (30)
with the matrices 7;; defined as

(Tid = 646 jo (3D
where k and [ run through all the light-quark flavors in
PQQCD. The superscript Ny is the number of sea-quark
flavors and Ny = 2, 3 represent the cases of SU(4|2) and
SU(6]3), respectively. These leading-order axial currents
generate the LO terms, as well as the NLO contributions
via one-loop corrections, in the matrix elements studied in
this work.°

There is a significant increase in the number of terms in
the next-to-leading-order axial currents in HH yPT, and we
postpone the detailed investigation of these NLO currents
to Sec. III B below. Here, we first write down the generic
form of the chiral expansion of the axial-current matrix
elements to the NLO,

<H/‘|jij,p,|Hi>QCD

N 1 N, N N
=(H; 1! f>|H,~>LO><[1+—2(’1’£._].’>+W;,if)+W(ij)

ij.p
N N
+ QW)+ N QH] (32)

where the equality symbol means the matching between
(PQ)QCD and the chiral effective theory, w is the Lorentz
index, and J;;, are the quark-level currents given in
Eq. (1). The flavor indices are denoted by i and j which
are not summed in the above expression, and H; is a heavy-
hadron state (meson or baryon) containing the light

flavor i. The symbols T~ gvf , W(f],\f"), and Q;,f_).HJ are

results from the tadpole, wave-function renormalization,
and sunset diagrams at one-loop, as depicted in Fig. 1,
where single and double solid lines represent generically
the external and internal heavy hadrons while the dashed
lines are the Goldstone propagators. The circled crosses in

Fig. 1 are the insertions of the LO axial current J i, M grven

in Eq. (29). The tadpole contributions T~ ﬁ-j " are indepen-

®In addition to the terms in Eq. (29), there are other operators
in the LO currents arising from the chiral Lagrangian introduced
in the previous section. Nevertheless, these terms do not appear
in the matrix elements to the order we work at. That is, their
contributions to the one-loop corrections vanish.
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o—

FIG. 1.

2\
)
(c)

One-loop diagrams contributing to the matrix elements of axial currents between heavy hadrons. The dashed lines are the

Goldstone meson propagators, including the possible hairpin structures. The single solid lines denote generically the external heavy

hadrons, while the double solid lines are the internal heavy hadrons. They can be B, B* mesons or T;;

ij» Sij baryons. The circled crosses

are the insertions of the LO axial-current Jl(jvla) given in Eq. (29), while the other vertices are from the strong chiral Lagrangian in

Eq. (24). Diagram (a) is the self-energy of the heavy hadron and it leads to the wave-function renormalization contribution to the
matrix elements. Diagrams (b) and (c) are the ‘“‘tadpole” and “‘sunset’ types, respectively.

dent of the external states, since they emerge completely
from the flavor structure of the currents.
In Eq. (32), we have written the NLO analytic terms as

the LO matrix elements times N gf_),H/_. In Sec. III B be-

low, we will study these NLO analytic terms, and show that
they can be presented in this manner. In this section, we
examine the analytic terms (polynomials in the Goldstone
masses) in the matrix elements in Eq. (32) for various
external states. These are encoded in
(Ny) (Ny)

<Hj|-]ijj,, |Hi>LO and NHiLHj'

The nonanalytic contributions arising from the one-loop
diagrams will be discussed in Secs. [V and V.

A. Leading-order matrix elements

Lattice computations are often performed using the
baryon interpolating fields in Eq. (13). Therefore, we carry
out the yPT calculation for the T;; and Sf; external states.
From our results, it is straightforward to obtain matrix
elements for physical external baryon states using
Egs. (16) and (18). The leading-order HH yPT predictions
for the matrix elements studied in this work are

x| 7Ny x| 7(3 *
<Bd|-lud,/M|Bu>LO = <BS|J£2Y),M|BM>LO = _Zglsp,y
(Ny) 3
(Saal i W\ Taho = \/§<Ssd|-],aa{,u|Tsu>LO

= V2(S4lJ 1(43S?M|Tdu>LO
= (S oo
=—-gU0,1,

(Saal oIS adio = V2S,ald®) IS0
= V2S84l i 1S dudro

= <Sss|J£l3A‘?M|Ssu>LO
o
V2

where & is the polarization vector of the B* meson, U is
the Dirac spinor of the T baryon, and the U*’s are the

gzv"eowpU”Up, (33)

“superfield spinors™ of the S baryons. The basis polariza-
tion vectors and spinors satisfy the spin sums

3
Z M(U, S)S;(U, S) = " 8uv + VuVy

s=1

2
Z U, s)U(v, s) = # (34)
—1

N

6
> Uk, 90 (w,5) = ~(g — v L.

s=1

Note that U* is not a Rarita-Schwinger spinor; instead it
contains the degrees of freedom of both the spin-1/2 and
spin-3/2 components of the superfield. In Eq. (33), the
states are normalized as

(Bi(v,K)|B;(v, k")) =20°27)* 83 (k — k'),
(B (v,k, 5)| B (v, k', 5")) = 20°(27)38,, 63 (k — k'),
(T;;(v, K, 9)|T; (v, k', ) = v°2m)38,, 3k — k'), 3
(S;;(v. K, 9)IS;;(v, k', s")y =1"27)3 8,y 83 (k —K/).

B. Next-to-leading-order analytic terms

In this subsection, we investigate the NLO counterterms
in the axial currents. Their matrix elements between single
heavy-hadron states are written as
(Np)

(Hj\ T35

|Hi)o X N(;ZI\ZL).HI.,

in Eq. (32). These NLO counterterms play a significant role
in the chiral expansion, since they have to be included to
renormalize the one-loop contributions from the LO axial
currents to matrix elements.

First, we notice that the chiral Lagrangian in Eq. (26)
does not contain any space-time derivative, therefore it
does not lead to new terms in the axial currents upon
applying the Noether theorem. To obtain the NLO axial
currents, we introduce additional operators in the chiral
Lagrangian,
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(NLO,axial) __
Ly XPT

PHYSICAL REVIEW D 84, 094502 (2011)

KDt [AP yrysHP(A) X+ kD up APy ysHY x5(A,), 71+ k8Pl AP yrys HP (A, str(x )

+ K(H)trD[H(h)YMYSH(b)(A )le ] + K(S) Mvap(SMvVAUstp)f + K2 E/LVUp(SMvVXfAUSp)f

S
+ K(3 )elm,p

+ (S, A xT);] + K(2T)[(TX§AMS/_L)f + (S, xeAPT)e] + KgT)[(TA“SM)f + (S, ART)¢lstr(x ),

(50 AT SP)istr(xe) + K €0y (SHV7SP)estr(A xe) + KVL(TAF xS, )¢

(36)

where y, is defined in Eq. (27). The mesonic sector of the above Lagrangian was already introduced in Refs. [23,27].

