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Bottomonium S-wave states were studied using lattice NRQCD. Masses of ground and excited states

were calculated using multiexponential fitting to a set of correlation functions constructed using both local

and wavefunction-smeared operators. Three-point functions for M1 transitions between vector and

pseudoscalar states were computed. Robust signals for transitions involving the first two excited states

were obtained. The qualitative features of the transition matrix elements are in agreement with

expectations. The calculated values of matrix elements for �ð2SÞ and �ð3SÞ decay are considerably

larger than values inferred from measured decay widths.
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I. INTRODUCTION

The bottomonium � was discovered in 1977 [1,2] and,
remarkably, it took 30 years before its pseudoscalar partner
�b was observed [3,4]. The measurement of the branching
ratio for radiative decay of�ð2SÞ and�ð3SÞ to �b presents
an opportunity to test calculational methods where the
decay amplitude depends entirely on small effects: spin-
dependent interactions, recoil and relativistic corrections.
In this paper we present a first pass at the calculation of the
excited Upsilon radiative decays using lattice NRQCD[5].

To understand the challenge of excited Upsilon decays,
it is useful to consider first the amplitude for the magnetic
dipole (M1) transition between vector and pseudoscalar
states in the nonrelativistic quark model[6,7]

M ðnS ! n0SÞ
Z 1

0
Rn0 ðrÞRnðrÞj0ðqr=2Þr2dr (1)

where RnðrÞ is the radial wavefunction for the S-wave state
with principal quantum number n and q is the photon
momentum. In a transition between states with the same
principal quantum numbers n0 ¼ n, for example, ground
state to ground state, the radial wavefunctions of the vector
and pseudoscalar mesons are very similar. The overlap
integral is close to 1. However, when n0 � n the wave-
functions are orthogonal in the extreme nonrelativistic
limit. For these so-called hindered transitions the ampli-
tude is highly suppressed and depends on the interplay of
small effects coming from spin-dependent interactions,
effects of recoil and relativistic corrections [6–8].

The use of lattice QCD methods to calculate the ampli-
tude for vector meson radiative decays was suggested long
ago [9,10]. Recently, interest in this application of lattice
QCD has been revived and charmonium has been studied
in detail [11–13]. A number of different ground-state to
ground-state transition amplitudes have been calculated
involving not just S-wave but also P-wave states [11,13].

In Ref. [12] radiative decays of excited charmonium states
were also considered. Excited states appear as nonleading
contributions to lattice QCD meson correlation functions.
This, combined with the suppression of the hindered M1
amplitude, makes it a challenge to achieve good statistical
accuracy for these decays (see Table III in Ref. [12]).
The application of lattice QCD to excited states is now a

very active research area. A primary goal of this work is to
see how well we can extract the excited state signal buried
under the dominant ground-state contribution. One way to
deal with this problem is to use a variational method
[14,15] with an appropriate (and large) set of basis opera-
tors. An alternative which has been applied successfully to
the calculation of the spectrum of bottomonium is to use
constrained multiexponential fitting [16] to get the subdo-
minant contributions. This method can work well if the
lattice simulation data have high statistical precision (see,
for example, Ref. [17]). The gauge field ensemble used in
this study is quite small, only 192 configurations, but we
reduce the statistical fluctuations by using multiple time
sources per configuration and by employing a spatial wall
source. This allows the extraction of robust signals for the
2S and 3S excited states.
Section II outlines the lattice QCD simulation. The

gauge field configurations come from a 2þ 1 flavor dy-
namical simulation and were provided by the PACS-CS
Collaboration [18]. The b quarks are described using a
standard Oðv4Þ lattice NRQCD action [5,19,20] with
Landau link tadpole improvement. Two-point correlation
functions of pseudoscalar and vector operators are dis-
cussed in Sec. III. Two-point function fit parameters, simu-
lation energies and overlap coefficients were obtained, and
these are used unchanged in subsequent three-point func-
tion fits. As a check of the calculation the simulation
energies for the lowest three states from our multiexpo-
nential fits were compared to the variational analysis that
could be done with our limited basis set. Good consistency
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was obtained. As well, the overlap coefficients for the
lowest three Upsilon states were used to estimate leptonic
decay widths with reasonable agreement with experiment.
Three-point functions and transition matrix element results
are discussed in Sec. IV. A summary is given in Sec. V.

