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The nonlinear Balitsky-Kovchegov equation at small x is solved numerically, incorporating impact

parameter dependence. Confinement is modeled by including effective gluon mass in the dipole evolution

kernel, which regulates the splitting of dipoles with large sizes. It is shown that the solution is sensitive to

different implementations of the mass in the kernel. In addition, running coupling effects are taken into

account in this analysis. Finally, a comparison of the calculations using the dipole framework with the

inclusive data from HERA on the structure functions F2 and FL is performed.
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I. INTRODUCTION

With particle colliders extending the energy frontier, the
need to understand QCD in the high energy limit becomes
essential. The new kinematic regime explored at the LHC
and potentially in the future deep inelastic scattering (DIS)
machines, EIC [1,2] and LHeC [3,4], requires detailed
analyses of the high energy and density limit in QCD. At
these high energies it is expected that the parton densities
will become very large. In particular, as the Bjorken x
becomes very small one needs to take into account the
effects of parton saturation [5,6]. Evolution into the small x
region, which incorporates parton saturation phenomenon,
is governed by the nonlinear Balitsky-Kovchegov (BK)
[7–12] equation. A general framework which systemati-
cally incorporates the effects of the large gluon density is
the Color Glass Condensate (CGC) [13,14] model. Within
the CGC model the evolution into the small x region is
given by the renormalization group—type equation, the
JIMWLK equation [15–21]. The CGC framework contains
the BK evolution equation as well as the evolution of the
higher point gluon correlators, for a recent study see [22].
The BK equation is an extension of the linear BFKL
evolution equation for small x [23–25] as it takes into
account parton recombination effects. These effects are
included through the additional nonlinear term in parton
density. As a result the solution to this equation cannot
exceed unity, which is the unitarity bound for the dipole
(i.e. quark-antiquark pair)-target scattering amplitude.

Despite the fact that the BK equation is closed and a
relatively simple nonlinear equation, no exact analytical
solution yet exists. Nevertheless, there have been numer-
ous analytical studies [26–29] as well as extensive numeri-
cal analyses [30–36], and the properties of the solution are
currently very well known. The solution has also been
used to successfully describe the experimental data on

the structure function F2 [31,37,38]. Furthermore, it has
been used in the prediction of a large number of processes
in hadron and heavy ion collisions, such as multiplicites
and single inclusive spectra [39–41].
In most of these analyses, one utilizes an assumption of

the impact parameter independence of the solution. To be
precise, the dipole target scattering amplitude in this ap-
proximation depends only on the dipole size and not on the
position in impact parameter space. This leads to a signifi-
cant simplification of the problem and drastically reduces
the CPU time needed to numerically solve the equation. On
the other hand, the impact parameter is an important in-
gredient for many of the phenomenological predictions.
For example, the total multiplicities in heavy ion collisions
depend strongly on the centrality and hence knowledge of
the impact parameter distribution of the partons is essen-
tial. Usually this problem is circumvented by assuming an
average parton density distribution for each of the central-
ities, (for a more refined approach which includes nucleon
configurations in the nucleus in the initial condition see
[42]). In the context of the saturation physics, it is expected
that the saturation scale Qs, which characterizes the dense
system, is impact parameter dependent (i.e. QsðbÞ). The
saturation scale will thus have a larger value close to the
dense center of the interaction region and smaller value at
the periphery of the interaction region where the partons
form a dilute system. The knowledge of the parton density
distribution in impact parameter is essential not only in the
context of heavy ion collisions but also for hadronic colli-
sions (for example, in the problem of the underlying event)
and, in particular, for diffractive processes. For example, in
exclusive diffractive production of vector mesons in DIS
the momentum transfer dependence crucially depends on
the impact parameter profile of the dipole scattering am-
plitude [43–45]
The impact parameter dependence has been taken into

account in Monte Carlo simulations based on dipole evo-
lution and scattering [46–51] as well as in numerical
solutions to the BK evolution equation, see [52–54]. It
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has been also discussed in the context of the conformal
properties of the equation [55]. The results so far indicate
that there are important modifications to the solution when
the impact parameter is taken into consideration. In par-
ticular, it has been found that the parton (or more precisely
dipole) density distribution in impact parameter possesses
long range Coulomb-like power tails [46,47,52,53], which
are the direct consequence of the form of the perturbative
branching kernel. These tails need to be regularized by the
appropriate cuts on the large dipole sizes which mimic
confinement effects [48–51,54]. The other important ob-
servation was that the dipole scattering amplitude de-
creases with increasing dipole size at large dipole sizes
(when it is evaluated at fixed value of impact parameter).
This has to be contrasted with the impact parameter inde-
pendent solutions for which the amplitude always saturates
to unity for arbitrarily large values of the dipole size.

In the earlier work [53] we explored the dynamics of the
BK equation with impact parameter by taking into account
subleading effects such as kinematical cuts and the running
of the strong coupling. The goal of this paper is to use the
solutions to the BK equation with impact parameter de-
pendence to compute the cross sections and structure
functions for the deep inelastic process. In order to perform
this analysis we introduce the initial condition with physi-
cal scales and also modify the branching kernel to account
for nonperturbative confinement effects. This is done by
introducing a mass parameter m into the kernel which
modifies the long distance behavior of the dipole-target
scattering amplitude. This parameter restricts the splitting
of dipoles into daughter dipoles which are larger than
rmax ¼ 1

m in order to account for confinement. With such

a setup we then compute F2 and FL structure functions
using the resulting solutions and compare them with ex-
perimental data from HERA [56,57].

The resulting dipole scattering amplitude was then com-
pared with the parametrizations available in the literature
[45] which include impact parameter. In particular, we find
that although the dynamically generated amplitude from
the BK equation is similar for small values of the dipole
size to the Glauber-Mueller like parametrization, for larger
dipole sizes one observes notable differences. To be pre-
cise, we find that the BK equation generates solutions
which possess specific correlations between the dipole
size and impact parameter, an effect which is totally absent
in the Glauber-Mueller type parametrizations.

The outline of the paper is the following: in Sec. II we
state the basic formulae for the inclusive cross section
within the framework of the dipole model. In Sec. III we
briefly discuss the most substantial features of the solution
with the impact parameter dependence and discuss the
differences with respect to the impact parameter indepen-
dent scenario. We then introduce modifications to the
evolution kernel by including the mass which mimics
confinement. We discuss the properties of the solutions

which result from these modifications. Both fixed coupling
and running coupling cases are considered as well as the
various methods that we used to implement the mass
parameter which regulates the large dipole sizes. Later,
in Sec. IV we show the results for the dipole amplitude and
we make the first comparison to the data for F2 and FL.
Finally, in Sec. V we state the conclusions.