(Ny)

Upon applying the Noether theorem to Eq. (36), one obtains the currents which lead to the NLO analytic terms JN H—H, in

Eq. (32),
J(NLO ,analytic) __ K(H)tI'D[H(b) Y, 75H(b)(7'(+))(§)kl] + K(H)trD [H

ij, i/,
H b b s
+ Ki )trD[ch)yﬂﬁH( )(Tﬁ;rg,\/ )”]+K( )

k7’M

€uvop

ysHP Over DR+ kLA, ysHP (7 D Tstr(x)

(SVUUT(-»)XétSp)f'f_KZ €v0p(S"V7 XgT Sp)f

+ K(S)G#VUP(SVUUTE ;Sp)fstr(/y‘f) + Kf‘ )G#VUP(S” ”Sp)fstr(T(;%Xf) + K(IT)[(TTE;—;Xé‘:SM)f + (SMTl-.:é)ngT)f]

+ kT xers 18 )0+ Suxerss D+ )V LT T 1S, )+ (8,7 M) Jstr(x),

ijé ij,§

where 7{!) is defined in Eq. (30). Although it is not
explicitly shown in the above equation, these NLO currents

depend on Ny.

J(NLO ,analytic)

Comparing the currents to their leading-

ij.
order counterparts, J,(j ;L) in Eq. (29), one observes that
they share the similar feature in the combination of the

heavy-hadron fields with the flavor matrices Tfjg The

complication in JOLOMAYES) Leqults completely from the

insertion of y,, which contains one power of the quark-
mass matrix. This shows that one can write the NLO matrix
elements as

(Ny) (Ny)
<H |JI(I]\III;O analy110)|Hl~>NL0 <H |Jl] /jL |Hi>LO X NH:'/_'H,"
and
(Ny)
NHif—’Hj - O(mq) - O(Méoldstone)’

where m, is the light-quark mass.

IV. ONE-LOOP CONTRIBUTIONS IN SU(2) HHPT

We now turn to the discussion of the one-loop results for
the axial-current matrix elements. In this section, we first
present a simple case, namely, SU(2) yPT in the infinite-
volume limit, and use it to illustrate the main features
of these one-loop contributions. Details of the SU(4|2)
and SU(6|3) PQyPT results are addressed in the next
section.

We start by reducing the leading-order matrix elements
in Eq. (33) to a simpler form. Notice that all these matrix
elements are proportional to the axial couplings, g;,3.
Therefore, from the generic form of the chiral expansion
for the axial-current matrix elements given in Eq. (32), we
can define the “effective” axial couplings

(37)

(&1)etr = 81 X

1
+fz‘(3 W+ W+ QP L)
+ N

B,—B, ]’

) @) @ 4 0O
1 +72(Tm, + WTM + W st Q5 )

(82)efr =82 X
(2)
+ NTdu—'de ]’
(83)etr = 83 X [

(2)
+ NS([L(_'SJ(I ]’

with the wave-function renormalization (W), tadpole (7T),
and sunset () diagram contributions from Figs. 1(a)-1(c).
The result for the tadpole diagram is particularly simple.
In the infinite-volume limit, it is
M2
——Mzlo g( )

following the definition of the function /(m) in Eq. (B4) in
Appendix B. Here, M is the pion mass, and u is the
renormalization scale. The dependence on w is cancelled
by the NLO counterterm contributions 2N'? in the above
expression for the effective axial couplings.

In this SU(2) full-QCD case, the infinite-volume limit of
the wave-function renormalization and sunset diagrams
can be written in two functions

@) O LW 1 ?
7 <:rud+w + Wy +9

Sdu—'sdd

(38)

T(z)infin_it)e-\/ — 1M =
b (M) = -

H(m, A) = %,
- (39)
Kim A, Ay — £ AAI) - i(m, Ay)
1 2
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with the function F defined in Eq. (B4). The scale A in
these functions results from the mass difference between
the external and the internal heavy hadrons. In the heavy-
quark and the isospin limits, we have

My, — My, = Mg, — Ms,, = 0.

Therefore, the only relevant heavy-hadron mass difference
in these limits is

A(B) :MSdu _MT

a7 Saa

— My, ~ 200 MeV,
and the effective couplings in Eq. (38) are

2
(&1)etr = gl[l - %I(Mw) + %H(Mm 0)

+ analytic terms ],

_2 3%
Ik 2

2
+ %(H(er _A(B)) - ZK(MW’ _A(B), 0))

(82)ett = 82[1 IM,)+=5HM,0)

+ analytic terms ]
2 g% (B)
(g3)ett = 83[1 - FI(MW) + JTZ(—2H(MW A'®)

2
+HM,,0) + ;'—]32 (H(M_, —A®)
+9H(M ,, A(B)) — 2K(M ., AP, 0))

+ analytic terms ] (40)

with the analytic terms resulting from N'® in Eq. (38).
Here, we stress that the tadpole diagram is the dominant
one-loop contribution to the chiral expansion of (g;)es.
This is because the typical value of the coupling, g7 ~
0.25, is small, leading to the suppression of other diagrams
in the above equation.” A numerical comparison of the
individual contributions from different types of Feynman
diagrams will be given in Sec. IV B.

Before proceeding with further discussion of the formu-
las in Eq. (40), we notice that the function H(m, A) can be
related to I(m) when A = 0,

2 2
H(m,0) = ~I(m) = ~ <2 log<%). @1

This leads to the simplification of the chiral expansion of
(81)et

’Since 823 ~ O(1), this suppression is not present in the chiral
expansion of (g5 3)efr-
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2 M? 10g<M—%)
@mf)? 7\ u?
2

M2 log<%) + c(,u)MfT:I. (42)

(&1)etr = 81[1 -

4
(47f)*
The renormalization-scale dependence from the loop dia-
grams is cancelled by the coefficient, ¢(u), of the analytic
term which also encodes the contributions from the NLO
Lagrangian.

In the following two subsections, we first address an
issue related to the chiral limit of the formulas presented
above, and then present an estimation for the numerical
size of the one-loop corrections.

A. Wave-function renormalization and sunset diagrams
in the chiral limit

As pointed out in Egs. (39) and (40), the infinite-volume
one-loop contributions from the wave-function renormal-
ization and sunset diagrams can be written in terms of the
functions H and K, which are obtained by taking deriva-
tives of the function defined in Eq. (B4),

-1 , 247 m?2
— 2 VA 10 ™
o (=5 10e()

10A%  4m? 2(A% —m?) A
+ ——— ) A+ ———mR(—
< 9 3 )A 3 mR(m)]’

where R(x) = vVx? — 1[log(x — Vx> — 1 + ie)
—log(x +Vx*—1+ie)].

