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The bulk viscosity, � and its ratio with the shear viscosity, �=� have been studied in an anisotropically

expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy

in the momentum distribution function of gluons, which has been determined from a linearized transport

equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed

quasiparticle model of pure SUð3Þ lattice QCD equation of state has been employed where the interactions

are encoded in the effective fugacity. It has been argued that the interactions present in the equation of

state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even

at 1:5Tc. Thus, one needs to take in account the effects of the bulk viscosity while studying the

hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large

Hadron Collider.
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I. INTRODUCTION

It is by now well established that quark-gluon plasma
(QGP) has been created in Relativistic Heavy Ion Collider
(RHIC) experiments, and is a strongly coupled fluid [1].
There have been first few reports of QGP in Pb-Pb colli-
sions @2:76 Tev in the Large Hadron Collider (LHC) [2],
which reconfirm the formation of strongly coupled fluid.
QGP at the RHIC has shown a robust collective phenome-
non, viz., the elliptic flow [3]. In the heavy-ion collisions at
the LHC, there are other interesting flows, viz., the dipolar
and the triangular flow, which are sensitive to the initial
collision geometry [4]. In this concern, we refer the reader
to the very recent interesting studies [5,6], where these new
kinds of flows at the LHC have been investigated.

The shear and bulk viscosities (� and �) characterize
dissipative processes in the hydrodynamic evolution of a
fluid. The former accounts for the entropy production due
to the transformation of the shape of hydrodynamic system
at a constant volume. On the other hand, the latter accounts
for the entropy production at the constant rate of change of
the volume of the system (in the context of the RHIC the
system stands for the fireball). These transport parameters
serve as the inputs for the hydrodynamic evolution of the
fluid. Their determination has to be done separately from a
microscopic theory (either from a transport equation with
appropriate force, collision, and source terms or from the
field theoretic approach using the Green-Kubo formula). It
has been found that QGP possesses a very tiny value of the
shear viscosity to entropy density ratio, �=s [7]. On the
other hand, bulk viscosity has achieved considerable atten-
tion in the context of QGP in the RHIC after the interesting
reports on its rising value close to the QCD transition
temperature [8,9]. In the recent investigations, these
transport coefficients are found to be sensitive to the

interactions [10,11], and the nature of the phase transition
in QCD [12].
The computation of transport coefficients in lattice QCD

is a very nontrivial exercise, due to several uncertainties
and inadequacy in their determination. Despite this, there
are a few first results computed from lattice QCD for bulk
and shear viscosities [13,14] which have observed a small
value of �=s, and a large value for �=s at the RHIC. While
determining the behavior of the spectral function in [13], a
contribution coming from a � function has not been taken
in to account. This issue has been discussed extensively in
[15]. The spectral density has been modified by incorpo-
rating the contributions from the � function by Meyer in
[16]. However, more refined lattice studies on � and � are
awaited in the near future with less dependence on the
lattice artifacts and uncertainties. Subsequently, the pos-
sible impact of the large bulk viscosity of QGP in the RHIC
has been studied by several authors; Song and Heinz [17]
have studied, in detail, the interplay of shear and bulk
viscosities in the context of collective flow in heavy-ion
collisions. Their study revealed that one cannot simply
ignore the bulk viscosity while modeling QGP in heavy-
ion collisions. In this context, there are other interesting
studies reported in the literature [18–24]. The role of bulk
viscosity in freeze out phenomenon has been reported in
[20,25]. Effects of bulk viscosity in hadronic phase, and in
the hadron emission have been reported in [26]. There has
been a wealth of recent literature on the computations of
bulk viscosity in the context of cosmology [27], strange
quark matter [28], and neutron stars [29].
The noteworthy point is that most of the works devoted