II. DIS INCLUSIVE CROSS SECTION WITHIN
THE DIPOLE MODEL

The dipole model [58,59] is a very useful tool in eval-
uating many processes at small values of x. One of the
advantages of this approach is the possibility of including
multiple parton scattering effects. It has been originally
formulated for the description of deep inelastic lepton-
proton (or nucleus) scattering at small x. In this picture,
utilizing the leading logarithmic approximation in x, the
incoming electron emits a virtual photon which fluctuates
into a quark-antiquark pair, a dipole. The color dipole then
subsequently interacts with the parton constituents of the
nucleon, as is illustrated in Fig. 1(a). The interaction of the
dipole pair with the target is given by the scattering am-
plitude N. The q �q pair is characterized by a dipole size
which is defined as a separation distance of the color
charges x01 ¼ x0 � x1 (where x0 and x1 are the positions
of the q and �q in transverse space).1 The transverse mo-
mentum of the quarks in the dipole is of the order of � 1

x01

where large dipoles correspond to the infrared region and
need to be regulated, as will be discussed in detail in later
sections. The interaction of the dipole with the target is
described by the scattering amplitude Nðr;b;YÞ which
contains all the information about the dynamics of the
strong interaction. In the following analysis the full depen-
dence of the scattering amplitude on the impact parameter
b will be taken into account. The evolution of the ampli-
tude in rapidity Y can be represented as emissions of
daughter dipoles from the original parent dipole. When
the original dipole 01 splits into two dipoles 02 and 12 a
new coordinate appears, x2. These two daughter dipoles
are produced with sizes x12 and x02 at impact parameters
b12 and b02 as illustrated in Fig. 1(b).
The dipole-target amplitude Nðr;b;YÞ at high values of

rapidity Y (or small x) is found from the solution to the BK
evolution equation which can be represented in the follow-
ing form:

@Nx0x1

@Y
¼

Z d2x2

2�
Kðx01; x12; x02;�s;mÞ

� ½Nx0x2
þ Nx2x1

� Nx0x1
� Nx0x2

Nx2x1
�: (1)

1In this paper we shall denote vector quantities in bold,
otherwise they should be read as magnitudes of the associated
vector. Also, alternatively we will be also using here the notation
for the dipole size to be r ¼ x01 and impact parameter b ¼jx0þx1j

2 .
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In the above equation we used the shorthand notation
for the arguments of the amplitude Nxixj

� Nðrij ¼ xi �
xj;bij ¼ 1

2 ðxi þ xjÞ;YÞ which depends on the two trans-

verse positions xi and xj and on the rapidity Y. The

branching kernel Kðx01; x12; x02;�s;mÞ depends on the
dipole sizes involved and contains all information about
the splitting of the dipoles. In addition it depends on the
running coupling �s. We have also indicated that it de-
pends on the infrared cutoff m imposed on large dipoles.

The solution to Eq. (1) is the dipole-target scattering
amplitude for arbitrarily small x. In order to compute
the structure functions F2 and FL for the proton we use
the following standard formulae in the dipole picture in the
transverse coordinate representation

F2ðQ2; xÞ ¼ Q2

4�2�em

Z
d2r

Z 1

0
dzðj�Tðr; z; Q2Þj2

þ j�Lðr; z; Q2Þj2Þ�dipðr; xÞ; (2)

and

FLðQ2; xÞ ¼ Q2

4�2�em

Z
d2r

Z 1

0
dzj�Lðr; z; Q2Þj2�dipðr; xÞ:

(3)

Here, �dip is the (dimensionful) dipole cross section ob-

tained from the (dimensionless) scattering amplitude by
integrating over the impact parameter

�dipðr; xÞ ¼ 2
Z

d2bNðr;b;YÞ; Y ¼ ln1=x: (4)

The �ðr; Q2; YÞT=L functions are the photon wave func-

tions. They describe the dissociation of a photon into a q �q
pair and can be calculated from perturbation theory. The
photon wave function has the following form for the case
of transverse photon polarization

j�Tðr; z; Q2Þj2 ¼ 3�em

2�2

X
f

e2fð½z2 þ ð1� zÞ2� �Q2
fK

2
1ð �QfrÞ

þm2
fK

2
0ð �QfrÞÞ; (5)

and for longitudinal polarization

j�Lðr; z; Q2Þj2 ¼ 3�em

2�2

X
f

e2fð4Q2z2ð1� zÞ2K2
0ð �QfrÞÞ:

(6)

In the above equations �Q2
f ¼ zð1� zÞQ2 þm2

f, where

�Q2 is the photon virtuality and z, (1� z) are the fractions
of the longitudinal momentum of the photon carried by the
quarks. In addition K0;1 are modified Bessel functions of

the second kind. The summations are over the active quark
flavors f of charge ef and mass mf.

III. DIPOLE EVOLUTION WITH IMPACT
PARAMETER DEPENDENCE

The solution to the BK equation with impact parameter
dependence is found numerically, the description of the
procedure was outlined in [52,53]. The technical compli-
cation when trying to solve BK with impact parameter is
the increased number of arguments in the dipole amplitude.
In the b-independent scenario the amplitude depends only
on two variables: rapidity and dipole size. In the
b-dependent case there are 5 variables: rapidity, dipole
size (vector, 2-dim.) and impact parameter (vector, also
2-dim.). Alternatively, one can choose the coordinate var-
iables to be parametrized by the dipole size, impact pa-
rameter and two angles: one parametrizing the absolute
orientation of the dipole-target system in the coordinate
space and the second describing the relative orientation of
the dipole with respect to the target. With the assumption of
the global rotational symmetry (i.e. independence of the

FIG. 1. Plot (a) schematic representation of the dipole picture in DIS. The incoming virtual photon �� splits into a color dipole
(quark-antiquark pair) of size r which subsequently interacts with a target, where N is the dipole-target scattering amplitude. Plot
(b) depiction in transverse space of single branching of the parent dipole 01 into two daughter dipoles. The sizes of dipoles are denoted
by xij. The impact parameter variables bij of all the dipoles are shown relative to the target.
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first angle) the number of variables reduces to 4: rapidity,
dipole size, impact parameter and the angle between r and
b. Such large number of variables requires working with a
very large multidimensional grid and it leads to a signifi-
cant increase of computation time per each step of evolu-
tion in rapidity. The BK equation was solved numerically
by discretizing the scattering amplitude in terms of varia-
bles ðlog10r; log10b; cos�Þ, where � is the angle between
impact parameter b and dipole size r. The amplitude
Nðr; b; cos�Þ was placed on a grid with dimensions 200r �
200b � 20�. More details can be found in Refs. [52,53].