This function is obtained by regularizing the loop integrals
with the subtraction scheme defined in Eq. (B1) in
Appendix B. Implementing this scheme is a common prac-
tice in yPT calculations [28]. It leads to the result that
F(m, A) does not vanish in the limit m — 0 unless A =
0. Such behavior does not cause any conceptual problem in
the effective theory, since the axial couplings, g;,3, can
undergo finite renormalization depending on the subtrac-
tion scheme used to regulate one-loop integrals. Various
subtraction schemes always lead to the same physical
quantities, such as the hadronic masses and axial transition
amplitudes, which are scheme independent. On the other
hand, it would be desirable and natural to choose a scheme
in which the one-loop contributions decouple in the chiral
limit. As pointed out in Refs. [29,30], it is possible to find a
scheme such that the real part of F vanishes in the chiral
limit. It is implemented by simply rewriting F' as

-1 ) m? 2A3 m?
Alog(™) = 225 1og( 2
167 [m Og<,u2> 3 Og<4A2)

4m>’A  2(A% —m? A

- (@ —m )mR<—)], (43)
3 3 m

and appropriately modifying the counterterms to absorb the

difference (a finite polynomial in A). It is straightforward

to demonstrate that when A + m > 0, in which case the

F(m,A)=

FGW) (1 A) =
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external heavy hadrons are stable particles, this function is
real and

liI%F(s“b)(m, A)=0. (44)

In the case A + m < 0 which corresponds to the situ-
ation that the external heavy hadron becomes unstable, the
functions F and F®" are complex. Although the real part
of FG'™) vanishes in the chiral limit, the imaginary part
remains nonzero. This occurs when

M, <|Mp, — Mg:| = A®) ~200 MeV.  (45)

Below this threshold, one cannot define matrix elements
containing external Sf; hadrons. In principle, more com-
plicated matrix elements can be used to determine the
couplings g, and g3 for the pion masses in the regime of
Eq. (45), but this is beyond the scope of this work. See
Refs. [31,32] for related discussions. Here, we stress that
one can perform lattice calculations in the regime where
the pion mass is larger than A®) but small compared to the
chiral symmetry breaking scale, such that the external
hadrons are all stable and the chiral expansion is still valid.
These calculations enable the extraction of the axial cou-
plings, g;,3, which can then be used to perform chiral
extrapolations and make predictions for other quantities.

B. Evaluation of individual contributions

In this subsection, we use the simple infinite volume,
SU(2) case to explore the typical size of the one-loop
contributions. This can be best summarized by the plots
in Fig. 2. In these plots, the pion mass dependence of the
loop contributions to three effective axial couplings [their
real part in the case of (g,3)crr] is shown for exemplary
values of the various low-energy constants. These results
are obtained using the subtraction scheme defined in
Eq. (43) in Sec. IVA. The leading-order contribution is
also shown. We take g; = 0.5, a value consistent with
recent determinations [12—-17], and then use the quark
model expectations for the other couplings, g, = 2g; and
g3 = +/2g, (in our normalization) [3]® which are far less
constrained. We work in the heavy-quark limit so that
A™) = 0, and we have set the S — T mass differences to
A®) =200 MeV, consistent with experiment [26]. The
renormalization scale used here is u = 47 f.

It is clear from these figures that the tadpole contribu-
tions provide an important part of the chiral nonanalytic
behavior of the axial couplings. Furthermore, in the range
of pion masses considered here, M. < 400 MeV, the NLO
contributions from loops are numerically small corrections
to the leading-order results.” This indicates that in this

8These values are also consistent with preliminary lattice QCD
results [33].

The imaginary parts of (g, ). that arise for M, < A® are
also small, [Im(g, 3).| < 0.05.
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range the SU(2) chiral expansion of the axial-current
matrix elements is well behaved. Variations of the low-
energy constants, g, g, g3, A?, and the renormalization
scale, w, within reasonable ranges do not substantially
alter the behavior shown in Fig. 2.

T T T T T

(05 [ -
-+ Leading order

0.4 - - Tadpole 7

— Wave-function renormalisation
- 0.3+ -~ Sunset, .

S

— 02F —
0.1F E
o=

1 1 1 1 1

0.000 0.025 0.050 0.075 0.100 0.125 0.150
M2 (GeV?)

T T T T T
- -
0.8+ - Leading order —

- - Tadpole
0.6+ — Wave-function renormalisation -
: -+ Sunset,

Re[(g2).]
T
I

<
o
T
\
\
\
\
\
'
\
\
\
1

I I I I I
0.000 0.025 0.050 0.075 0.100 0.125 0.150
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0.8F B
0.6 -+ Leading order T
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- — Wave-function renormalisation
E 04+ - - Sunset -
e
S
g -
~0.2F - ----""4
0.0
1 1 1 1

1
0.000 0.025 0.050 0.075 0.100 0.125 0.150
M2 (GeV?)

FIG. 2 (color online). Comparison of the individual infinite-
volume one-loop contributions to the pion mass dependence
of the (real part of the) various effective couplings, (g123)est
evaluated using the values of the low-energy constants given in
the text. The kinks in the wave-function renormalization and
sunset contributions to the baryonic couplings arise from the
S — T threshold at M, = A¥Y). Below this threshold, the
curves lose their physical interpretation. The subtraction scheme
is that presented in Eq. (43).
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V. ONE-LOOP CONTRIBUTIONS IN
SU(4/2) AND SU(6/3) HHxPT

In this section, we study the one-loop contributions in
Eq. (32) in SU(4|2) and SU(6|3) partially quenched
HHYPT in finite volume. These results are complicated
because we keep the SU(3) light-flavor breaking effects
from Eq. (26) in our calculation. Here, we investigate the
structure of the one-loop computation via analyzing the
quark-flavor flow picture [34]. The details of the results are
given in Appendices C and D.

A. The tadpole diagrams

First, we present the contributions from the tadpole
diagrams. These take the simple form,

TE[Zd) = _ZI(Mu,u’)’ de) = _2I(Mu,u’) - -I(Mu,s’)y
T(u3s) = _I(Mu,u/) - %I(Mu,s/) - I(Ms,u’) - %I(Ms,s’)
+ %jis’(Mu,u) - %IS(Mu,s) + %j:‘s(Ms,s)’ (46)

where the functions J and 7 53 are defined in (B3) and
(B13), respectively. The tadpole-diagram results are
completely determined by the structure of the axial
currents.