II. LATTICE SIMULATION

The lattice gauge field configurations were generated
and made available by the PACS-CS Collaboration [18].
The 2þ 1 flavor dynamical simulation used the Iwasaki
gauge field action (� ¼ 1:90) and the clover-Wilson fer-
mion action. We use only the ensemble which is nearest the
light-quark physical point with pion mass 156 MeV. The
light and strange hopping parameters are �u=d ¼ 0:13781
and �s ¼ 0:13640. The number of lattice points is
323 � 64 and the lattice spacing a ¼ 0:0907ð14Þ fm was
determined by PACS-CS [18] (along with the light and
strange hopping parameters) using the pion, kaon and ��
baryon masses as input, i.e., heavy-hadron input was not
used in setting the scale. The number of gauge field con-
figurations used was 192 (out of 198 available). For the
tadpole-improved NRQCD calculation the average link in
Landau gauge was used. The numerical value was esti-
mated to be 0.8463.

The heavy quark is described using lattice NRQCD
[5,19,20]. The exact form of the Hamiltonian may be found
in the Appendix of Ref. [21]. Terms up toOðv4Þ are kept in
the nonrelativistic expansion which in the notation of [21]
means ci ¼ 1 for i � 6 and ci ¼ 0 for i � 7. The b-quark
bare mass was determined by fitting the kinetic mass to the
observed mass of �b and takes the value 1.945 in lattice
units. The stability parameter n appearing in the
Hamiltonian was taken to be 4 in line with Ref. [17].

The simplest operators to use to describe the pseudosca-
lar and vector states are the local ones which take the form
OðxÞ ¼ �ðxÞ�c ðxÞ where c ðxÞ and �ðxÞ are nonrelativis-
tic quark and antiquark fields with � equal 1 (�) for
pseudoscalar (vector) mesons. To calculate ground-state
properties a smearing of the local operators, such as
Jacobi smearing[22], is often used to damp out the high-
energy modes created by local operators. However, for
investigating excited states it is more advantageous to
include operators which suppress the ground state. For
this, wavefunction smearing [19] is useful. The smeared
operator takes the form OðxÞ ¼ P

y�ðxÞ��ðx� yÞc ðyÞ
where an effective smearing function was found to be [17]

�ðrÞ ¼ ð1� r=ð2a0ÞÞe�r=ð2a0Þ (2)

which has the profile of the Coulomb S-wave first-excited
state wavefunction. The parameter a0 was taken to be 1.4
(lattice units). In addition to the smeared operator a
doubly-smeared operator where the wavefunction smear-
ing was applied to both quark and antiquark fields was
included. Our complete set of meson operators consisted of
three types: local (l), smeared (s) and doubly-smeared (d).

In order to use the nonlocal smeared operators without
gauge links connecting the quark and antiquark the gauge
field configurations were fixed to Coulomb gauge.

III. TWO-POINT FUNCTIONS

In NRQCD the correlators of the meson operators do not
give the hadron mass directly. The simulation energy ex-
tracted from the zero-momentum correlation function must
be combined with the renormalized quark mass and energy
shift to get the meson mass. Alternatively the kinetic
energy can be used to determine the meson mass. This is
the method used here for tuning the b-quark mass to
reproduce the mass of �b. Correlators of the local pseudo-
scalar meson operator projected onto different values of
momentum were calculated. Using the relation