to study the hydrodynamic evolution of QGP, employ the
constant value of �=s [30] and �=s [31]. This may not be
desirable in the light of experimental and phenomenologi-
cal observation for QGP at the RHIC. The work presented
in this paper is an attempt to achieve, (i) temperature
dependence of transport coefficients, in particular, � ,*vinodc@theory.tifr.res.in
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(ii) to understand the large bulk viscosity of QGP. In this
study, we shall take inputs from the computations of bulk
viscosity in quasiparticle models [32,33], and combine the
understanding with a transport theory determination of � in
the presence of chromo-Weibel instabilities [34,35]. In this
context the shear viscosity of QGP has already been ad-
dressed [10,11,34,36], and we find very interesting results.
As it is well emphasized by Pratt [37] that there may be a
variety of physical phenomena that can lead to viscous
effects in QGP. Among them, in this paper, we are particu-
larly interested in the viscous effects that get contributions
from the classical chromofields.

The idea adopted here is based on the mechanism,
proposed earlier to explain the small viscosity of a weakly
coupled, but expanding hot QCD plasma [34,36]. This
mechanism is based on the particle transport theory in
turbulent plasmas [38], which are characterized by strongly
excited random field modes in the certain regimes of
instability, which coherently scatter the charged particles
and thus reduce the rate of momentum transport. This
eventually leads to the suppression of the transport coef-
ficients in plasmas. This phenomenon in electromagnetic
(EM) plasmas has been studied in [39], and generalized by
Asakawa, Bass, and Müller [34] to the non-Abelian plasma
(QCD), and further employed for the realistic QGP equa-
tion of state (EOS) in [10,11]. As it is emphasized in [40],
the sufficient condition for the spontaneous formation of
turbulent, partially coherent fields is the presence of insta-
bilities in the gauge fields due to the presence of charged
particles. This condition is met in both EM plasmas with an
anisotropic momentum distribution [41] of charged parti-
cles and in QGP with an anisotropic distribution of thermal
partons [42]. Here, we shall argue that the similar mecha-
nism can lead to a large bulk viscosity for the hot QCD
plasma for the temperatures relevant at the RHIC and
heavy-ion collisions at the LHC.

The paper is organized as follows. In Sec. II, we present
the general formalism to determine the transport parame-
ters from a transport equation with a Vlasov term. We have
neglected the collision and source term, while obtaining
bulk viscosity. In Sec. III, we discuss the temperature
dependence of bulk viscosity and its comparison with the
shear viscosity. Finally, in Sec. III, we present the conclu-
sions and outlook.

II. TRANSPORT PARAMETERS WITHIN A
QUASIPARTICLE MODEL

The determination of transport coefficients requires
modeling beyond the equilibrium properties, in terms of
the collision terms and other transport parameters, and also
the nature of perturbation to the equilibrium distribution. In
particular, their determination within linearized transport
theory needs knowledge of EOS and the equilibrium
momentum distribution functions of particles, which con-
stitute the plasma. We shall first discuss the modeling of

the EOS within a quasiparticle model. The EOS chosen
here is the pure SUð3Þ gauge theory EOS [43]. We sub-
sequently discuss the setting up of the transport equation
and the determination of � .

A. The quasiparticle model

Lattice QCD is the best, and most powerful technique to
extract nonperturbative information on the equation of
state for QGP [44,45]. Recently, we have proposed a
quasiparticle model to describe the lattice data on pure
SUð3Þ gauge theory pressure (LEOS), and studied the bulk
and transport properties of QGP [11], which is utilized in
obtaining the temperature dependence of bulk viscosity
here. In this description, the quasigluon distribution func-
tion extracted from LEOS possesses the following form:

feq ¼
zg expð��pÞ

ð1� zg expð��pÞÞ : (1)

It has further been argued [11] that the model is in the
spirit of Landau theory of Fermi liquids. The connection
with Landau’s theory is apparent from the single quasi-
gluon energy, which gets nontrivial contributions from the
quasiparticle excitations. The dispersion relation (single
particle energy) came out to be