B. The self-energy diagrams

In this subsection, we present the heavy-hadron
wave-function renormalization, resulting from the self-
energy diagrams. These are more complicated than
the tadpole-diagram results in our calculation, since we
keep track of the flavor SU(3) breaking effects from
both the Goldstone masses [Eq. (3)] and the heavy-
meson and baryon spectrum [Eq. (26)]. It is helpful to
analyze the quark-flavor flow diagrams [34] to under-
stand the structure of the results. To investigate this
structure, we first assign a ‘“‘direction” to each flavor
flow line:

(i) The flow following the direction of a line means a

quark with that flavor, while the flow against the
direction means its antiquark.

For the analysis of the heavy-meson wave-function
renormalization, we follow the nomenclature for the
coefficients in front of the sum (integral) in a loop
diagram:
(1) The ‘‘tilded” coefficients accompany the hairpin
contributions from the light-flavor-singlet mesons.
(i) The “primed” coefficients multiply the sums in
which a B meson appears in the loop, while the
“unprimed” coefficients are for the cases involving
an internal B* meson.

PHYSICAL REVIEW D 84, 094502 (2011)

(a) (b)

FIG. 3. Quark-flavor flow structure for the meson self-energy
diagrams. The thick line represents the anti-b quark, and the thin
lines are the valence light quarks, while the dashed line is the
sea light quark. Diagram (a) contributes to the w and w' terms in
Eq. (47) when the internal heavy-light meson is B, and By,
respectively, while the Goldstone meson is composed of a j
valence quark and an ¢’ sea antiquark. Diagram (b) is the hairpin
structure and results in terms containing W (internal B;) and W'
(internal B;) in Eq. (47).

The quark flow picture for the heavy-meson wave-
function renormalization diagrams is presented in
Fig. 3. Since there is only one valence light quark
involved, and the internal valence-quark loops are can-
celled by the ghost-quark loops, the only possible
nonhairpin structure is from the sea-quark contributions.
This is depicted in Fig. 3(a), where the Goldstone
meson is composed of a j valence quark, and an i’ sea
antiquark. The hairpin contribution is presented in
Fig. 3(b).

Following the above nomenclature and the quark-
flavor flow picture in Fig. 3, the results for the heavy-
meson wave-function renormalization can be written
as

Wy = 2Z[ B I (M, A+ 500)
WB ’ZHN( M;, A My,

W, = ZZ[ s A (M,,a,—A<M>+5%>)
W T (M = AO) 0 (0, 500)
fvi?f”ﬂm( M, 00 7

where the summations are over the flavors u and »’ in the
SU(4]2) theory, and are over the flavors u, s, ', and s’ in

the SU(6|3) theory. The functions H and H , are results

of the sums (integrals) involved in the loops, and are
defined in Egs. (B9) and (B11)—~(B13) in Appendix B.
The mass parameters M ,, AM) and 5(M) are defined in
Eq. (A1) in Appendix A. The coefficients w, w', w, and W'
are presented in Table I in Appendix C.

Next, we discuss the structure of the baryon self-energy
diagrams. We start by modifying the above rule for assign-
ing the primed coefficients,
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TABLE 1. Coefficients for heavy-light meson wave-function ~ These diagrams are further complicated by the presence of

renormalization, in Eq. (47), in the isospin limit. two light valence quarks. To keep track of the flavor flow of
B B . v e these two quarks, we introduce an additional rule to our
notation,
wfgz:,a 0 0 3 0 (i) For a baryon (T;; or S;;) of light-flavor indices i
W 7 0 0 0 and j, we assign the coefficient u to the diagram
wd 0 0 3 3 if the quark carrying flavor i appears in the
_(3) Sl 0 0 0 Goldstone meson. For all the other cases, including
Wfi;’)" 0 0 | 0 the appearance of the anti-i in the Goldstone

lii’)ﬂ ] meson, they are accompanied by the coefficient w.
e =1 0 0 0
W 4 4

n
w2 0 0 2 0  The flavor flow structure for the baryon self-energy
@ -1 0 0 0 diagrams can be summarized in Figs. 4 and 5. For the
W’g’)“ ’ 1 diagrams explicitly shown in Figs. 4(a) and 4(b), the

, 1 . -

B'a 0 0 ! 2 Goldstone mesons are composed of (j, anti-i) and
P 2 0 0 0 (j, anti-i"), respectively. Therefore, th ied
Wi ¢ Js , Tesp y. Therefore, they are accompanie
W({; 0 0 D) 1 by the w-type coefficients (w for the internal S baryon
ﬁd)’“ . 0 0 0 and w' for the internal T baryon). Terms with the u-type

Bia 3 coefficients are obtained by exchanging the flavors i

y ging
wg??a 0 0 1 : and j, as also indicated in this figure. Notice that the
ng) 0 - 0 0 “nonhairpin” valence-valence Goldstone contributions
W@}'u 0 0 ) 1 appear via the ‘‘crossing” configuration in Fig. 4(a).
B.a . The hairpin structure of the baryon self-energy diagrams
Bj.a is presented in Fig. 5. From the above rules, it is clear

that the diagram in Fig. 5(a) leads to a Ww-type term,

(i) The primed coefficients multiply the sums in which ~ While those in Fig. 5(b) and 5(c) are multiplied by

the T baryon appears in the loop, while the unprimed ~ #-type coefficients.

coefficients are for the cases involving the internal S Following the above discussion, we obtain the results for
baryon. the baryon wave-function renormalization,
j 4._@— i P
i > Z""(“_W) i i+(l<—>])
b
(a)

FIG. 4. Quark-flavor flow structure for the baryon self-energy diagrams without the hairpin structure. The thick line represents the b
quark, and the thin lines are the valence light quarks, while the dashed line is the sea light quark. Diagram (a) is the crossing type which
does not involve sea-quark contributions. The explicitly shown diagrams give rise to the terms multiplied by w and w’ in Eq. (48) when
the internal baryons are S,; and T,;, respectively [a = i in diagram (a) and a = ¢’ in diagram (b)]. Interchanging the flavor indices i
and j leads to the corresponding u and u’ terms in the same equation.

Jf% jj:f i J

. 1 > ) !

7

.

b
(a) (b) (c)

FIG. 5. Quark-flavor flow structure for the baryon self-energy diagrams involving the hairpin structure. The thick line represents the b
quark, and the thin lines are the valence light quarks. Diagram (a) contributes to the w (internal S;; baryon) and ' (internal T'; baryon)
terms in Eq. (48), while diagrams (b) and (c) result in the i (internal S;; baryon) and i’ (internal T; ; baryon) terms in the same equation.