Let us briefly summarize the most important results of
[52,53] which pertain to the properties of the solution with
the impact parameter and the differences with respect to
the impact parameter independent approximation. We note
that for the solutions presented in Fig. 2 we used the same
initial condition at Y ¼ 0 as in Ref. [53], which was taken
to be

N0 ¼ 1� expð�c1r
2 expð�c2b

2ÞÞ; (7)

with c1 ¼ 10, c2 ¼ 0:5.
The most distinctive feature of the solution with impact

parameter dependence is that the amplitude for large dipole
sizes goes to zero. This is clearly illustrated in Fig. 2(a)
where the solution for fixed value of impact parameter b is
shown as a function of the dipole size r. This property of
the amplitude has to be contrasted with the impact parame-
ter independent solution, in which case the amplitude is
always equal to unity for sufficiently large dipole sizes.
The fact that the b-dependent amplitude drops for large
dipole sizes has a rather simple physical interpretation: the

interaction region possesses finite extension in impact
parameter space. The size of this region is set at low
rapidity by the initial conditions (in our case it is parameter
c2 in Eq. (7)) and is later increased in the course of the
evolution by the diffusion of the dipoles in transverse
coordinate space. The probability of the scattering for di-
poles which have sizes larger than the extension of the
interaction region is very small and therefore the amplitude
will tend to go to zero for such configurations. The dipole-
target amplitude therefore is largest for the scattering of
dipoles with sizes comparable with the typical size of the
target. As a result, the amplitude decreases either for small
or for very large dipole sizes, which in each case are very
different than the extension of the target, yielding a maxi-
mum contribution for some intermediate sizes of dipoles.
The configurations for which the amplitude is small are
schematically illustrated in Fig. 3, and they correspond to
the tails of the distribution depicted in Fig. 2(a). In the
course of the evolution in rapidity this distribution in the
dipole size broadens due to diffusion. As a consequence,
the amplitude in the impact parameter dependent scenario
has two fronts as is evident from Fig. 2(a). The first front
(for small dipoles) is similar to the front in the impact
parameter independent case, and one can define the satu-
ration scale which divides the dense (i.e. where N � 1) and
dilute (N � 1) regime for small dipoles. This saturation
scale can be parametrized in the form Q2

sLðY; bÞ ¼
Q2

0;sL expð�sLYÞ with �sL ’ 4:4 which is consistent with

the analytical predictions and with the solutions for the
impact parameter independent case. The second front
expands towards larger dipoles with increasing rapidity.
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FIG. 2. The dipole scattering amplitude Nðr;b;YÞ as a function of the dipole size r from the solution to the LL BK equation with
impact parameter dependence. The strong coupling is fixed ��s ¼ 0:2. The consecutive curves shown in plots are for rapidities Y ¼ 10,
20, 30, 40, 50 on the plot (a) and in rapidity intervals of 5, until Y ¼ 50 on plot (b). The dotted-dashed line in the left plot is the initial
condition at Y ¼ 0 given by Eq. (7). The initial condition is not visible on the right plot as it is very close to zero. The orientation of the
dipole with respect to the target is such that r ? b.
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One can also define the corresponding ’saturation scale’ for
large dipoles which can be similarly parametrized as
Q2

sRðY; bÞ ¼ Q2
0;sR expð��sRYÞ with �sR ’ 5:8. Note the

‘-’ sign in the exponent, which originates from the fact
that the second front expands towards larger dipoles with
increasing rapidity, and therefore this second ‘‘saturation
scale’’ decreases with rapidity. One has to stress however
that the region of large dipoles is going to be heavily
modified by the nonperturbative effects (see the discussion
later in this section) and therefore this second saturation
scale is most likely only an artefact of the perturbative
expansion in the leading logarithmic (LL) approximation.

This novel feature of the solution in impact parameter
dependent case, namely, the decrease of the amplitude at
large dipole sizes is directly related to the profile in the
impact parameter space. It was found in the LL case
[52,53] that the solution has a powerlike tail in impact
parameter. This is related to the fact that there are no mass
scales in the perturbative evolution and hence the interac-
tion is long range [60,61]. As we will discuss later in this
section, the branching kernel in the equation needs to be
modified by including the effective gluon mass in order to
regulate the powerlike behavior of the amplitude for large
dipole sizes and include the effects of confinement.

Another distinctive feature of the solutions with impact
parameter dependence is the presence of the strong corre-
lations between the dipole size and the impact parameter. It
has been observed that the amplitude is largest for specific
configurations and orientations of the dipole size r and
impact parameter b vectors. In particular, the amplitude
has a peak when the dipole size is equal twice the impact
parameter. This is clearly illustrated in Fig. 2(b) where the
peak in the amplitude at r ¼ 2b emerges. In this case there
is also a non-negligible dependence on the angle between
the dipole size vector and the impact parameter. It turns out
that the amplitude is largest when the angle between the
dipole size vector and the impact parameter vector is equal
to 0 or �, that is when the vectors r and b are parallel or
antiparallel. In this configuration one of the color charges
scatters off the center of the target. This enhancement can
also be seen analytically from the conformal eigenfunction
representation as discussed in [53].

By integrating the resulting amplitude Nðr;b;YÞ over
the impact parameter b, as in Eq. (4), one obtains the
dipole cross section as a function of the dipole size and
rapidity. Even though the amplitudeN never exceeds unity,
the resulting dipole cross section increases very strongly
with the rapidity [60,61], due to the rapid diffusion of
dipoles in the impact parameter space. In the leading
logarithmic approximation this increase is exponential in
rapidity, �dip � expð�BYÞ, with �B ’ 2:6 [52,53]. This

behavior is very different from the features observed in
the b-independent solution. In the latter case one assumes
that the dipole amplitude does not depend on the position
in coordinate space, but only on the absolute value of the
dipole size and rapidity,Nðr;YÞ. The solution still saturates
to unity which is the fixed point of the equation in this
approximation as well. To obtain the dipole cross section
one needs then to multiply the amplitude by a dimensionful
coefficient i.e.

�dip ¼ S0Nðr;YÞ;
where S0 can be interpreted as the integral

S 0 ¼
Z
R
d2b

over the interaction region R in the impact parameter and
is entirely introduced by hand. The behavior of S0 on
rapidity (whether it is constant or increasing) is thus not
determined by the b-independent BK evolution equation.
We see therefore, that the b-dependent solution to the

BK equation, when integrated over the impact parameter
does not reduce to the solution in the previously studied
approximation when the impact parameter is neglected.
This is an important qualitative and quantitative difference
between these two solutions. In fact, the solution with
impact parameter dependence is more physically moti-
vated as it gives the increase of the dipole cross section
with rapidity. It will also naturally lead to the increase with
the energy of the diffractive slope for the vector meson
production. We note however, that the results in the LL
approximation, even with the running coupling, are not
compatible with the experimental data. This is due to the
fact that the diffusion in impact parameter is very strong
(since it is driven by the purely perturbative physics) and
results in a fast increase of the interaction radius which is
not supported by the data. In order to tame this growth
further corrections are necessary, in particular, the inclu-
sion of subleading corrections and a mass parameter into
the evolution as will be discussed later in this section.