EðpÞ � Eð0Þ ¼ ðp2 þM2
0Þ1=2 �M0 (3)

the hadron massM0 can determined. Using this method we
arrive at a bare quark mass value of 1.945(4). The quoted
error in this value reflects the uncertainty in the fit deter-
mining the kinetic mass. As well, there is a 1.5% uncer-
tainty due to the uncertainty of the lattice spacing
determination. The kinetic energy and the fit that deter-
mines M0 at our nominal bare mass are shown in Fig. 1.
The momenta used were (0, 0, 0), (1, 0, 0), (1, 1, 0) and
(1, 1, 1) in units of 2�=La where La is the spatial extent of
that lattice.
Using the determined value of the bare b-quark mass

two-point correlation functions (including cross correla-
tors) of the three operator types l, s, d were calculated for
pseudoscalar and vector channels. Our lattice has 64 time
sites but it is not useful to construct correlators over the
entire time extent. The correlators are limited to maximum
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FIG. 1. Kinetic energy of the pseudoscalar meson at b-quark
bare mass Ma ¼ 1:945 versus momentum squared. The line is a
fit with Eq. (3). The �2=d:o:f: is 0.2.
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time separation t� ts of 27. Since the maximum time
separation is considerably smaller than the lattice time
extent and the nonrelativistic propagators depend only on
the gauge field links on time slices between source and sink
it is very effective to use multiple time sources on each
gauge configuration. Sixteen sources, uniformly distrib-
uted in time, were used in this calculation. To further
reduce statistical fluctuations a random wall source (see,
for example, [23]) was used. In addition to zero-
momentum pseudoscalar and vector meson correlators,
pseudoscalar correlators with momentum corresponding
to (1, 0, 0) and (2, 0, 0) were calculated. These are needed
for the analysis of the three-point functions.

Using subscripts o and o0 (o; o0 ¼ fl; s; dg) to denote
source and sink operators, the correlation functions

goo0 ðtÞ ¼ hOo0 ðtÞOy
o ðtsÞi (fixed source time ts) are fit with

N time-dependent exponentials

goo0 ðtÞ ¼
XN
n¼1

co0 ðnÞcoðnÞe�Enðt�tsÞ: (4)

The constrained multiexponential fitting method [16,17]
was used. All time points (except the source) were in-
cluded. Using only loose constraints fits are very stable
even with a large number of exponential terms. Figure 2
shows a representative sample of correlation functions and
fits, in this case for the zero-momentum vector channel
with a simultaneous fit using 10 terms.

The lowest four simulation energies for zero-momentum
pseudoscalar and vector channels are shown in Fig. 3 for
fits with 6, 8 and 10 terms. The lowest three states, which
are of interest for our three-point function calculation, are
quite robust. Differences of the zero-momentum simula-
tion energies are just mass differences and these are shown
for the lowest Upsilon states in Fig. 4. The results are in
reasonable accord with experimental values [24].

The mass difference between � and �b was also calcu-
lated. For the ground states, our result is 56(1) MeV where
the error is dominated by the uncertainty in the lattice
spacing. This value is essentially independent of which
fit is used and consistent with values obtained by others
[20,25] using the Oðv4Þ lattice NRQCD action. It is some-
what smaller than the PDG average [24] 69:8� 2:8 MeV
of the experimentally observed values [3,4,26]. It is a
common feature for lattice simulations of heavy quark
systems to underestimate the spin splitting and some issues
have been discussed in the context of lattice NRQCD in
recent studies [27,28].

A popular way to determine excited state energies is the
variational method [14,15] (for an extensive recent discus-
sion see [29]). The correlator matrix is diagonalized at each
time and the time-dependent eigenvalues then give an
optimal estimate of the time evolution of individual states.
The evolution is calculated with respect to some reference
time t0 > ts which should be chosen large enough so that
the number of basis operators is comparable to the number
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FIG. 2 (color online). Zero-momentum vector correlation
functions for different operator combinations. Symbols
are simulation values and lines are the result of a fit with
ten exponential terms. Except for some points with the ss
operator combination, statistical errors are smaller than the
symbols.
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FIG. 3 (color online). The simulation energies of the four
lowest pseudoscalar and vector states from a multiexponential
fit to the two-point functions with 6, 8, and 10 terms.
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of contributing states. Our operator set is too small to use
this method effectively but it is of interest nonetheless to
compare this method with the results of the multiexponen-
tial fit. Figs. 5 and 6 show the effective mass plots for the
eigenvalues �kðtÞ which are solutions of the generalized
eigenvalue problem (with t0 ¼ 4)