Yy

~ ¥
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TABLE II.  Coefficients for T;; baryon wave-function renor-
malization, in Eq. (48), in the isospin limit.

a u s u s/
Wa U0 : 0 3 0
Wledl |00 0o
W+, |3 0 3 :
U 0 0 0 0
- N S R
W, 3 0 0 0
i T
i, I

(N) (Ny)
! 22[ Tf,a}[(Mi,a AB + 523))

i,ij

~(N/)j_[Nf( o A®)
(Nf) }[(M AB) + 555)”)

~(N/) HNf(Mz . AB)Y]

(Ny) (N) ~(N)
’Wsif 22[ f jar 6(;?);]) +w f HNf(Mj a 0)

<Nf) VH (M, 85 + ag ) H y (M, 0)]

ajtj

22[ o H (M, A<B>+5<B>)

ai,ij
/(Nf)j'[N M;,
g H (M,

I(Nf)g-[N (Ml ar

, —A®)

_AB (B)
A +5a11/)

—A®))], (48)

where the summations are over the flavors u and u’ in the
SU(4]2) theory, and are over the flavors u, s, ', and s’ in
the SU(6|3) theory. The relevant coefficients, w, u...
are presented in Tables II and III in Appendix C. The
mass parameters M, ,, A®), and Bﬁ)ﬁd are defined in
Eq. (A1) in Appendix A. These results agree with those
in the literature [35].10

C. The sunset diagrams

In this subsection, we discuss the structure of the sunset
diagrams. The Lorentz indices carried by the hadronic
states are completely absorbed into the tree-level contri-

'"The SU(3) breaking effects arising from Eq. (26) are not
included in the results in Ref. [35]. We have also checked these
wave-function renormalization diagrams against the full-QCD,
SU(3)-limit results at A® = 0 in Ref. [5], and found agreement.

PHYSICAL REVIEW D 84, 094502 (2011)

_(CD_,

b

FIG. 6. Quark-flavor flow structure for the meson sunset dia-
grams with external B; and By, states. The thick line represents
the anti-b quark, and the thin line is the valence light quark. The
cross is the current J ;.. This diagram results in the ¥ (internal B;f
and B}) and § (internal B} and By) terms in Eq. (49). This is the
only possible quark-flavor flow configuration for the meson
sunset diagrams.

bution in Eq. (32), therefore they are omitted in the
notation below. In order to organize the results, we
follow the same convention in assigning the “flow direc-
tion” to a quark line and the tilded coefficients to the terms
involving the hairpin structure, as that in the self-energy
diagrams.

First, we study the sunset diagram for the axial-current
matrix element between the B; and Bj mesons. Because
of the flavor-changing structure of the currents that we
consider in this work, it is straightforward to demonstrate
that in this case the Goldstone meson must involve the
hairpin contribution. This is depicted in Fig. 6.
Furthermore, the internal heavy meson with the light
flavor j must be a B;f since there is no B — BGoldstone
coupling in the Lagrangian or the current. On the other
hand, the internal heavy meson involving the light flavor
k can be either B, or Bj. These two cases are distin-
guished by the primed and the unprimed coefficients in
the results. We then obtain the sunset-diagram contribu-
tion to this matrix element as

E;Nf_{B = gl[yB f;*KN (Mjk A(M) AM) 4 5(M))

(N
+ Ty b Fo, (M, A, 500)] (49)

where K and jCNf are the sums (integrals) involved
in the loops, and are defined in Eqs. (BY9) and (B11)—
(B13) in Appendix B. The mass parameters M;;, A®),

and 8%) are defined in Eq. (Al) in Appendix A. The
coefficients § and j' are presented in Table VII in
Appendix D.
Next, we investigate the sunset diagrams for the follow-
ing axial-current transitions involving baryons,
Ty —Su S Sh (50)
where the spectator quark carries the flavor index i. The
quark-flavor flow configurations are shown in Figs. 7-9.

Again, we use the tilded coefficients to denote terms in
which the hairpin structure appears. Because of parity,
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FIG. 7. Quark-flavor flow structure for the baryon sunset diagrams without the hairpin structure. The thick line represents the b
quark, and the thin lines are the valence light quarks, while the dashed line is the sea light quark. The cross is the current Jj;. These
diagrams lead to the x [internal S,; and S, baryons with a = i’, j, k in diagrams (a), (b), (c), respectively], x" (internal 7,,; and S

baryon), and x” (internal S,; and T,; baryons) terms in Eq. (51).
J B> B> k J B> B> k J B B k
b b

(a) (b) (c)

FIG. 8. Quark-flavor flow structure for the baryon sunset diagrams with the hairpin structure involving the spectator quark (flavor 7).
The thick line represents the b quark, and the thin lines are the valence light quarks. The cross is the current J ;.. These diagrams lead to

aj

>~ V¥

the ¥ (internal S;; and S;; baryons), &' (internal 7;; and S;; baryon), and X (internal S;; and T} baryons) terms in Eq. (51).

there are no axial couplings amongst even numbers
of Goldstone mesons, therefore the flavor indices j
and k must appear in the internal baryons. These internal
baryons can be T or S type. Denoting the other flavor index
in the loop by a, we adopt the following convention to
distinguish various possibilities for the internal S and T
contributions:

(i) If the internal baryons are S,; and S, then the
coefficient for the diagram is unprimed.

(ii) If the internal baryons are T,; (left in the loop) and
S, (right in the loop), then the coefficient for the
diagram is primed. Such terms are absent in the 7 —
S transition amplitudes.

FIG. 9. Quark-flavor flow structure for the baryon sunset dia-
grams with the hairpin structure in which the spectator quark
(flavor i) is absent. The thick line represents the b quark, and the
thin lines are the valence light quarks. The cross is the current
Jj- These diagrams lead to the ¥ (internal S;; and S;; baryons),
7' (internal 7;; and S baryon), and §” (internal S,; and T
baryons) terms in Eq. (51).

(iii) If the internal baryons are S,; (left in the loop) and
T, (right in the loop), then the coefficient for the
diagram is ‘“double-primed.”

To keep track of the flow of the spectator quark i in these

processes, we follow the rules:

(1) If the spectator quark flavor is present in the

Goldstone meson, then the diagram corresponds to
a term with x-type coefficient (x, x', x”/, %, X', or &).

(i1) If the spectator quark flavor is absent in the
Goldstone meson, then the diagram corresponds to
a term with y-type coefficient.

In Fig. 7, we show the quark-flavor flow diagrams
containing no hairpin structure. In such flow configura-
tions, the spectator quark flavor always appears in the
Goldstone meson. Therefore, they will only be accom-
panied by the x-type coefficients. Notice that the
valence-valence Goldstone mesons also appear in these
diagrams via the crossing configurations in Figs. 7(b)
and 7(c). The hairpin contributions to the quark-flavor
flow configurations for the processes in Eq. (50) are
shown in Figs. 8 and 9. These two figures are distin-
guished by the presence/absence of the spectator quark
flavour in the Goldstone propagator. Therefore, they
correspond to terms with X¥- and j-type coefficients,
respectively.