A. Initial condition for the evolution towards small x

For the rest of the numerical simulations presented in
this paper we will use the initial conditions of the similar
form as in (7) but with parameters which were adjusted to
obtain the predictions consistent with experimental data.
We will use as our initial condition the parametrization

FIG. 3 (color online). Two different dipole-target configura-
tions for which the dipole scattering amplitude is small (away
from unitarity limit).
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from Ref. [44], where the parametrization in the Glauber-
Mueller form was used

NGMðr; b;Y ¼ ln1=xÞ

¼ 1� exp

�
� �2

2Nc

r2xgðx; �2ÞTðbÞ
�
; (8)

with

TðbÞ ¼ 1

8�
eðð�b2Þ=ð2BGÞÞ: (9)

The formula (8) is used as an initial condition for the BK
evolution for dipoles with sizes smaller than the cutoff
1=m. For dipoles larger than the cutoff the initial condition
is set to zero (see the discussion in the next subsection). In
formula (8) the function xgðx; �2Þ is the integrated gluon
density function and TðbÞ is the density profile of the target
in transverse space with BG ¼ 4 GeV�2. This parameter
was set to fit the t slope of the diffractive J=� production
in [45]. Also, the scale � was set according to [45] to be
equal to �2 ¼ C

r2
þ �2

0 with parameters C ¼ 4 and �2
0 ¼

1:16 GeV2. The integrated gluon density in (8) was also
taken from fits performed [45]. We use (8) as the initial
condition at Y0 ¼ ln1=x0, x0 ¼ 10�2 and evolve the am-
plitude with the BK equation to obtain the solution at lower
values of x < x0. We also note that the initial condition (8)
depends only on the absolute values of the dipole size and
impact parameter. The nontrivial dependence on the angle
between vectors r and b is not present in the initial condi-
tion, instead being dynamically generated when the initial
condition is evolved with the BK equation.

B. Including the effective gluon mass
into the evolution kernel

Currently it is unknown how to introduce a massive
cutoff on a fundamental level into the small x evolution
as it is an entirely nonperturbative problem. We have tested
various prescriptions and found that there is a rather large
sensitivity of the resulting solutions to the details of con-
finement implementation. In addition, there is a strong
dependence of the solutions on the way the running cou-
pling is regularized. This sensitivity stems from the behav-
ior of the b-dependent solution at large dipole sizes, as
discussed previously. One important difference to note
between the solution with and without the impact parame-
ter dependence is that in the latter case the running of the
strong coupling is naturally regularized by the saturation
scale, provided the latter is in the semihard regime. For
example, it was observed in Ref. [34] that different pre-
scriptions of the regularizations for the running coupling
gave similar results in the case of the nonlinear evolution.
The emergence of the semihard saturation scale Qs and its
role as an infrared cutoff is one of the most prominent and
useful features of the nonlinear evolution. In the case when
the impact parameter is taken into account, the saturation

scale strongly varies with b. In the dense region this scale is
large, and is providing a natural cutoff for the running
coupling in the same way as in the impact parameter
independent solutions. There is however always a periph-
eral interaction region in impact parameter where the
scattering amplitude is small and the system is dilute.
Consequently the coupling is not regularized in this region
by the saturation scale which is very small for large b. As a
result, the solution in the dilute peripheral regime is gov-
erned by the linear evolution and becomes extremely sen-
sitive to the region of large dipole sizes.
The specific value of the massive cutoff which is im-

plemented into the evolution kernel should correspond to
the nonperturbative scale which is related to confinement.
Lattice simulations [62,63] suggest the presence of an
effective gluon mass which would regulate the large dipole
size regime. In the case of BK equation an important
ingredient that one has to take into account is the fact
that the evolution in impact parameter is strongly corre-
lated with the evolution of the dipole sizes. Therefore the
cutoff on the latter will crucially influence the size of the
interaction region in impact parameter and its variation
with the collision energy. In the Monte Carlo analysis of
dipole evolution in [50,64] the parameter rmax was set to be
around 3 GeV�1 (to be precise it was set to 2:9 GeV�1 in
[64] and 3:1 GeV�1 in [50]). We set the value of the cutoff
to be of the same order, i.e.m ¼ 1

rmax
¼ 0:35 GeV which

corresponds to rmax ’ 2:86 GeV�1.
Let us finally note here that the impact parameter profile

can be accessed through the measurement of the diffractive
production of the vector mesons [44,45]. From the experi-
mental data [65] at jtj< 1:2 GeV2 it is known that the
diffractive slope BD of the J=� production ( d�dt � eBDt) is

of the order of �4:57 GeV�2 for Q2 & 1 GeV2 and
�3:5 GeV�2 for Q2 > 5 GeV2 in the energy range 40<

W�p < 160 GeV. It is also slowly growing with the in-

creasing energyW of the ��p system. The value of rmax we
set in the calculation will strongly influence the variation of
the width of the impact parameter profile with the energy.
Therefore in principle rmax can be related to the depen-
dence of the BD with the energy, [66].

1. Regularization of the kernel at leading logarithmic
accuracy with fixed coupling

The regularization of the large dipole sizes in the dipole
kernel is a purely nonperturbative effect. One possible
implementation, which is physically motivated, is to in-
troduce the effective gluon mass m into the propagators.
This mass will set a correlation length rmax � 1=m which
will limit the propagation of the strong color force. One can
then derive the dipole kernel by computing the emission of
the gluon from the initial q �q dipole [67,68]. The Fourier
transform of the momentum space expression of the q �qg
lightcone density into the coordinate space results in the
expression which contains the modified Bessel functions
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instead of powers as in the LL expression. This means that
instead of the long range Coulomb-type interaction present
in the perturbative evolution there is now screened Yukawa
force with finite range given by rmax. The modified branch-
ing kernel for dipoles with effective gluon mass m has the
following form [67,68]

K ð1Þ
LL ¼ �sNc

�
m2

�
K2

1ðmx02Þ þ K2
1ðmx12Þ

� 2K1ðmx02ÞK1ðmx12Þx02 � x12

x02x12

�
: (10)

In the limit when the dipole sizes are small compared to the
cutoff, xij � 1

m , the Bessel functions are approximated as

K1ðmxijÞ ’ 1
mxij

. In this limit the kernel (10) obviously

reduces to the well known expression in the LL approxi-
mation [67–69]. On the other hand, the production of large
dipoles xij *

1
m is exponentially suppressed. This form of

the modification of the kernel (10) was also used in the
later version of the Monte Carlo simulation for the dipole
splitting and evolution [64].

By inspecting expression (10) it is clear that this kernel
does not vanish completely when one of the dipole sizes is
larger than 1=m but the other is smaller than 1=m. In other
words even for very large parent dipole size the above
kernel permits the splitting, provided one of the daughter
dipoles sizes is below the cutoff. It means that despite the
presence of the cutoff 1=m there is still a diffusion into the
region of arbitrarily large dipole sizes.