gðtÞfkðtÞ ¼ �kðtÞgðt0ÞfkðtÞ (5)

where fkðtÞ is the eigenvector. For higher states only a
limited number of time steps are available before the
effective mass degenerates into noise. The lines on the
plots show the simulation energies from the 10-term multi-
exponential fit. For the ground and first-excited states,
where a meaningful comparison is possible, there is com-
plete consistency.
The overlap coefficients in the vector channel provide

another test of the calculation. They can be used to deter-
mine the partial width for Upsilon states to decay into
lepton pairs and this can be compared to experimental
values. The decay width can be expressed in terms of the
wavefunction at the origin �nð0Þ as (see [20])

�ð�ðnSÞ ! eþe�Þ ¼ 16

9
�	

j�nð0Þj2
M2

�ðnSÞ
Z2
match (6)

where 	 is the electromagnetic coupling constant and the
matching factor Zmatch relates the lattice vector current to
the renormalized continuum current. With nonrelativistic
normalization of states, �ð0Þ is related to the overlap

coefficient of the local vector operator by �ð0Þ ¼ cl=
ffiffiffi
6

p
.

The results from our calculation are shown in Table I. The
matching factor Zmatch has not been calculated for the
version of lattice NRQCD that we use so the leading order
value of 1 has been assumed. Hart et al.[30] have computed
that matching coefficient for lattice NRQCD with stability
parameter equal 2. Using their result as a guide we might
expect effects from matching of about 5% but without an
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FIG. 6 (color online). The effective mass of the eigenvalues
from a variational analysis of the correlator matrix for the vector
meson. The lines show the simulation energies for the lowest
three states from the 10-term multiexponential fit.
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FIG. 4 (color online). Mass difference between the Upsilon
ground state and the first two excited states using results of 6, 8
and 10 term multiexponential fits. The dashed lines show ex-
perimental values using data from [24].
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FIG. 5 (color online). The effective mass of the eigenvalues
from a variational analysis of the correlator matrix for the
pseudoscalar meson. The lines show the simulation energies
for the lowest three states from the 10-term multiexponential fit.
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actual calculation it is not possible to say with certainty
which way they would go. Given this state of the calcu-
lation, consistency with experiment is reasonable.

IV. THREE-POINT FUNCTIONS

Three-point functions describing the vector to pseudo-
scalar transition induced by a current operator insertion are
constructed using a sequential source method. The transi-
tion operator is taken here to be just the leading nonrela-
tivistic operator � which acting on a quark (or antiquark)
converts a vector state to a pseudoscalar (or vice versa).
Starting with a vector (pseudoscalar) source at ts the quark
propagator is evolved to some maximum time T at which a
pseudoscalar (vector) operator is applied. This quantity is
then evolved backward in time. At intermediate times ts <
t0 < T the current operator is inserted and evolution is
continued to complete the quark antiquark loop at the
source. Appropriate momentum projections are applied at
the source, sink and current insertion to ensure momentum
conservation. The vector meson is always projected to
have zero momentum; the pseudoscalar recoils against
the momentum carried by the current.

With a vector operator at the source and pseudoscalar at
the sink the three-point function is expected to have the
form

GðVPÞ
oo0 ðt0;TÞ ¼

X
n;n0

cðVÞo ðnÞAðVPÞ
nn0 c

ðPÞ
o0 ðn0Þe�EðVÞ

n ðt0�tsÞe�EðPÞ
n0 ðT�t0Þ

(7)

where the subscripts o, o0 indicate the type of smearing
used (l, s or d). The overlap coefficients and simulation
energies are the same ones that appear in the two-point
function but now have a superscript attached to distinguish

between vector and pseudoscalar states. The quantity AðVPÞ
nn0

is the matrix element of the transition operator between the
vector state n and the pseudoscalar state n0. This is iden-
tified with the wavefunction overlap appearing in (1). The
three-point function with pseudoscalar source and vector
sink has the same form with V and P labels reversed. The

matrix elements AðPVÞ
nn0 are related to those appearing in (7)

by AðPVÞ
nn0 ¼ AðVPÞ

n0n . The matrix elements can be determined

by fitting the t0 dependence of the three-point function for a
fixed T.
If the spin-dependent interaction terms in the NRQCD