Following the above rules in analyzing the quark-flavor
flow structure, the results for the baryon sunset diagrams
can be written as
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(Ny) (Ny) ~(N ) 7
0 = SO 0 A4 0, 9 500, ) 51 o 1 A, A 4507

~(N) - 11(Ny)
FI K (M4 AB, AP 4 50 )}+ gQ{Z[ G K (M0 AP+ 6B, 5D )

G T, i A0, 8215105, K, 01,02 017
(S[zf—)»s,.k = g%{z[xélz{;ik,aK(Miﬂ’ ‘Sgllj)u’ B(alz)u) + ~ng;k achf (M40, aff)u)] + ~(SNf;kchf(Mj w0 655)”)}
:
" g%{Z[xls(:VfS)ik’uK(Mi,a —A® 458 55 )+ ENY Ky (M — AP, 88+ 500 Ky, (M~ AP, 60))
:
Xz[ngfé,laK(Mz By = AP+ 8+ TGN K, (M 0= AP+ 50,)]
ls/(Ns/)A Ko (M,0,— A5 + 555}1,],)}, (51)

where the summations are over the flavors u and u’
in the SU(4|2) theory, and are over the flavors u, s, u/,
and s’ in the SU(6|3) theory. The relevant coefficients are
presented in Tables IV, V, VI, VII, VIII, IX, and X in
Appendix D.

V1. H, — H,m(K) TRANSITION AMPLITUDES

The axial-current matrix elements, presented in the
previous sections, are closely related to those in the
strong-decay amplitudes, such as

B:—B,m, B:—B,K, 3SV—A,m 33,

(52)
Note that, with the exception of Eg‘) — Ay, for bottom
hadrons the above decays are kinematically forbidden in

nature. In HHYPT, the LO and NLO analytic terms for
these decay amplitudes have the same structure as the

FIG. 10. Diagrams contributing to the decay amplitudes in
Eq. (52). The self-energy diagrams leading to wave-function
renormalization of the external particles are not shown in this
figure. The dashed lines are the Goldstone mesons. The single
solid lines denote generically the external heavy hadrons, while
the double solid lines are the internal heavy hadrons. They can be
B, B* mesons or T;;, S;; baryons. The vertices are all from the
axial-coupling terms proportional to g;,3 in the strong chiral
Lagrangian in Eq. (24). Diagrams (a) and (b) are the tadpole and
sunset types, respectively.

matrix elements in Eq. (32). That is, the LO contributions
are all proportional to the axial couplings g, , 3, while the
NLO results are polynomials in the Goldstone masses.
Therefore, we only address the one-loop diagrams for these
decays.

To compute the one-loop amplitudes for the processes
in Eq. (52), one has to calculate the wave-function
renormalization of the Goldstone bosons and the heavy
hadrons, as well as the tadpole and sunset diagrams in
Fig. 10. The Goldstone boson wave-function renormaliza-
tion can be found in standard references such as [6,20],
and the heavy-hadron wave-function renormalization is
presented in Eqs. (47) and (48). The amplitudes from the
sunset diagram in Fig. 10(b) are identical to those from
the corresponding diagram in Fig. 1(c). Therefore, they
are equal to the results presented in Egs. (49) and (51).
The tadpole diagram in Fig. 10(a) differs from that of the
axial-current matrix elements in Fig. 1(b) by a factor of
1/3. That is, one can take the results in Eq. (46), and
multiply them by 1/3 to obtain the corresponding
tadpole-diagram contributions to the decay amplitudes
in Eq. (52). It turns out that the contribution from the
tadpole diagram is exactly cancelled by the contribution
from the wave-function renormalization of the external
Goldstone boson [36]. As is shown in Fig. 2, the tadpole
diagrams provide significant contributions to the axial-
current matrix elements and will lead to significant
differences between the quark-mass dependence of
axial-current matrix elements and that of strong-decay
amplitudes.

These decay amplitudes have also been computed in
Ref. [36], to one-loop order in SU(3) HHYPT in the
infinite-volume limit with A® = A® = (, and without
the SU(3) breaking effects from the Lagrangian in Eq. (26).
Our results agree with those presented in Ref. [36] in the
same limits.
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VII. CONCLUSION

With the expectation of precise data from the LHCb
collaboration and from the potential SuperB experiment,
accurate QCD calculations of quantities involving B me-
sons and single-b baryons will be important in further
constraining flavor physics and in looking for physics
beyond the SM. This is a challenging but necessary task.
In this paper, we have presented calculations for axial-
current matrix elements involving single heavy-hadron
external states in HHYPT at the NLO. We have performed
these computations in partially quenched yPT for both
Ny =2 and Ny = 2 + 1, including finite-volume effects.
Our results are essential for extracting the axial couplings
in HH yPT from experimental data or lattice QCD. These
axial couplings are central quantities in b physics, as they
control the light-quark-mass dependence of b-hadron ob-
servables and determine the strong-decay widths of heavy
hadrons.

We have discussed the SU(2) case in detail, numerically
analyzing the behavior of the various loop contributions for
natural values of the low-energy constants. Based on our
study, we conclude that the SU(2) chiral expansion of the
axial-current matrix elements is well behaved for M, <
400 MeV. This implies that lattice calculations that are
performed in this regime can be used to determine the axial
couplings reliably.
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APPENDIX A: MASS PARAMETERS

In this appendix, we define various quantities appearing
in our results. First, we present the hadron masses,

M2, = By(m, +my), Svs=M2, — Mﬁ,u"

By =M — M2, My=L(M2,+2M2 28} —48%s,),

AM =M. — My, M) =My — My, =My, — My,

AB) =Mg, —Mr,, 65112011 =My, =My, =Ms,, —Ms,,
(A1)

where B, is defined in Eq. (6). As explained in the main
text, AM vanishes in the heavy-quark limit, while A®
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remains nonzero and is of O(Aqcp). In this paper,
we work in the isospin limit, and denote the pion mass
asM,,.

It is useful to define the following quantities which
appear in the hairpin contributions to the flavor-singlet
meson propagators in the SU(6|3) theory.

