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A study of meson-baryon systems with total strangeness �1 is made within a framework based on the

chiral and hidden local symmetries. These systems consist of octet baryons, pseudoscalar and vector

mesons. The pseudoscalar meson-baryon (PB) dynamics has been earlier found determinant for the

existence of some strangeness �1 resonances, for example, �ð1405Þ, �ð1670Þ, etc. The motivation of the

present work is to study the effect of coupling the closed vector meson-baryon (VB) channels to these

resonances. To do this, we obtain the PB ! PB and VB ! VB amplitudes from the t-channel diagrams

and the PB $ VB amplitudes are calculated using the Kroll-Ruddermann term where, considering the

vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done

within this formalism reveal a very strong coupling of the VB channels to the �ð1405Þ and �ð1670Þ. In
the isospin 1 case, we find evidence for a double pole structure of the �ð1480Þ which, like the isospin 0

resonances, is also found to couple strongly to the VB channels. The strong coupling of these low-lying

resonances to the VB channels can have important implications on certain reactions producing them.
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I. INTRODUCTION

The dynamical generation of baryon resonances in
meson-baryon systems has been studied in detail during
the past few decades using effective field theories based on
chiral symmetry [1–15]. In the early attempts to understand
the low-lying baryon resonances, systems made of an octet
pseudoscalar meson and an octet baryon were investigated.
The resonance which has received a lot of attention in such
studies is the �ð1405Þ [1,3,9,16,17]. Theoretically, the
�ð1405Þ and some states in the nearby energy region are
expected to be well studied with the chiral perturbation
theory involving unitarization among the coupled chan-
nels. The reason being the proximity of these resonance to
the threshold of a relevant meson-baryon channels where
the chiral perturbation theory can be used as a good guid-
ing principle to determine the hadron-hadron interactions.

Some experimental investigations have been extended to
further higher energy regions where some resonances show
a large branching ratio to channels consisting of vector
mesons (more precisely two or three pseudoscalar mesons
with strong correlations to the vector meson quantum
numbers). Such states are naturally considered as candi-
dates of dynamically generated states with a vector meson,
and several theoretical studies have been made to verify
this with a reasonable success [10,12]. In our previous
publication also, the importance of the vector meson-
baryon interaction in the generation of resonances was

pointed out with a more detailed formalism including s-,
t-, u-channel diagrams and a contact term originating from
the hidden local symmetry Lagrangian [18]. So far, most of
the above studies have been carried out by having the
pseudoscalar meson-baryon (PB) and vector meson-baryon
(VB) channels independently.
Now in general, in the energy region of 1.3–2 GeV, we

naturally expect couplings between the PB and VB chan-
nels, in particular, when the masses of the PB and VB
channels are similar. It is perhaps an aspect of the strong
interaction dynamics that we need to systematically in-
clude all possible channels. Recently a one loop correction
to the VB amplitudes has been made by including PB
channels in the intermediate states [19]. The purpose of
the present paper is to carry out a full coupled channel
calculation.
Here we study strangeness �1 baryon resonances dy-

namically generated from the PB and VB treated as
coupled channels. In the investigation dominated by the
S-wave interaction, as is the case of the present study, such
a coupling appears only for JP ¼ 1=2� states, while the
VB channels alone (uncoupled to PB systems) generate
both JP ¼ 1=2� and 3=2� states [10,18]. We will not dis-
cuss the resonances with the latter quantum numbers in this
work since they remain unaffected by coupling PB and VB
channels. Within the framework of the low energy expan-
sion of chiral symmetry, PB-VB coupling is provided by an
extension of the Kroll-Ruderman (KR) term [20] for the
photoproduction of a pseudoscalar meson, by replacing the
photon by a vector meson assuming the vector meson
dominance. The dynamics of these mesons is well de-
scribed by the method of hidden local symmetry [21]
consistently with chiral symmetry, which is adopted in
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the recent studies of dynamical generation of VB
resonances.

The basic ingredients of the present approach are, there-
fore, the PB ! PB amplitudes written in terms of the
Weinberg-Tomozawa interaction, the VB ! VB ampli-
tudes obtained from the t-channel vector meson exchange
interaction, and the PB $ VB transitions acquired via
the Kroll-Ruderman type coupling. We do not include a
more realistic interaction of the VB channels, because the
present work is done to first inspect the kind of and the
order of the effect of the PB-VB coupling on the reso-
nances well understood as dynamically generated ones.
Our study shows that considering PB and VB as coupled
channels brings out interesting results, can generate new
resonances and can be very important in understanding the
characteristics of the known resonances. This implies that
a more quantitative study including more detailed VB
interaction should be carried out and we should indeed
study it in the near future.