Hamiltonian, which are nonleading in the nonrelativistic
expansion, were omitted and pseudoscalar meson recoil
momentum set to zero, the three-point functions would be
independent of t0 and numerically equal to the two-point
functions at time separation T � ts for all T. The solution

for the matrix elements would be trivial AðVPÞ
nn0 ¼ 
nn0 , the

same as for the wavefunction overlap (1) in the extreme
nonrelativistic limit [7].
Three-point functions were computed for three values of

pseudoscalar recoil momentum corresponding to (0, 0, 0),
(1, 0, 0) and (2, 0, 0) and for two source-sink time sepa-
rations T � ts equal to 27 and 19. All combinations of
operator types l, s, d were calculated but in the analysis
only the combinations ll, ls, sl, ld, dl, ss were used. Fits
were done both including and excluding the ss operator
combination. The other combinations were noisy and not
useful in pulling out the excited to ground-state transitions
that are of interest here.
The two-point functions were fit with many exponential

terms in order to get a stable result for the lowest few
states. For the three-point function with large source-sink
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FIG. 7 (color online). Three-point correlation functions with
vector source and pseudoscalar sink at time separation T � ts
equals 19 for different operator combinations. Symbols are
simulation values and the lines are the result of a simultaneous
fit. The t0 fit range is 4 to 17.

TABLE I. Decay amplitude and partial width for Upsilon
leptonic decay. The experimental values �exp are from the

Particle Data Group [24].

State a3=2�ð0Þ � [keV] �exp [keV]

�ð1SÞ 0.18418(7) 1.16(2) 1.34(2)

�ð2SÞ 0.1397(33) 0.595(28) 0.612(11)

�ð3SÞ 0.156(24) 0.70(21) 0.443(8)
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separation the contribution of the high-lying states is
highly suppressed and neglected in the fit of the t0 depen-
dence. Only the lowest three states were considered and the
nn0 combinations included in the sums in (7) were 11, 12,
21, 13, 31, 22. As a test of the robustness of the results
some five-parameter fits, excluding the 22 term, were done.
The time fit range was taken to be ts þ 2< t0 < T � 2. The
fits using two-point function parameters, overlap coeffi-
cients and simulation energies, determined using ten terms
are given here. Using eight-term two-point function pa-
rameters gives essentially the same values. The six-term
two-point function parameters lead to slightly different
results but we do not consider six terms to be sufficient
for the two-point function fit. The determination of the
matrix elements is done by a simultaneous fit to a set of
three-point functions. Statistical errors are estimated using
a bootstrap analysis. Some representative three-point cor-
relation functions and fits are given in Figs. 7 and 8 for T �
ts equal to 19 and in Figs. 9 and 10 for T � ts equal to 27.

The results for the three-point matrix elements are given
in Tables II, III, and IV for different values of recoil
momentum. For T � ts ¼ 19 the 2 to 2 transition is clearly
necessary to get results that are consistent with the larger

time separation. For the excited to ground-state transitions,
that are of primary interest, there is very good agreement
between results using the shorter and longer time
separation.
The results from the T � ts ¼ 19 analysis with a six

parameter fit are plotted in Figs. 11 to 13 as a function of
momentum. In Fig. 12 the matrix elements inferred from
the measured �ð2SÞ and �ð3SÞ to �b partial widths [3,4]
are also shown at the physical momentum for these decays.
The features of the results are easily understood. The
matrix elements for the �ð1SÞ to �bð1SÞ and �ð2SÞ to
�bð2SÞ transitions are close to 1 since the wavefunctions
of the states involved are very similar. The�ð1SÞ to�bð1SÞ
matrix element decreases only very slowly with recoil
momentum which reflects the small size of bottomonium.
The excited to ground-state transitions have matrix ele-
ments that are small in magnitude due to near orthogonal-
ity of wavefunctions. The relative negative sign of� ! �b