26— ME, + M3)6s 3

A,, = + -,

(M2, — M3 2
A = 388V, + 2875 — M, + M3,))

Y 26y + 405, — MG, + M)

< 26%

C,.=2360g———V5

u,u Vs M%,u _ MX
Css — 65%/&?(25%/5 - M%,u + M?s) (A2)

25%/5' + 45%/5'5 - Mﬁ,u + M%,s’
(u) _ 25%/S(M§,u B M%,s + 25%/Ss)
u,s ,
(Mgu - M%s)(Mﬁu - M)z()
D(s) _ 25%/SS(M%{,M B M%,s - 25%/5)
u,s ,
(Mz,u - M?s)(Mgs - M)Z()
D(X) — (Mﬁ,u B M)2( B 25%/5)(M§,S B M}zf B 25%/5_?)
(M3, — MR)(M2, — M3) ‘

In the full-QCD limit, where m,, = m, and my = mj,

AL =3 A%P=3

u,u »

c¥P =0 C¥P=o,
DX — 1,

(A3)
D =0

]

D =

]

APPENDIX B: INTEGRALS AND SUMS

In this appendix, we present results of loop integrals and
sums using dimensional regularization, with the ultraviolet
divergences removed by subtracting the term,

2

A=
4—d

— yg + log(dm) + 1, (BD)

where d is the number of space-time dimensions.
This is a commonly used scheme in yPT calculations
[28]. It is different from the MS scheme by the constant
“1” on the right-hand side of the above equation. It can
also be changed into the scheme discussed in Sec. [IVA
straightforwardly. Finite-volume effects in the limit
mL >>1 (m is a generic Goldstone mass and L is the
spatial lattice volume) are computed by replacing the
momentum integrals by sums in the spatial directions.
The one-loop contributions appearing in this work can
all be obtained by investigating the following sums/in-
tegrals,
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dk i m? -
I(m) = u* A
(m) = p* Qm)¢ k? — m? + ie 1672
4—d d : 2
. M dk lkpk,, 8pv —<2A 2) ] (B2)
LA) = (g7 — vPv” + 8or 3;(Z2E -2 )a |,
Flm &)= (g = vPv )[(d D40 KR -t ie)v - k—A+ie) 162 \3 "

where u is the renormalization scale, and the symbol

id"k

means performing the sums in three spatial directions using the Poisson summation formula, followed by dimensionally
regularizing the infinite-volume integrals.
We can further separate the infinite-volume limit of J and F from the finite-volume contributions,

I (m) = I(m) + Ipy(m), F(m) = F(m, A) + Fry(m). (B3)

The functions I and F are results from the ordinary one-loop integrals,

m? m?> -1 , 2A7 m? 10A%  4m? 2(A2 —m?) A
o) == 1og(M2), Fim,A) 1677_2[<m . )Alo <#2) ( - )A . mR(m)], (B4)

with

R(x) = Vx? — 1[log(x — Vx> — 1 + ie) — log(x + Vx> — 1 + ie)]. (B5)

The function F(m, A) does not vanish in the m — 0 limit unless A = 0. One can adopt the scheme discussed in Sec. IVA
by simply rewriting F as F®'? defined in Eq. (43), and the real part of the function F") is zero in the chiral limit for
arbitrary A.

For] lthe case in which the external hadrons are stable particles, the finite-volume pieces can be shown to be
[9,37]

mL>>l mir —umL 3 _ 15 (I:L:r)}
Iey(m) = A2 Z umL) = 472 z VZM (uL) X {1 * 8umL  128(umL)? +O umL ’

i |%| sm(ulle) m? mL>1 —M? = e~ 4k
F A A+ = A,
rv(m ) = 1272 ZML ,[o ( ) 24 2 uL

\/ B2+ m?+ A VIE? + m? G

where ii = (uj, u, uz) with u; € 7, u = il and

(B6)

A = @)1 — Erf(2)] + (ﬁ)[ (_ - %) (— - 2z2>e(12)[1 - Erf(z)]]
Z
3

- <MJ1L)2[\/LE<— % 4 131—§ 91% ) - (—% + %S)e&z)[l - Erf(z)]] + @(ﬁ) (B7)

with

"Similar formulas for finite-volume effects are also obtained in Ref. [38].
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7= (é) uml (B8)
m 2

Higher-order terms in the 1/(umL) expansion in Eq. (B7)
can be easily calculated. The integer u; can be interpreted
as the number of times that the pion wraps around the
spatial volume in the i direction.

The functions appearing in our one-loop results are

aF(m, A)

H(m, A) = f?T and
.T(m: Al) - f(m: AZ)
Kim, Ay, A,) = ,
(m, Ay, Ay) A - A,
ol
]n/(m) = %; (B9)
H,(m, A) = %, and
oK (m, Ay, A
Ko(m, A, Ay) z%.

Notice that

K(m, A A) = Al/imA.’K(m, A A= H(m A). (BI10)

To present the residual flavor-singlet hairpin contributions
in a compact form, we define three functions,

Hy,(m A), and Ky (m, A, A,).
(B11)

I Ny (m),

They take the explicit form

I,(m) = I(m) + 25%/3177/(’"),
Hy(m, A) = H(m, A) + 28%5H ,(m, D),
I (m, Ay, Ay) = K(m, Ay, Ay) + 2835, i(m, Ay, Ay),
(B12)

in the SU(4[2) theory (N, = 2) where the mass m in the
arguments is always equal to M, ,, and
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T3(M ) =8, ,{Au s I(M, ;) + (1= A, ) T (My)
+Cop Iy (M)}
+ (1= 8, HD) I(M, )
+ D, I(My,) + D) I(My),
j;[S(Ma,br A)=8,,{Au, H (M, A)
+(1— Ay ) H (My, A)
+CopH (M, A)}
+ (1= 8, {D H (M0 )
+ D) 3 (M, , A) + D) H (My, A)},
K3 (M Ay Ay) = 8, 1 {A, K(M,, 4, Ay A)
+(1—A,,) KMy, AL, Ay)
+ Cop Koy (M, Ay, Ay)}
(1= 8, MO KMy 81, o)
+ D) KMy A1, Ay)
+ D(jfZK(MX, AL Ay}
in the SU(6/3) theory (N, = 3).

(B13)

TABLE III. ~ Coefficients for §;; baryon wave-function renor-
malization, in Eq. (48), in the isospin limit.
a u s u s/
=1
Wi, U, el 0 ! 0
~ /(2) ~1(2)
WSa + Us,a 0 0 0 0
(2) (2) 1
Wsawa T 1S 2 0 ! 0
~(2) ~(2) -1
Wsuwa + usm 2 0 0 0
-1 1
Wi, Ul el 0 ! 2
~ /(3) ~/(3)
Wsuu a + Sauwa 0 0 O O
(3) (3) 1 1
WS a + Us,a 2 0 ! 2
~(3) ~(3) -1
Wsawa T S0 3 0 0 0
—1 1 1
0 < a z
~ -1
wgi),a s 0 0 0
¢ 0 % %
.!L!’a
- 1 -1
1 1 1
WS, 0 i 3 i
~ =1
W?fa = 0 0 0
0 % 0 % :i
.\ld’a
ﬁ(s3) . - o 0 0
W@, | o # ! %
~ /(3) ~1(3)
wS»,b\.,a + MSA.‘,a 0 0 0 0
1 1
w g, 0 2 ! 2
~3) L, =0 =1
WS\\,a + uS‘\,a 0 3 0 0
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TABLE IV. Coefficients xj;y, in Eq. (51), in the isospin limit.
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APPENDIX C: COEFFICIENTS FOR