We organize the paper as follows. In Sec. II, as a new
information of the present paper, we show briefly how the
Kroll-Ruderman type terms for the PB-VB coupling are
introduced in the nonlinear sigma model. The basic inter-
actions in the PB and VB channels are also briefly sum-
marized. In Sec. III, we describe the formalism to solve the
Bethe-Salpeter equations for PB-VB coupled systems for
which we use a cutoff scheme to regularize the loop
integrals together with a form factor. This enables us to
treat the PB-VB coupling on a reasonable footing when
there is some difference in masses of PB and VB channels.
We then discuss the results of our calculations in Sec. IV
where we show the effects of the PB-VB coupling on the
states with strangeness S ¼ �1 and JP ¼ 1=2�. We also
pay attention to the behavior of the poles of the scattering
amplitudes in the complex plane. In Sec. V, we summarize
the findings of the present work.

II. INTERACTIONS

The purpose of the present paper is to study the PB-VB
coupled channel interaction with the motivation of finding
dynamical generation of resonances in such systems. For
this purpose, it is reasonable to consider that the relative
motion in the meson-baryon system is dominantly in the s
wave. The new development of this work is the inclusion
of the transition between PB and VB systems in the swave.
This is done by using the KR theorem to write the
Lagrangian for the �N ! �N process and by replacing
the � by a vector meson via the notion of the vector meson
dominance. To show this procedure we start with the �N
Lagrangian from Gell-Mann-Levi’s linear sigma model,

L �N ¼ �c ½i��@� � g�NNð�þ i ~�: ~��5Þ�c ; (1)

and define

fU5 ¼ �þ i ~�: ~��5; (2)

with

U5 ¼ �2
5 ¼ eði ~�� ~�=fÞ�5 ; (3)

where f is the field length

f ¼ ð�2 þ ~�2Þ1=2: (4)

Further, considering the nonlinear constraint

f2 ! f2�; (5)

where f� ¼ 93 MeV is the pion decay constant, we can
rewrite the Lagrangian in Eq. (1) as

L�N ¼ �c ½i��@� � g�NNf��5�5�c :

¼ �N�y
5 i6@�y

5N � g�NNf� �NN; (6)

where to obtain the last expression we have defined

�5c � N, �c�5� �N (which implies c ¼�y
5N, �c ¼ �N�y

5 ).

Subsequently, expanding �5 in Eq. (6) up to one pion field
and introducing a vector meson field as a gauge boson of
the hidden local symmetry

i6@ ���! i6@� g�; (7)

we obtain

L �N�N ¼ �i
g

2f�
�N½�; ������5N

! �i
ggA
2f�

�N½�; ������5N; (8)

where � ¼ ~� � � and � ¼ ~� � �2 . In the last expression

above we have introduced an arbitrary value of the nucleon
axial coupling constant gA, which was unity (gA ¼ 1) in
Gell-Mann-Levi’s linear sigma model. Thus, Eq. (8) with
gA is the general Lagrangian for �N ! �N to the leading
order in the soft meson regime.
Next, generalizing the Lagrangian in Eq. (8) for the

SU(3) case, we get

L PBVB ¼ �ig

2f�
ðFh �B���5½½P;V��; B�i

þDh �B���5f½P; V��; BgiÞ; (9)

where the trace h. . .i has to be calculated in the flavor space
and F ¼ 0:46,D ¼ 0:8 such that FþD ’ gA ¼ 1:26. The
ratio D=ðFþDÞ � 0:63 here is close to the quark model
value of 0.6, and the empirical values of F and D can be
found, for example, in Ref. [22].
In our normalization scheme, the SU(3) matrices for the

pseudoscalar (P) and vector mesons (V) are written as
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V ¼ 1

2

�0 þ!
ffiffiffi
2

p
�þ ffiffiffi

2
p

K�þffiffiffi
2

p
�� ��0 þ!

ffiffiffi
2

p
K�0ffiffiffi

2
p

K�� ffiffiffi
2

p
�K�0 ffiffiffi

2
p

�

0
BB@

1
CCA;

P ¼
�0 þ 1ffiffi

3
p 	

ffiffiffi
2

p
�þ ffiffiffi

2
p

Kþ
ffiffiffi
2

p
�� ��0 þ 1ffiffi

3
p 	

ffiffiffi
2

p
K0

ffiffiffi
2

p
K� ffiffiffi

2
p

�K0 �2ffiffi
3

p 	

0
BBBB@

1
CCCCA

(10)

and for the baryon (B)

B ¼

1ffiffi
6

p �þ 1ffiffi
2

p �0 �þ p

�� 1ffiffi
6

p �� 1ffiffi
2

p �0 n

�� �0 �
ffiffi
2
3

q
�

0
BBBB@

1
CCCCA: (11)

The Lagrangian in Eq. (9) leads to the amplitude

VPBVB
ij ¼ i

ffiffiffi
3

p g

2f�
CPBVB
ij ; (12)

where, using the Kawarabayashi-Suzuki-Riazuddin-

Fayazuddin relation, g ¼ m�=ð
ffiffiffi
2

p
f�Þ � 6, which from

now on we will denote as gKR (the KR subscript refers to
the Kroll-Ruderman coupling). To obtain this value of
the coupling we have used f� ¼ 93 MeV and the mass
of the rho meson (m� ¼ 770 MeV). The coefficients