and �b ! � reflects the fact that the dominant spin-
dependent quark antiquark interaction acts with different
sign in pseudoscalar and vector states. The recoil effect
contributes positively to all transitions (see, for example,
[7]) which explains the momentum dependence.
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FIG. 8 (color online). Three-point correlation functions with
pseudoscalar source and vector sink at time separation T � ts
equals 19 for different operator combinations. Symbols are
simulation values and the lines are the result of a simultaneous
fit. The t0 fit range is 4 to 17.
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FIG. 9 (color online). Three-point correlation functions with
vector source and pseudoscalar sink at time separation T � ts
equals 27 for different operator combinations. Symbols are
simulation values and the lines are the result of a simultaneous
fit. The t0 fit range is 4 to 25.
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The calculated matrix elements are large compared to
the empirical values inferred from the measured partial
widths. However, there are a variety of improvements
that are needed before definitive conclusions can be drawn.
The lattice vector current operator has to be matched to the
renormalized continuum current as discussed in connec-
tion to Upsilon leptonic decay [20,30]. Relativistic correc-
tions are not incorporated into the transition operator and
these are likely to be important for the hindered excited
state decays [7]. As well, one might ask aboutOðv6Þ terms
[27] and radiative corrections (beyond tadpole improve-
ment) to spin-dependent interactions in the Hamiltonian
which have been shown to have a noticeable effect on the
�� �b mass splitting [28]. Finally, there is the question of
continuum extrapolation which this calculation, done at a
single lattice spacing, can not address.

There are other systematics that we can not deal with
quantitatively but which it is reasonable to think are small.
Bottomonium has only heavy valence quarks so extrapo-
lation to the physical point for up and down quarks comes
in only through the influence of sea quarks on the gauge
field. Since the simulation is done very near the physical
point, with quarks which give a pion mass of 156 MeV, it
would be surprising if a simulation at the physical point

would be much different. Finite volume can also lead to a
significant systematic effect in lattice simulations but is
unlikely to be the case here. The size of bottomonium is
much smaller than the spatial lattice size so finite volume
effects arise indirectly through light quarks in the sea. We
do not have any estimates of this effect. However, finite
volume effects have been studied for heavy-light mesons
[31]. For our lattice size they are very small and it is
reasonable to expect them to be even smaller for
bottomonium.
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FIG. 10 (color online). Three-point correlation functions with
pseudoscalar source and vector sink at time separation T � ts
equals 27 for different operator combinations. Symbols are
simulation values and the lines are the result of a simultaneous
fit. The t0 fit range is 4 to 25.

TABLE II. Three-point matrix elements from simultaneous fits
to Ncf correlation functions and with different numbers of
parameters at zero recoil momentum.

Ncf AðVPÞ
11 AðPVÞ

21 AðPVÞ
31 AðVPÞ

21 AðVPÞ
31 AðVPÞ

22

T � ts ¼ 19

10 0.916(2) �0:043ð7Þ �0:069ð6Þ 0.090(7) 0.052(5)

10 0.915(2) �0:068ð2Þ �0:050ð4Þ 0.072(4) 0.065(3) 1.11(31)

12 0.915(2) �0:068ð3Þ �0:050ð4Þ 0.071(4) 0.065(3) 1.11(23)

T � ts ¼ 27

10 0.916(2) �0:062ð7Þ �0:056ð7Þ 0.075(7) 0.059(6)

10 0.916(2) �0:068ð3Þ �0:050ð6Þ 0.071(3) 0.062(4) 2.1(2.2)

12 0.916(2) �0:068ð3Þ �0:051ð6Þ 0.071(4) 0.062(4) 1.9(1.8)

TABLE IV. Three-point matrix elements from simultaneous
fits to Ncf correlation functions and with different numbers of
parameters at two units of recoil momentum.