a u s o s’ WAVE-FUNCTION RENORMALIZATION
() — — . . . .
T Suasa ! 0 ! 0 In this Appendix, we present the coefficients in Egs. (47)
_ _ -1 . . . L
(Ti,)”,sl,‘/,a ! 0 1 2 and (48) relevant to the matrix elements investigated in this
R -1 0 -1 3 work. These coefficients are summarized in Tables I, II,
S S 5 -1 5 and III. Because of isospin symmetry, it is not possible (or
duSds» .. 5 .
O = = —1 5! necessary) to distinguish between the w and u coefficients
sur9ssrd
(2) =l 0 -1 0
x . LNy
CpSaat 2 0 2 _,  TABLE VIIL.  Coefficients x;,I”L in Eq. (51). Because of the
SauSaana 2 2 41 isospin symmetry, some of them cannot be distinguished from
©) =1 = =1 . AN (N
XS, Sura 2 0 2 4 their y(Hlf )Hz counterparts. For such cases, we present x(H]f ;, +
©) = -1 =l =1 (~N)) ’ 2
SrSas 4 4 2 4 SVVS :
S a M M 2 5 Vu .y, in the table.
XSS 4 4 2 4
a u s u' s
52)
. /(N/) . . . . .. ~£r2(1)mszmva 0= }’T““'S“" 0 0 0
TABLE V. Coefficients Xp, g, 0 Eq. (51), in the isospin limit. X(T3) ) 0— 9(73) s 0 0 0
= diSddra < LdwOdd
a u s u' s X%?,,S‘/a 0 é( ) 0 0
~(3
oo 0 0 -1 0 s 0(3) 0= 31,5 0 0
durOdd @ 2 1_ ~(2)
N 0 - 3 . | 0 oo
- E o G
x’s) Ssa % 71 -1 71 XSt Saara 37 YSuuSu 0 0 0
1 2 - ’ o 1 0 0 0
X/S(%)Sa 2 El : 2 x(:’)‘r“ ? 1 ~1(2%)
jimrsa.\ﬂ 6(3) 6 ySm,,S‘“ 0 0
N 13 1
1N y) 35 5,00 6§~ YsuSs 6 0 0
TABLE VI. Coefficients le‘sz in Eq. (51), in the isospin limit.
a u s u s (N
> TABLE IX. Coefficients )Z,SI’;Z in Eq. (51). Because of the
/N — . . ’ . . .
XT g0 Susva 0 0 ! 0 isospin symmetry, some of them cannot be distinguished from
3 — =1 . N (N
%(,”?s(,d,a 0 0 ! 2 their f(,lff),z counterparts. For such cases, we present x;,],;Z,q +
13) 0 0 -1 = LINp) . he tabl .
T;g)s.\mﬂ 1 ] 1 Y, m, in the table.
u =L s —_ =i
TgusSapa 2 2 : 2 ; )
10 —71 % —1 —71 a u K u s
Ty Sypa
_ 2/(2) — 5@
xg‘f’)&m’fl 0 0 1 0 SaurSaaa@ 0 ys"‘“s"" 0 0 0
_/Sfu)s a 0 0 -1 _TI ~l5§3) Saara 0- yg(i)vs(m 0 0 0
durOdd> D dd>
— —1 ~/(3) 1
X/Slfi)S.u/,a 0 0 I z Sy Seara 0 6(%) " ’
—1 1 _ —1 ~/(3) VAS
S, | 2 : | * Al o 0= 00
: -1 1 _ -1 ~(3) = QY 1
6050 E3 2 ! 7 s T Iss, 0 0
. LNy N N . . .
TABLE VII. Coefficients y(Hlf ;,2, y F(, ff), ,and ¥ H(p [,)’ in Egs. (49) and (51). Because of the isospin symmetry, some of these coefficients

o W -
cannot be distinguished from their le{ n, counterparts. For such cases, the values are denoted +X in the table, and are presented

. LN
together with the corresponding x;,lf ;,

5(2) S503) S0) 5(2) S03) S0) S0) S503) S2) S3) S03) S03) S503)
)B,,VB:, meBL VB,.B; VT4 Saa VT4 Saa VTS VT4 Sas VTS5 VS uuSaa YSawSaa VS 0Sa VS guSas DA
_ -2 -2 < ~ -1 = = ~ 1 ~ ~
1 5 =5 +X +x < +X +X +X +X v +X +X
~1(2) ~/(3) ~/(3) ~/(2) ~I(3) ~I(3) ~I(3) ~/(3)
YB,.8, YB,.B, VB,.B: SaurSaa VS turSaa VS Sa SuurSas VS8
1 1 1 5! 5! -1 5! %!
3 3 3 +X +X 3 +Xx +Xx
~11(2) ~1(3) ~11(3) ~I1(3) ~11(3) ~11(2) ~11(3) ~11(3) ~11(3) ~11(3)
VT Sua TS VTS VTS VTS VS Saa SawSaa SuSed VS S SoSes
+3 +3 % +& +3 +3 +3 2 +3 +5
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TABLE X. Coefficients &y 7
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in Eq (51) Because of the isospin symmetry, some of them

~/(Ny)

cannot be distinguished from their yH ;1 counterparts. For such cases, we present X ; +
I
yH( ,’, in the table.
a u s W g
~11(2 _ =)
/7{51,?5'.1.1 a 0 deuvs.u 0 0 0
~1(3) ~I(3
T Saara 0= yTI Su 0 0 0
G =l 1
TS 3 3 5 0 0
=13 _ Sl
x;{f/u?sm a 0 0 VT 4054 0 0
~11(3) 0— ~//(3 0 0 0
T Sss0a (2)
~11(2) I
SauwSaa-a 0~ yS(r )Su 0 0 0
~/(3) =13
SaurSaa-a 0-5 SauSaa 0 0 0
~11(3) 0 1 0 0
SuSeaa 6 o
~/1(3 1 =1 _
gi )54 a 3 3 VS uurSas 0 0
~//(3) 0 S13) 0 0 o
S Syea Sour

for some of the hadrons in the current study. For such cases,
we simply present w + u in the tables.

In
Eqgs.

(1]

(2]
(3]

(4]

APPENDIX D: COEFFICIENTS FOR THE
SUNSET DIAGRAMS

this Appendix, we present the coefficients in
(49) and (51) relevant to the matrix elements

investigated in this work. Because of the isospin symmetry,
it is impossible to distinguish between some ¥ coefficients
and their ¥ counterparts. For such cases, we put the
symbol +X in Table VII, and then present ¥ + y in
Tables VIII, IX, and X in the form that X is written as
(number-¥).
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