Ep ¼ pþ T2@T lnðzgÞ: (2)

The main feature of the description is the mapping of
strongly interacting LEOS in to a system of noninteracting/
weakly interacting quasigluons [free up to the temperature
dependent fugacity, zg which encodes all the interactions,

and the dispersion relation in Eq. (2)]. This enables us to
tackle highly nontrivial strong interaction in QCD in a very
simplified manner while studying the properties of QGP.
Interestingly, Eq. (2), which is obtained from the thermo-
dynamic definition of the energy density in terms of grand-
canonical QCD partition functions, ensures the thermody-
namic consistency in hot QCD, and reproduces the lattice
results on the trace anomaly correctly. This is also true for
the recently proposed quasiparticle model, which describes
the (2þ 1)-flavor lattice QCD [46].
This quasiparticle understanding of hot QCD has been

quite successful in describing the realistic QGP equations
of state, and in investigating the bulk and transport prop-
erties of QGP [10,11,47,48]. We shall utilize Eqs. (1) and
(2) to determine the bulk and shear viscosities within the
transport theory framework here. Note that there are other
quasiparticle approaches to describe lattice QCD EOS
based on effective thermal masses for quasipartons
[49–53], approaches based on Polyakov loop [54], and
quasiparticle models with gluon condensate [55,56].
Recently, transport coefficients for QGP within the effec-
tive mass models in the relaxation time approximation
have been reported in [57,58]. As argued in [48], our model
is distinct from all these approaches, but equally successful
in describing the thermodynamics of QGP.
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B. Determination of the transport coefficients

We now consider the important physical quantities, the
bulk viscosity, � , its ratio with entropy density, �=s. For the
entropy density, we again utilize the lattice results quoted
in [11]. These quantities are very crucial in understanding
the QGP in the RHIC. Their determination requires knowl-
edge of the collisional properties of the medium when it is
perturbed away from equilibrium. To determine these
quantities, we adopt approach of [11,34,36]. The shear
viscosity had been determined in [11], which we shall
utilize to study the ratio �=� in the later part. Here, we
consider � and determine it from a transport equation.

The determination of bulk viscosity has been done in a
multifold way. First, we need an appropriate modeling of
distribution function for the equilibrium state. Second, we
need to set up an appropriate transport equation to deter-
mine the form of the perturbation to the distribution func-
tion. These two steps eventually determine the bulk
viscosity. For the former step, we employ the quasiparticle
model for LEOS discussed earlier. We shall leave the
analysis in the case of full QCD for future investigations.

The bulk viscosity has two contributions same as the
shear viscosity in [34], (i) from the Vlasov term which
captures the long range component of the interactions, and
(ii) the collision term, which models the short range com-
ponent of the interaction. Here, we shall only concentrate
on the former case. The determination of shear and bulk
viscosities from an appropriate collision term will be a
matter of future investigations. Importantly, the analysis
adopted here is based on weak coupling limit in QCD,
therefore, the results are shown beyond 1:3Tc assuming the
validity of weak coupling results for QGP there.

1. Formalism

Let us first briefly outline the standard procedure of
determining transport coefficients in transport theory
[34,59]. The bulk and shear viscosities, � and � of QGP
in terms of equilibrium parton distribution functions are
obtained by comparing the microscopic definition of the
stress tensor with the macroscopic definition of the viscous
stress tensor. The microscopic definition of the stress
tensor is

Tik ¼
Z d3p

ð2�Þ3Ep

pipkfð ~p; ~rÞ: (3)

On the other hand, macroscopic expression for the vis-
cous stress tensor is given by

Tik ¼ P�ik þ �uiuk � 2�ðruÞik � ��ikr � ~u; (4)

where ðruÞik is the traceless, symmetrized velocity gra-
dient, andr � ~u is the divergence of the fluid velocity field.
Ep accounts for the dispersion relation. To determine � an