As an alternative to the above scenario, we have thus
used a second prescription where the splitting is suppressed
whenever any of the daughter dipole sizes is larger than the
cutoff. To be precise, we have tried the second ansatz of the
form

K ð2Þ
LL ¼ �sNc

�

x201
x202x

2
12

�

�
1

m2
� x202

�
�

�
1

m2
� x212

�
: (11)

The kernel is thus set to zero whenever any of the dipoles
is larger than 1=m. This form gives more suppression of the
dipole splitting than the first modification (10) and results
in an overall slower evolution in rapidity.

2. Regularization in the presence of the running coupling

The implementations of the cutoff presented above can
be used with a fixed coupling. The running coupling cor-
rection brings in an additional complication as the form of
the kernel changes rather significantly and the coupling is
no longer a simple multiplicative factor. The running cou-
pling corrections to the BK evolution have been computed
in two independent calculations [70,71]. The two schemes
differ by the nontrivial subtraction term as was demon-
strated in detail in [36] that we will not consider in this
work. For the purpose of the current work we use the
scheme of [70]

KBal
rcLL ¼ �sðx201ÞNc

�

�
1

x202

�
�sðx202Þ
�sðx212Þ

� 1

�

þ 1

x212

�
�sðx212Þ
�sðx202Þ

� 1

�
þ x201

x212x
2
02

�
: (12)

The other scheme derived [71] tends to be more time
consuming per one evaluation which in the case of the
impact parameter dependent simulations with large grids
greatly extends the time necessary for the evolution.
Therefore for purely practical reasons we utilized only
Balitsky prescription (12).
Kernel (12) reduces to the LL kernel with the strong

coupling evaluated at the smallest value of the dipole size,
for configurations of dipole sizes which are strongly or-
dered. For example, in the case when x01 � x02 	 x12 we
have

K Bal
rcLL ’ �sðx201ÞNc

�

�
1

x212

�
�sðx212Þ
�sðx202Þ

� 1

�
þ 1

x212

�

’ Nc�sðx212Þ
�

1

x212
; (13)

and for x01 � x02 � x12 we can take
�sðx202Þ
�sðx212Þ

� 1 and obtain

K Bal
rcLL ’ �sðx201ÞNc

�

x201
x212x

2
02

:

Thus for the reference we have also used an alternative
prescription which is the minimal dipole scenario defined
as

K min
rcLL ’ �sðminðx201; x212; x202ÞÞ

Nc

�

x201
x212x

2
02

: (14)

As we shall see later, even though formally kernel (12)
reduces to (14), at least in the cases considered above, there
are notable numerical differences between the two pre-
scriptions (12) and (14). In particular, we found that the
evolution with kernel (12) is significantly slower than with
(14) which is consistent with previous numerical results
[36] obtained without impact parameter.
In the case of the kernel with running coupling (12) the

implementation of the cutoff in the form analogous toKð1Þ
LL

is not entirely trivial due to the rather complicated form of
(12). We have thus used the simplest scenario, imposing
the cuts on the daughter dipoles as in (11). To be precise,
for the case of the running coupling with scenario [70] we
used

KBal
rcLL;m¼

�sðx201ÞNc

�

�
1

x202

�
�sðx202Þ
�sðx212Þ

�1

�
þ 1

x212

�
�sðx212Þ
�sðx202Þ

�1

�

þ x201
x212x

2
02

�
�

�
1

m2
�x202

�
�

�
1

m2
�x212

�
: (15)
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For comparison, we have also used the minimal dipole
prescription for the running coupling (14) where all of the
scenarios with masses (10) and (11) were extended in this
case. This is possible as the minimal dipole prescription
gives the multiplicative factor in the LL kernel, see (14).

In this paper we use the expression of the QCD running
coupling with a mass parameter � to regulate the strong
coupling at large dipoles, which is of the following form2

�sðx2Þ ¼ 1

b ln½��2
QCDð 1x2 þ�2Þ� ; (16)

Here b ¼ 33�2nf
12� , nf is the number of active flavors. The

� parameter effectively freezes the coupling at large dipole
sizes at �s;fr ¼ 1

b ln½��2�2� . In our simulations we used

� ¼ 0:52 GeV as an infrared regulator for the strong
coupling, and �QCD ¼ 0:25 GeV.

IV. RESULTS

A. Properties of the dipole amplitude and comparison
with the Glauber-Mueller model

As we saw explicitly in Sec. III, the solutions to the BK
equation with impact parameter dependence possess very
interesting and novel properties as compared to the case
without the impact parameter. In this section we investigate
in detail the features of the solutions when the mass m is

included in the kernel. We study the BK solutions using
two different prescriptions for the infrared regulators
which were introduced in the previous section, see
Eqs. (10) and (11). We also investigate in detail the differ-
ences between the two running coupling scenarios, i.e. (14)
and (15). It turns out that the differences between the
simulations have rather significant impact on the
phenomenology.
First, we used kernels (10) and (11), where the running

coupling has been implemented using the minimal dipole
size as the scale (see Eq. (14)). This was done in order to
consistently trace the differences between the two imple-
mentations of the massive cutoff.
In Fig. 4(a) we present the simulations using kernel (10).

We observe that despite the fact that the effective gluon
mass m is incorporated into the branching kernel, the
scattering amplitude is nonvanishing at arbitrary large
dipole sizes. For any rapidity there is still a significant
diffusion into the large dipole size region. This feature is
simple to understand by inspecting the form of (10). One
observes that, for any value of x01 there are configurations
where one daughter dipole is very large and above the
cutoff but the second daughter dipole can be still below
the cutoff 1

m . These configurations lead to the nonvanishing

contributions of the kernel even at large values of x01.
Because of this effect the evolution with modified kernel
(10) still proceeds into the large dipole regime as indicated
by the results in Fig. 4(a).
In Fig. 4(b) we show the solution using the kernel with

the theta functions imposed as in (11). We see from this
figure that the prescription (11) leads to the solution which
completely vanishes for large dipoles in stark contrast with
the simulation shown in Fig. 4(a). The interesting feature
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FIG. 4. Dipole amplitude as a function of the dipole size from the evolution to the BK equation with mass m ¼ 0:35 GeV. The
dotted-dashed line is the initial condition (8) at Y ¼ 0 and each solid line represents a progression in two units of rapidity until Y ¼ 8.
The solutions are evaluated at fixed impact parameter b ¼ 0:0001 GeV�1 and for the orientation of the dipole defined as r ? b.