Ncf AðVPÞ
11 AðPVÞ

21 AðPVÞ
31 AðVPÞ

21 AðVPÞ
31 AðVPÞ

22

T � ts ¼ 19

10 0.878(1) �0:010ð6Þ �0:055ð6Þ 0.116(7) 0.066(6)

10 0.877(1) �0:030ð4Þ �0:041ð6Þ 0.101(5) 0.078(6) 1.01(25)

12 0.877(1) �0:031ð4Þ �0:041ð6Þ 0.102(5) 0.078(6) 1.02(20)

T � ts ¼ 27

10 0.878(1) �0:026ð6Þ �0:041ð8Þ 0.104(6) 0.066(8)

10 0.878(2) �0:031ð4Þ �0:037ð8Þ 0.101(5) 0.070(6) 1.9(1.8)

12 0.878(2) �0:029ð5Þ �0:039ð7Þ 0.100(5) 0.068(6) 1.0(1.6)

TABLE III. Three-point matrix elements from simultaneous
fits to Ncf correlation functions and with different numbers of
parameters at one unit of recoil momentum.

Ncf AðVPÞ
11 AðPVÞ

21 AðPVÞ
31 AðVPÞ

21 AðVPÞ
31 AðVPÞ

22

T � ts ¼ 19

10 0.908(1) �0:042ð8Þ �0:060ð8Þ 0.095(7) 0.057(5)

10 0.907(1) �0:062ð6Þ �0:047ð7Þ 0.079(4) 0.068(5) 0.92(27)

12 0.907(1) �0:062ð6Þ �0:047ð7Þ 0.079(5) 0.067(5) 0.95(21)

T � ts ¼ 27

10 0.908(2) 0.057(8) �0:052ð9Þ 0.082(6) 0.063(6)

10 0.907(2) 0.061(5) �0:048ð8Þ 0.079(4) 0.066(6) 1.6(1.9)

12 0.907(2) 0.061(5) �0:048ð8Þ 0.079(5) 0.066(6) 1.6(1.5)
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IV. SUMMARY

Bottomonium S-wave states were studied using lattice
NRQCD focusing on the low-lying excited states. It was
found that using a set of operators, including smeared
operators which suppress the ground-state contribution to
the correlation functions, robust results for the lowest few
states could be obtained. Constrained multiexponential
fitting [16] was used for the analysis of two-point correla-
tion functions. As a check, an analysis based on the varia-
tional method [14,15] was carried out. Where a meaningful
comparison could be made, the two analysis methods gave
consistent results.
Mass differences between the Upsilon ground state and

the first two excited states are in reasonable agreement with
experimental values. The mass difference between � and
�b is not well reproduced by the calculation. Issues such as
continuum extrapolation, higher order nonrelativistic terms
and radiative corrections to the NRQCD Hamiltonian have
to be considered.
A primary goal of this study was to see if the highly

suppressed matrix elements of excited state transitions
could be extracted. Three-point functions for transitions
from vector to pseudoscalar states with the leading non-
relativistic M1 operator were calculated. Using overlap
coefficients and simulation energies obtained from fitting
the two-point functions, a simultaneous fit was done to sets
of three-point functions. Transition matrix elements with
reasonably small statistical errors could be obtained for a
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FIG. 13. The matrix elements for decay of an excited �b to the
� ground state as a function of momentum.
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excited� to the �b ground state as a function of momentum. The
square symbols show the matrix element values inferred from the
measured decay widths [3,4].
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number of excited state decays. The results were very
stable with respect to choice of two-point function parame-
ters and the number of three-point functions and matrix
elements included in the fit.

The qualitative features of the calculatedmatrix elements
are as expected. The matrix elements for the �ð1SÞ to
�bð1SÞ and �ð2SÞ to �bð2SÞ transitions are close to one.
For states identified with different principal quantum num-
bers the transitions are highly suppressed. The relative
negative sign of � ! �b and �b ! � matrix elements
can be understood by considering perturbatively the effect
of spin-dependent interactions. The qualitative momentum
dependence is in accord with, for example, pNRQCD [7].

Quantitatively the values obtained here for excited � to
ground-state �b matrix elements are considerably larger
than the values inferred from the experimentally deter-

mined decay widths. These decays are dependent on the
interplay of small effects and are likely to be sensitive to
relativistic corrections to the transition operator. As well,
the issues that enter into the �� �b spin splitting, e.g.,
relativistic corrections to the NRQCD Hamiltonian [27],
operator matching [28] and continuum extrapolation [20]
have to be dealt with to get definitive results.
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