�, one writes the gluon distribution function as

fð ~p; ~rÞ ¼ 1

z�1
g expð�u � p� f1ð ~p; ~rÞÞ � 1

: (5)

Assuming that f1ð ~p; ~rÞ is a small perturbation to the
equilibrium distribution, we expand fð ~p; ~rÞ and keep the
linear order term in f1; this leads to

fð ~p; ~rÞ ¼ f0ðpÞ þ �fð ~p; ~rÞ
¼ f0ðpÞð1þ f1ð ~p; ~rÞð1þ f0ðpÞÞÞ; (6)

where f0ðpÞ is the isotropic distribution function, as we
shall see that this will be the same as the equilibrium
thermal distribution function of the quasigluons, in the
rest frame of the fluid. As discussed in [11], � and � are
determined by taking the following form of the perturba-
tion f1:

f1ð ~p; ~rÞ ¼ � 1

EpT
2
pipj

�
�1ðpÞruÞij þ �2ð ~pÞðr:uÞ�ij

�
;

(7)

where the dimensionless functions �1ðpÞ;�2ð ~pÞ measure
the deviation from the equilibrium configuration. �1ðpÞ,
�2ð ~pÞ, lead to � and � , respectively. Note that �1ðpÞ is an
isotropic function of the momentum in contrast to �2ð ~pÞ,
which is an anisotropic in momentum ~p.
Since � and� are Lorentz scalars; theymay be evaluated

conveniently in the local rest frame. In the local rest
frame of the fluid f0 � feq. Considering the a boost

invariant longitudinal flow, r � u ¼ 1
� and, ðruÞij ¼

1
3� diagð�1;�1; 2Þ, in the local rest frame, we find that

f1ðpÞ takes the form

f1ð ~pÞ ¼ � �1ðpÞ
EpT

2�

�
p2
z � p2

3

�
� �2ð ~pÞ

EpT
2�

p2; (8)

where � is the proper timeð� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
Þ. The shear and

bulk viscosities are obtained in terms of entirely unknown
function �1ðpÞ and �2ð ~pÞ as

� ¼ �g

15T2

Z d3p

8�3

p4

E2
p

�1ðpÞfeqð1þ feqÞ; (9)

�¼ �g

3T2

Z d3p

8�3

p2

E2
p

ðp2�3c2sE
2
pÞ�2ð ~pÞfeqð1þfeqÞ: (10)

In these expressions, �g � 2ðN2
c � 1Þ is the degrees of

freedom. Notice that while obtaining the expression for the
bulk viscosity, we have exploited the Landau-Lifshitz con-
dition for the stress energy tensor. The factor �ð3c2sE2

pÞ in
the right-hand side of Eq. (10) is coming only because of
that. For details, we refer the reader to [33].
The determinations of �1ðpÞ and � have already been

done in [10,11]. We shall utilize these results to fix the
temperature dependence of � in the later part of the analy-
sis. Now, we shall focus on the determination of the
unknown function �2ð ~pÞ and � .

BULK VISCOSITY OF ANISOTROPICALLY EXPANDING . . . PHYSICAL REVIEW D 84, 094025 (2011)

094025-3



2. Determination of �2ð ~pÞ
For simplicity, we consider the purely chromomagnetic

plasma for our analysis. The modeling of transport equa-
tion for full chromo-electromagnetic plasma is straight
forward [10,11,34] and differs by simple factors. Here,
we only quote the mathematical form of the drift term
and the Vlasov term. (For details see [10,34].)

The drift term in the transport equation for the full
chromo-electromagnetic plasma for LEOS is obtained as

ðv�@ÞfeqðpÞ¼feqð1þfeqÞ
�
pipj

EpT
ðruÞij�

m2
D<E2>�elmEp

3T2@E=@T

þ
�
p2

3E2
p

�c2s

�
Ep

T
ðr� ~uÞ

�
; (11)

where c2s is the speed of sound. The other notations are kept
same as in [11]. Note that <E2> stands for the chromo-
electric field, �el relaxation time associated with the insta-
bility [34]. In Eq. (11), the first term contributes to the
shear viscosity, the second term contributes to the thermal
conductivity, and the third term contributes to the bulk
viscosity. Since we are considering the purely chromomag-
netic plasma, the second term will not be present.