2Note that, this is the expression for the running coupling in
coordinate space. In the literature one finds various forms of the
running of the coupling in coordinate space which include
different normalizations for the argument, i.e. ln C

�2x2
with differ-

ing values of the constant C. We are using here the convention
from Ref. [72] where C ¼ 1.
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about this scenario is that even though the initial condition
(shown by dotted-dashed line) was cut at x01 ¼ 1

m , the

evolution does not respect this cut and moves it to a larger
value equal to x01 ¼ 2

m . This happens because the kernel

(11) has cuts only on daughter dipoles and not on the parent
dipole. It means that the amplitude for sizes of dipoles
which are larger than 1

m is nonvanishing. Until a point at

which the parent dipole is twice the cutoff size there exist
configurations where neither emitted daughter dipoles are
above the cutoff size. These symmetric states exist until
x01 ¼ 2

m at which point all of the configurations are cut,

since at least one daughter dipole is larger than the cutoff.
From this part of the analysis we conclude that when the

massive cutoff is imposed in the form of (10), the evolution
still proceeds into the region of large dipole sizes, which is
dominated by the large value of the strong coupling con-
stant. This has rather important consequences and we
found that this scenario is actually disfavoured by the data.

As a next step, we have performed the comparison of the
two solutions using the minimal dipole prescription (14)
and the Balitsky prescription (15) for the running coupling.
The results of this comparison are shown in Fig. 5. In both
of these cases we have implemented the mass as in (11), i.e.
setting the kernel to zero whenever any of the daughter
dipoles are larger than the cutoff. It is evident that the
kernel with the running coupling given by (15) leads to a
much slower evolution than the kernel with the running
coupling as in (14). For example at rapidity Y ¼ 4, the
evolution front in the minimal dipole scenario is almost at

the same position (for small dipoles) as for the scenario
(15) at rapidity Y ¼ 8. As we will see later, this will
translate into large differences for the observable structure
functions depending on the prescription used. It has a large
effect, in particular, on the x slope of F2. This feature
has been found also in earlier calculation which did not
include the impact parameter dependence and masses, see
Ref. [36].
We have also compared the solutions to the BK equation

with the Glauber-Mueller model, Eq. (8). In the latter
model, the parameters were obtained from a fit to the
HERA data [45]. The initial condition for the solution to
BK was also taken to be of the form of Eq. (8) at Y ¼ 0
which we choose to correspond to x0 ¼ 0:01 in this calcu-
lation. For consistency the initial condition for the BK
equation is set to zero for dipoles which exceed the cutoff.
The comparison between the solution to BK and Glauber-
Mueller model is presented in Fig. 6(a). We see that the
solution to the BK equation agrees quite well with the
parametrization (8) for small values of dipole sizes. On
the other hand there are sizeable differences in the larger
dipole regime, where one sees that (8) extends indefinitely
whereas the BK solution is cut off by the massive regulator.
This has a non-negligible impact on the phenomenology of
F2 at low Q2 as will be illustrated in the next subsection.
The difference in the solutions was examined, when the

initial condition is not cut at 1
m but at 2

m and still the kernel

(15) is used with the cutoff 1
m in the evolution. The result is

shown in Fig. 6(b). In this case it is evident that the cutoff is
not moved due to the reasons described earlier in this
section. However, there is a peculiar structure of the solu-
tion, where a second peak of the amplitude emerges for
dipoles somewhat smaller than the cutoff. The solution in
Fig. 6(b) is nevertheless very close to the solution shown in
Fig. 6(a) for small values of dipole sizes, i.e. smaller than
1
m . We also note that for the values of the cutoff m used

here, which are motivated by the profile in impact parame-
ter, both the initial condition and the BK solutions do not
completely saturate, although the amplitude is close to 1
for large rapidities.
It should be also noted that the solutions to the BK

equation with the kernel (12) possesses an interesting
dependence on the regularization procedure of the running
coupling. This is related to the fact that this kernel is a
complicated, nonlinear function of �s. In particular, the
factors of the coupling in the denominators in expression
(12) lead to a nontrivial dependence on the regularization
parameter of the strong coupling. It was found that by
increasing the value of�, see Eq. (16), and thus decreasing
the maximal value at which the coupling freezes, there was
a region of dipole sizes where the solution obtained from
evolution with the kernel (12) was actually increased,
contrary to what could be naively expected. We stress
that this behavior was observed for some range of dipole
sizes only. With the minimal dipole size prescription the
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FIG. 5. Dipole amplitude as a function of the dipole size for
the fixed value of impact parameter. Solid line corresponds to the
simulation with the running coupling using the minimum dipole
prescription Eq. (14). Dashed line corresponds to the running
coupling using Eq. (15). In both cases the massm ¼ 0:35 GeV is
included in the kernel, in the form of two theta functions, like in
Eq. (11). Two sets of curves correspond to rapidities Y ¼ 4 and
Y ¼ 8. The dashed—dotted curve is the initial condition at
Y ¼ 0 for both calculations.
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amplitude was of course always decreasing with increasing
value of � as expected.

In general, it was found that the solution with the run-
ning coupling in the form (12) possessed a larger sensitiv-
ity to the way the coupling is regulated than the evolution
with the minimal dipole prescription (14). This sensitivity
persists even at small dipole sizes which are far away from
the scale 1

� . It suggests that the terms with inverse coupling

in kernel (12) increase the sensitivity to scales which are
different than the scale set by the parent dipole x01. It is

also important to note that this behavior was found both in
the evolution with and without impact parameter depen-
dence. The solution using the minimum dipole size pre-
scription does not exhibit such a large sensitivity. It would
be interesting to investigate these features further in order
to determine whether this is a physical behavior or it is an
artefact of the truncation of the resummation of perturba-
tive series which lead to this result [70].
Finally, the dependence of the amplitude on impact

parameter for fixed value of the dipole size was analyzed.
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FIG. 6. Dipole scattering amplitude as a function of the dipole size for the fixed value of impact parameter b. Solid line corresponds
to the model (8) with parameters from [45]. The dashed line is the solution to the BK equation with the kernel (15). The dashed-dotted
line denotes the model (8) at x0 ¼ 0:01. The cutoff at rmax ¼ 1

m (plot (a)) and rmax ¼ 2
m (plot (b)) is also indicated. Impact parameter is

fixed to b ¼ 1 GeV�1.

10-1 100 101
0.0

0.1

0.2

0.3

0.4

0.5
Dipole Size: 1.00 (GeV-1) | cos(phi): 0.0 | Delta Y: 4.0 | max Y: 8.0

Impact Parameter (GeV-1)

N
(y

)

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5
Dipole Size: 1.00 (GeV-1) | cos(phi): 0.0 | Delta Y: 4.0 | max Y: 8.0

Impact Parameter (GeV-1)

N
(y

)

FIG. 7. Dipole scattering amplitude as a function of the impact parameter for fixed dipole size and dipole orientation � ¼ �=2. The
solid lines represent the model (8) used in [45]. The dashed lines correspond to the solution of the BK equation with the kernel (15),
m ¼ 0:35 GeV. The dashed—dotted line represents the initial conditions at Y ¼ 0ðx0 ¼ 0:01Þ also taken from model in [45].
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The diffusion property of the solution in impact parameter
space is illustrated in Fig. 7 for the running coupling case
in scenario (15). Plots in Fig. 7(a) and 7(b) differ only by
the choice of horizontal scale. The solution to the BK
equation is compared with the profile in impact parameter
using the model (8) with the parameters from [45]. We
observe that for the small values of b in general the BK
solution is fairly close numerically to model (8). There is
however a significant difference in the shape of the ampli-
tudes between the BK calculation and the Glauber-Mueller
model (8). This is especially manifest at large values of
impact parameter where the BK solution has a more ex-
tended tail in b. In the BK solution there is a clear increase
of the width of the distribution in impact parameter with
increasing rapidity.