On the other hand, the force term (Vlasov term) which
we denote as VA, is obtained in [11,34] as follows:

V A ¼ g2C2

2ðN2
c � 1ÞE2

p

< B2 > �mL
2; (12)

where C2 ¼ Nc,<B2> denotes chromomagnetic field, �m
is the time scale associated with instability in the field, and
the operator L2 is

L2 ¼ �ð ~p� @ ~pÞ2 þ ð ~p� @ ~pÞj2z � �ðLpÞ2 þ ðLp
z Þ2: (13)

Since L2 contains angular momentum operator Lp, it
therefore gives a nonvanishing contribution while operat-
ing on an anisotropic function of ~p. It will always lead to
the vanishing contribution while operating on an isotropic
function of ~p. Therefore, VAfeq � 0. Now, we write the

transport equation containing only those terms which con-
tribute to bulk viscosity � as

�
p2

3E2
p

�c2s

�
Ep

T
ðr� ~uÞfeqð1þfeqÞ

¼ g2C2

3ðN2
c�1ÞE2

p

<B2>�mL
2f1ð ~p; ~rÞfeqð1þfeqÞ: (14)

Substituting for f1 in term of the unknown function
�2ð ~pÞ and rearranging above equation, we obtain a differ-
ential equation for �2ð ~pÞ as

L2�2ð ~pÞ ¼
2ðN2

c � 1ÞTE2
p

Ncg
2 < B2 > �mp

2

�
p2

3
� c2sE

2
p

�
: (15)

Now, using the fact that L2 only operates on the aniso-
tropic function of ~p, we can write

�2ð ~pÞ ¼
2ðN2

c � 1ÞTE2
p

Ncg
2 < B2 > �mp

2

�
p2

3
� c2sE

2
p

�
� gð ~pÞ; (16)

where gð ~pÞ can be determined from the following
condition:

L2gð ~pÞ ¼ 1; (17)

which leads to

gð ~pÞ ¼ 1

2
ln

�
p2
x þ p2

y

p2
0

�
� ln

�
pT

p0

�
: (18)

Since, at high temperature average value of the energy
is 3T. Employing equipartition theorem for relativistic
massless gas, we obtain p2

0 ¼ 6T2. Substituting Eq. (18) in

Eq. (16), we obtain

�2ð ~pÞ ¼
2ðN2

c � 1ÞTE2
p

Ncg
2 < B2 > �mp

2

�
p2

3
� c2sE

2
p

�
ln

�
pT

p0

�
: (19)

The determination of bulk viscosity is incomplete unless
we know not only the temperature dependence of the speed
of sound square, c2s , and the collective contributions of
quasiparticle to the single particle energy, T2@T lnðzgÞ but
also the quantity g2 < B2 > �m.
We determine first two quantities using the quasiparticle

model. As from Ref. [11], the trace anomaly in terms of
effective quasiparticle number density and effective gluon
fugacity reads

ð�� 3PÞ
T4

¼ N g

T3
fT@T lnðzgÞg: (20)

The thermodynamic quantities can be obtained using the
well-known thermodynamic relations. In particular, the
energy density and the entropy density were shown to be
in almost perfect agreement with the lattice data [11]. We
determine, c2s by employing a method reported in [60]. The
temperature dependence is shown in Fig. 1.
To relate the denominator of Eq. (19) to the gluon

quenching parameter, q̂ we go to the light cone frame. In
this frame, Eq. (19) can be rewritten as

�2ð ~pÞ ¼
4ðN2

c � 1ÞTE2
p

Ncg
2 < E2 þ B2 > �mp

2

�
p2

3
� c2sE

2
p

�
ln

�
pT

p0

�
:

(21)

The gluon quenching parameter, q̂ is related with the
denominator of right-hand side of the above equation as
[36]

q̂ ¼ 2g2Nc

3ðN2
c � 1Þ<E2 þ B2 > �m: (22)
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Now, employing Eq. (21) in Eq. (8), we obtain the � as

� ¼ ðN2
c � 1Þ

3T�2q̂

Z 1

0

Z 1

�1
pTdpTdpz

�
p2

3
� c2sE

2
p

�
2

� ln

�
pT

p0

�
� feqð1þ feqÞ: (23)

On the other hand, if we employ the results of [11] for
�1ðpÞ in Eq. (10) for �, we obtain

� ¼ T6

q̂

64ðN2
c � 1Þ

3�2
PolyLog½6; zg�; (24)

where Nc ¼ 3 and PolyLog½6; zg� ¼
P1

k¼1
zkg
k6
.

Now scaling, all the quantities in the integrand in
Eq. (23) by T, and rewriting Eq. (24) in the form given
below, we obtain

� ¼ T6

q̂
I1ðT=TcÞ; � ¼ T6

q̂
I2ðT=TcÞ; (25)

where I1ðT=TcÞ, is evaluated by integrating the right-

hand side of Eqs. (23) numerically, and I2ðT=TcÞ �
83

3�3 PolyLog½6; zg�. The T=Tc scaling of these quantities

is coming from the temperature dependence of the effec-
tive gluon fugacity, zg. Here, Tc is taken to be 0.27 GeV

[61]. Clearly, the quantity which can be determined
unambiguously in our approach is the ratio �=� �
I1ðT=TcÞ=I2ðT=TcÞ.

In the recent past, Chen et al. [62,63] computed the
leading order shear and bulk viscosities for purely gluonic
plasma. This is nothing but the collisional contribution to
these transport parameters for a gluonic plasma. It is to be
instructive to compare the results on �=� obtained in the
present work with those reported in [62]. This has been
shown in Fig. 1, where both the results on �=� are plotted

as a function of T=Tc. Note that while obtaining the
temperature dependence of the ratio �=�, we have em-
ployed the two-loop expression for the running coupling
constant at finite temperature quoted in [62]. Quantitatively
the ratio �=� is much smaller than what we have obtained
from the diffusive Vlasov term. If we compare the two
curves on the ratio �=� shown in Fig. 1, we find that in
contrast to our prediction on �=�, the leading order result
suggests the near conformal picture of hot QCD even at
lower temperatures.
Next, we discuss the interplay of the two contributions to

the bulk viscosity, viz., the anomalous, and the leading order
(collisional). As it is emphasized in [34], these two contri-
butions for � are inverse additive. Their inverse additivity
has been argued from the additivity of various rates in the
hot QCDmedium. In the case of weak coupling, the former
is predominant. It seems that a similar additivity of the
inverse of two contributions to � (denoted as �a and �c,
respectively) may perhaps be valid. This could be under-
stood as follows: since �a is inversely proportional to the q̂
(transport rate), on the other hand collisional �c will be
inversely proportional to the collision rate. Following the
argument previously mentioned, one may write, ��1

T ¼
��1
a þ ��1

c , where �T denotes the total bulk viscosity. This
inverse additivity of �a, and �c at weak coupling, suggests
that the collisional bulk viscosity (leading order) will domi-
nate over the anomalous one, since the former is quantita-
tively much smaller than the latter. However, one has be
very cautious while comparing these two contributions for
the temperature ranges relevant for QGP at the RHIC. This
is because of the strongly coupled fluid like picture of QGP.
At this moment, we do not know whether the inverse
additivity of � will be followed at the temperatures which
are closer to Tc or not. This is a very crucial issue, and will
require much deeper investigations, which is beyond the
scope of the present work. Henceforth, we denote the
anomalous bulk viscosity as � dropping the subscript, a.
We now proceed to discuss the temperature dependence

of �=� and �=s.