The diffusion property in impact parameter is best illus-
trated in Fig. 8 where we show the average width squared,
defined as

hb2i ¼
R
d2bb2Nðr;b;YÞR
d2bNðr;b;YÞ ; (17)

as a function of rapidity for fixed value of the dipole size r.
We compared the value of hb2i extracted from the solution
to the BK equation with the value obtained from model (8).
The model (8) gives almost constant width, independent of
rapidity, which is to be expected. On the contrary, in the
case of the BK equation the width clearly increases with
rapidity. For the rapidities considered here, we observe that
it is almost a linear growth, with slightly faster increase at
the highest values of rapidity �6–8 along with mild de-
pendence of the slope on the value of the dipole size.

B. Description of the F2 and FL structure function data

In our calculation of the F2 and FL structure functions
we used the solution to the BK equation with impact
parameter dependence and a gluon massm as implemented
in scenario (15). The initial condition for the calculation
was set as in Sec. III A. In addition, we imposed a cutoff on
the dipole sizes to be equal to x01 ¼ 2

m in the initial condi-

tion. As discussed earlier, this is necessary in order to be
consistent with the cutoff placed in the evolution kernel.
The data on the structure function correspond to the com-
bined H1 and ZEUS data [57], and only the points below
x ¼ 0:01 are used here.
In this calculation there are the following parameters: C,

�0, BG in the initial condition (8), mass m in the kernel,
strong coupling regulator � and �QCD. In principle all of

these parameters can be varied to obtain the fit to the data.
In practice however, due to very long time needed to find
solution for a given set of parameters (of the order of a day
on 32 cores), variation of all parameters is prohibitive. We
have instead chosen to fix all of the parameters with the
exception of � and m which we varied in a very limited
range.
Since we use an initial condition which is cut at large

dipole sizes, the data at values of x around 0.01 are under-
estimated by our model. This is because the initial model
(8) from [45] was fitted to the data without any cuts. This
indicates a rather large sensitivity of the F2 obtained from
(2) to the region of large dipole sizes even for moderate
values of Q2. This effect is well known and corresponds to
the presence of the aligned jet configurations in the trans-
verse structure function [73,74]. This can be seen by
inspecting Eqs. (2) and (5) as this expression receives large
contributions from the endpoints z� 0, 1. As a result, at a
given value ofQ2 the dipoles which contribute to F2 form a
rather wide distribution in dipole size. We have verified
that for the model given by (8) with a cut of the order of 1

m

and 2
m , with m ¼ 0:35 GeV the contribution to F2 at Q

2 ¼
4:5 GeV2 from dipoles larger than the cut is about 30% and
10%, respectively. Hence, the F2 structure function con-
tains significant nonperturbative contributions even at the
moderate values of Q2. In order to compensate for this
nonperturbative offset one could of course move the cutoff
m towards smaller masses. However, since the cut on the
dipole sizes is strongly correlated with the profile in impact
parameter it would result in the much larger width of the
impact parameter profile, which would be inconsistent
with the data on diffractive J=� production. Therefore,
we choose to work with the value of the cut which is more
consistent with the number obtained from the J=� diffrac-
tive slope. As a result, in order to compensate for the offset,
a separate nonperturbative contribution is added which is
important at low values of Q2, of the order of <15 GeV2.
We stress that this property stems from the fact that in

the BK evolution equation the impact parameter and dipole
size are strongly correlated. This has to be contrasted with

0 2 4 6 8

8

10

12

14

r = 0.479 GeV-1

r = 1.000 GeV-1

r = 0.479 GeV
-1

r =
 1.000 GeV

-1

Rapidity

<
b2 >

 (
G

eV
-2

)

FIG. 8. The value of the average squared width hb2i, defined in
Eq. (17), as a function of rapidity for fixed value of the dipole
size r. The solid line is the model (8) with parameters taken from
[45] and the dashed line is obtained from solution to the BK
equation with the kernel (15).
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the Glauber-Mueller like parametrization (8) where the
dipole sizes and impact parameter are decoupled. The
nonperturbative part originating from large dipole sizes
was parametrized in the following form

Fsoft
2 ¼ Q2

2��em

�0

Z
ð1=mÞ

rdr
Z 1

0
dzðj�Lj2 þ j�Tj2Þ:

(18)

The total structure function is then taken to be of the form

Ftot
2 ¼ FBK

2 þ Fsoft
2 ; (19)

where FBK
2 denotes the contribution obtained by using the

solution to the BK equation (which is the perturbative
part). In the formula (18) we assumed that the dominant
part of the integral is where the dipole—proton amplitude
is almost flat and therefore replaced the dipole cross sec-
tion with the constant �0. Note that the integral over dipole

size in (18) is now cut from below by 1=m, and the integral
extends into the large dipole regime. �0 is a constant that is
used to fit the data at x ¼ 0:01 and lowest bin in Q2. The
Fsoft
2 contribution is slowly varying withQ2 and it accounts

well for the nonperturbative dipoles at low Q2. This pro-
cedure of adding separate contributions from small (per-
turbative) and large (nonperturbative) dipoles is similar to
the one employed in Refs. [75,76].
One could argue that the nonperturbative contribution

could be accounted for by including the contribution from
the vector meson dominance model [77–80]. The vector
meson dominance (VMD) contribution can be written as

FðVMDÞ
2 ¼ Q2

4�
�v¼	;!;


�
m4

v�vðW2Þ
�2
vðQ2 þm2

vÞ2

þ Q2m2
v�vðW2Þ

�2
vðQ2 þm2

vÞ2
�0

�
m2

v

Q2 þm2
v

�
2
�
; (20)
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FIG. 9 (color online). F2 proton structure function versus x in bins of Q2. The dipole amplitude is obtained from the BK evolution
with LL kernel with running coupling in scenario (15).� ¼ 0:52 GeV,m ¼ 0:35 GeV, �0 ¼ 75:98 GeV�2 and the initial condition is
cut at x01 ¼ 2

m . The dashed line corresponds to the calculation with the VMD term in F2 and the solid line corresponds to the

calculation (18) and (19). The data points are taken from the combined H1 and ZEUS data sets [57].
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see for example [75]. Here mv denotes the vector meson
mass and �v is the vector meson-proton cross section
which is a function of the energy. These cross sections
can be taken to be

�	 ¼ �! ¼ 1

2
ð�ð�þpÞ þ �ð��pÞÞ; (21)

�
¼�ðKþpÞþ�ðK�pÞ�1

2
ð�ð�þpÞþ�ð��pÞÞ; (22)

where the parameterization for the energy dependence of
�ð�
pÞ, �ðK
pÞ was taken using the soft pomeron model
from [81]. The �v terms relate to the leptonic width
of the vector meson [75] in question and are defined by

�2
v ¼ ��2

emmv

3�v!eþe�
where the leptonic decay width is taken from

[82] and �0 is a constant taken to be 0.7 [75].