C. Temperature dependence of �=� and �=s

In our analysis, determination of the temperature depen-
dence of � and � is incomplete, without the knowledge of
the temperature dependence of q̂ in QGP. This issue was
addressed by fixing the temperature dependence of q̂ by
calculating the soft part of the energy density and the
relaxation time associated with the instability of chromo-
fields [11]. To do that we take inputs from the phenome-
nological values of q̂, which is known at a particular
temperature [64]. Here, we have utilized the same transport
equation and quasiparticle model developed for pure SUð3Þ
lattice QCD EOS, as in [11]. Therefore, we employ the
temperature dependence of �=s to obtain the temperature
dependence of �=s. This is quite easier to do, since the
ratio, �=� can easily be obtained from Eq. (25).

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6  7  8

ζ/
η

T/Tc

ζ/η 
LO (ζ/ηX 100)

FIG. 1 (color online). The ratio of bulk viscosity, � to the shear
viscosity, � as a function of temperature. The leading order
result of �=� has been obtained from the data taken from
Refs. [62,63], and shown as dashed line. For the sake of
comparison, we have multiplied the leading order �=� by a
factor of hundred.
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The temperature dependence of �=� is shown in Fig. 1,
�=� relative to perturbative QCD prediction [65], and
strongly coupled near conformal gauge theories [66] is
shown in Fig. 2. On the other hand, �=s and �=s are shown
together in Fig. 3. Let us discuss their behavior one by one.
From Fig. 1, it is clear that �=� is equally significant while
studying the hydrodynamic evolution of hot QCD matter
until we reach T ¼ 2Tc. As we go to the higher tempera-
tures the ratio further decreases and eventually vanishes
when c2s ¼ 1

3 and the dispersion relation Ep ¼ p.

Quantitatively, �=�� 2:3 at 1:3Tc; 1.0 at 1:5Tc; 0.2 at
2:0Tc. Therefore, for T � 2:5Tc, one can ignore � over
�. In other words, the hot QCD becomes almost conformal
there.

The ratio, �=� decreases as we increase the temperature.
The decrease is quite steeper until we reach T ¼ 2:0Tc. For

higher values of T it is much slower. It is hard to make clear
cut statement in regard to the behavior of �=� with tem-
perature, since by looking at Eqs. (23) and (24), it is clear
that the behavior of �=� as a function of temperature is
mainly governed by the temperature dependence of trace
anomaly (through quasigluon dispersion relation), speed of
sound, c2s , and temperature dependence of zg and gluon

quenching parameter, q̂.
To compare the perturbative QCD prediction of the ratio

�=�, we consider Rpert � �
�ðc2s�1

3Þ2
, where (c2s � 1

3 ) can be

thought of as the measure of conformal symmetry, which
we call conformal measure. For scalar field theories,
�=� ¼ 15ðc2s � 1

3Þ2 [67], and this has been found to be

true for a photon gas coupled with hot matter by
Weinberg [68]. The prefactor 15 is not fixed for perturba-
tive QCD but the scaling �=�� ðc2s � 1

3Þ2 is valid [65]).

Note that in certain strongly coupled near conformal theo-
ries with gravity dual the ratio �=� shows linear depen-
dence on the conformal measure [66]. To compare with the

latter, we consider the ratio Rstr � �
�ðc2s�1

3Þ
. We have shown

the behavior of Rpert andRstr as a function of temperature in

Fig. 2. Clearly, none of these two scaling are respected by
the ratio �=� in Fig. 2 even at 2:5Tc. It is safer to say that
�=� for LEOS which is obtained from transport equation
with Vlasov-Dupree term [11,34] neither shows linear nor
the quadratic dependence with the conformal measure,
(c2s � 1

3 ). However, one can realize the quadratic scaling

of �=� with the conformal measure in a certain limiting
case. It is easy to say from Eqs. (24) and (25) that for Ep ¼
p (p � T2@TðlnðzgÞÞ), if the thermal distribution of qua-

sigluons shows near ideal behavior, and with constant
value of q̂=T3, the quadratic scaling can be achieved.
Moreover, this may perhaps be realized at higher tempera-
tures which are not relevant for QGP in the RHIC and the
LHC. If we compare qualitatively our prediction of Rpert,

and Rstr with the leading order result of [62] (see Fig. 4 in
Ref. [62]), we find opposite trend of these quantities at very
high temperature. The former decreases, although slowly,
in contrast to the latter, as a function of temperature. This
could perhaps be because of their origin from the distinct
physical processes in hot QCD medium. The slow de-
creases of the former at higher temperatures, could be
understood as the effect of thermal distribution function
of quasigluons (through zg, since zg increases very slowly

as a function of temperature, and will asymptotically
approach to unity).
Finally, in Fig. 3, we have shown the temperature de-

pendence of �=s and �=s. The �=s decreases as with
increasing temperature for T � 1:5, in contrast to �=s.
As mentioned earlier, �=s and �=s become equal around
1:5Tc (below which �=s is higher, and lower for higher
temperatures). Again the behavior is predominantly con-
trolled by the behavior of c2s , and the trace anomaly
through the modified dispersion relation with temperature.
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III. CONCLUSIONS AND FUTURE PROSPECTS

In conclusion, we have estimated the temperature de-
pendence of bulk viscosity to entropy density ratio (�=s),
and bulk viscosity relative to shear viscosity, �=� within a
quasiparticle model for pure glue QCD at high temperature
by employing transport theory. We have determined �=�,
exactly and unambiguously. In our analysis, these quanti-
ties get contributions from the instabilities in the chromo-
electromagnetic fields due to the anisotropic thermal
distribution of the partons in QGP. The mechanism has
succeeded in explaining the small �=s and large value of
the ratio �=�. In fact, �=� is around 2.3 at 1:3Tc, of the
order of unity at 1:5Tc, and 0.2 at 2Tc. This tells us that the
breaking of conformal symmetry in hot QCD plays crucial
role even at 2Tc. In consequence, shear and bulk viscosities
are equally important while studying the hydrodynamic
evolution of QGP at the RHIC and the LHC. One cannot
simply ignore bulk viscosity even at 2:0Tc while modeling
the heavy-ion collisions. Moreover, �=s increases as a
function of temperature, in contrast to �=s beyond 1:5Tc.
As expected �=s and �=� are vanishingly small beyond
2:5Tc. This may be due to the fact that conformal measure
is very small there, and the speed of sound is closer to 1=3.
We have compared our predictions on �=� to the leading
order result on the same quantity obtained by [62].
Interestingly, in the perturbative region (temperatures be-
yond 1:5Tc), our study also agree with the near conformal
picture of hot QCD similar to leading order results of Chen
et al. [62]. On the other hand the predictions are in contrast

at lower temperatures. However, this may not be thought of
as the complete story, an adequate analysis on the interplay
of our predictions on � , and leading order prediction is very
much desired, and will be a matter of future investigations.
We have addressed the temperature dependence of the

bulk and shear viscosities of pure glue sector of hot QCD
only. An extension to full QCD including collision term,
employing the understanding of [46], will be a matter of
future investigations. We strongly believe that a similar
analysis will also be valid in the case of full QCD. The
most interesting study would be to include the temperature
dependence of �=s and �=s in the existing hydro codes to
model QGP, and see how various observables get modifi-
cations. Moreover, future directions may include explora-
tion on the effects of � and � on the quarkonia suppression
in heavy-ion collisions along the lines of [69,70]. Finally, it
would be of interest to include the baryon chemical poten-
tial utilizing the very recent lattice studies [71,72], and
determine the transport coefficients.
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