The computations for F2 using the nonperturbative
contribution of either (18) or (20) are presented in
Figs. 9 and 10. As we see the curves with the VMD
term undershoot the data whereas the curves with the
soft term are systematically closer. The VMD contribu-
tion is almost negligible with the exception of the lowest
Q2 bin. We see that the two calculations, with soft term
and VMD are close for values of Q2 > 15 GeV2 which
means in this region the data are only described by the
perturbative component. We also conclude that the VMD
model is not sufficient as the only soft contribution for the
description of the data in the present setup. VMD only
contributes to the very low values of Q2 (less than
4 GeV2) and an additional soft component is needed
which has a flatter Q2 dependence. This result is consis-
tent with the results of the previous analyses [76].
We observe that the slope of the calculations is too steep

in x in all bins of Q2 which implies that the LL evolution
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FIG. 10 (color online). F2 proton structure function versus x in bins of Q2. The dipole amplitude is obtained from the BK evolution
with LL kernel with running coupling in scenario (15).� ¼ 0:52 GeV,m ¼ 0:35 GeV, �0 ¼ 75:98 GeV�2 and the initial condition is
cut at x01 ¼ 2

m . The dashed line corresponds to the calculation with the VMD term in F2 and the solid line corresponds to the
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with the running coupling leads to a faster slope in ln1=x
than the data indicate. This can be remedied by lowering
the scale �QCD from the value which we used, i.e.

0.25 GeV, and taking it as a fitting parameter. This was
effectively done in the fits presented in [37,38]. We esti-
mated that it would require�QCD to be well below the pion

mass, of the order of tens of MeVor so to fit the data. The
fact that the LL evolution with running coupling in our

scenario has a steeper slope than the data is not unexpected
as one needs to take into account the next-to-leading
corrections to BK equation. These have been computed
in [72], but a detailed analysis of the BK equation which
includes them still needs to be performed. Preliminary
analysis in the momentum space was recently performed
[83] using the method of the saturation boundary [28]. The
results from this analysis indicate that next-to-leading
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FIG. 11 (color online). FL proton structure function versus x in bins of Q2. The dipole amplitude is obtained from the BK evolution
with LL kernel with running coupling in scenario (15). The parameters are:� ¼ 0:52 GeV,m ¼ 0:35 GeV. The initial condition is cut
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corrections to the BK equation, which are not due to the
running coupling, are indeed substantial and can lead to the
instabilities of the evolution despite the presence of satu-
ration [84]. This strongly suggests that a resummation of
subleading corrections in ln1=x is needed in addition to the
saturation corrections [85,86].

Finally, we also compared the calculation to the experi-
mental data on the structure function FL [56], this is
illustrated in Fig. 11. We see that the calculation is con-
sistent with the experimental data in all bins of Q2.
However, the data on FL have very large errors. Note
that, in the figures presented, the range in x in each of
the bins is very small, and therefore the FL structure
function is very flat in each of these bins.

V. CONCLUSIONS

In this paper we have analyzed the nonlinear BK equa-
tion with impact parameter dependence and running cou-
pling in the presence of a mass scale, which regulates
dipole splitting in the infrared regime. This effective gluon
mass is responsible for the nonperturbative effect of con-
finement. Using the resulting solution for the dipole scat-
tering amplitude we have performed a comparison with
experimental DIS data on the structure functions F2 and
FL. Let us summarize the main points of this investigation:

(1) The details of the evolution in rapidity strongly
depend on the way the large dipoles are regularized.
In particular, the speed of the evolution with rapidity
is affected by the choice of regularization. Two
different scenarios have been tested: modified
Bessel functions (10), and a more stringent cutoff
with theta functions (11). The first scenario pos-
sesses a physical motivation and can be derived
from the computation of the branching kernel for
dipoles in the presence of the effective gluon mass in
the propagators.

(2) The scenario (10) does not entirely tame the evolution
into the large dipole size region and in the presence of
the running coupling it results in a rather fast evolu-
tion in rapidity. The resulting amplitude is also much
larger than in scenario (11), not only in the large
dipole regime but also in the small dipole region as
well.We found that the scenariowith the cutoff on all
the large dipoles in the form (11) results in solutions
which are preferred by the experimental data.

(3) The running coupling prescription (12) gives, in
general, much slower evolution than the prescription
(14) with the minimal dipole as the scale of the
running coupling. This happens despite the fact
that the two kernels are formally equivalent in the
limits when the dipole sizes are strongly ordered.
We also found that the evolution with kernel (12) is
more dependent on the details of the regularization
of the running coupling. Most likely this is caused
by the highly nonlinear form of (12), i.e. by the fact

that it contains the inverse powers of the strong
coupling. We found that the scenario which gives
results closest to the data is the kernel with Balitsky
prescription for the running coupling and the mas-
sive regulator taken in the form (15).

(4) Comparison with the data on structure function F2

shows that the slope in x of the calculation is too
steep for the data in the case of the LL evolution
with running coupling. This could be cured by
changing the value of �QCD, but it would require

unrealistically small values of this scale in order to
match the data. We stress that the full fit which
would include the variation of all parameters, in
the case of the BK equation with impact parameter,
would be extremely demanding as far as computing
resources are concerned (using similar techniques as
presented here). The fact that the scale in the run-
ning coupling has to be adjusted quite a bit to fit the
data is consistent with previous calculations (which
were done without impact parameter dependence)
and calls for the inclusion of the remaining correc-
tions beyond the leading—logarithmic order.

(5) An important feature of the solution to the BK
equation is the fact that the impact parameter and
dipole size are strongly correlated. This property
stems from the basic form of the dipole evolution
kernel. This has to be contrasted with the models
previously used in the literature, for example, of the
form (8). This correlation introduces novel effects
and leads to more constraints on the calculations.
For example, incorporating the effective gluon mass
in the kernel introduces a scale in impact parameter.
Strong variation of this scale is not possible if one
requires consistency with the observed slope in
diffractive data. This scale then results in the trun-
cation of the large dipole size region, which in turn
causes the offset in the F2 calculation, particularly at
small values of Q2. Therefore one needs to include
an additional (soft) component to F2 which is en-
tirely nonperturbative. The BK solution also exhib-
its the diffusion in impact parameter, a feature that is
completely absent in the models of the form (8). We
found that in the region of large impact parameters
and high rapidities the differences between the BK
solution and the model (8) were substantial.
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