CPBVB
ij in Eq. (12) are given in Tables I and II for isospin 0

and 1, respectively.
We obtain the PB ! PB amplitudes using theWeinberg-

Tomozawa (WT) interaction which is well known to give
the dominant contribution to the PB scattering. The
pseudoscalar-baryon Lagrangian is written as [3]

LPB ¼
�
�Bi�� 1

4f2�
½ð�@��� @���ÞB

� Bð�@��� @���Þ�
�
: (13)

which reduces to the amplitude of the form

VPB
ij ¼ �CPB

ij

1

4f2�
ðK0

1 þ K0
2Þ: (14)

In Eqs. (14), and throughout this article, K0
1 and K

0
2 refer to

the energy of the meson in the initial and final state,
respectively. Next, the VB amplitudes are determined us-
ing the vector-baryon-baryon Lagrangian

L VBB ¼ �gfh �B��½V�; B�i þ h �B��BihV�ig; (15)

and the three vector-meson Lagrangian which can be ob-
tained from

L 3V 2 �1
2hV�
V�
i: (16)

as discussed in detail in Refs. [10,18]. As was shown in
Ref. [10], the Lagrangians given by Eqs. (15) and (16) lead
to the general form of the vector meson-baryon amplitude:

VVB
ij ¼ �CVB

ij

1

4f2�
ðK0

1 þ K0
2Þ; (17)

which has the structure similar to the PB ! PB amplitude
of Eq. (14).
The coefficients CPB

ij and CVB
ij for the pseudoscalar-

baryon and vector-baryon interactions are given in
Refs. [3,10]. However, for the sake of completeness, we
also list them in Tables III, IV, V, and VI of the present
article for isospins 0 and 1.

TABLE II. CPBVB
ij coefficients of the PB ! VB amplitude [Eq. (12)] in the isospin 1 configu-

ration.

�K�N �� �� !� K�� ��

�KN D� F 1ffiffi
6

p ðDþ 3FÞ �ðD� FÞ � 1ffiffi
2

p ðD� FÞ 0 D� F

�� �ðD� FÞ
ffiffi
2
3

q
2D �2F 0 �ðDþ FÞ 0

�� 1ffiffi
6

p ðDþ 3FÞ 0
ffiffi
2
3

q
2D 0 � 1ffiffi

6
p ðD� 3FÞ 0

	� �
ffiffi
3
2

q
ðD� FÞ 0 0 0

ffiffi
3
2

q
ðDþ FÞ 0

K� 0 � 1ffiffi
6

p ðD� 3FÞ �ðDþ FÞ 1ffiffi
2

p ðDþ FÞ �ðDþ FÞ �ðDþ FÞ

TABLE I. CPBVB
ij coefficients of the PB ! VB amplitude [Eq. (12)] in the isospin 0 configu-

ration.

�K�N !� �� �� K��
�KN �D� 3F � 1ffiffi

6
p ðDþ 3FÞ �

ffiffi
3
2

q
ðD� FÞ 1ffiffi

3
p ðDþ 3FÞ 0

�� �
ffiffi
3
2

q
ðD� FÞ 0 �4F 0 �

ffiffi
3
2

q
ðDþ FÞ

	� � 1ffiffi
2

p ðDþ 3FÞ 0 0 0 � 1ffiffi
2

p ðD� 3FÞ
K� 0 � 1ffiffi

6
p ðD� 3FÞ �

ffiffi
3
2

q
ðDþ FÞ 1ffiffi

3
p ðD� 3FÞ D� 3F
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It should be mentioned at this point that it has been
shown in Ref. [18] that the contributions obtained from
the u channel and a contact interaction coming from the
hidden gauge Lagrangian together with the t-channel in-
teractions are important in the study of VB systems. In
view of the findings of Ref. [18], in principle, considering
the t-channel exchange alone would lead to incomplete
information. However, first, the purpose of the present
work is to study the properties of strangeness �1 low

energy resonances, like �ð1405Þ, when the heavier VB
channels are coupled to the PB systems. And second, we
cannot a priori know if the PB-VB coupling would offer
important new information. We, thus, start with a simpli-
fied model where the VB ! VB amplitudes are obtained
from the t channel, while neglecting other contributions as
done in a previous study of the VB systems [10].
In principle, there is also some room for improvement in

the case of the PB interaction, for example, a baryon
exchange in the s and u channel has been considered in
Ref. [9] or the next-to-leading-order amplitudes in the
chiral perturbation theory (�PT) have been considered
in Ref. [23]. In the former study the contribution from
the s- and u-channel diagrams was found to be of the order
of 20% of the WT interaction, a result consistent with the
chiral counting in the nonrelativistic limit, which is the
case, in particular, near the threshold region. However,
that correction is much smaller than the one that arises
in the VB systems by including the diagrams other than the
t channel. In Ref. [23], in addition to the �ð1405Þ and �
(1670), which are found in studies involving leading-order
�PT, several other resonances were found as dynamically
generated ones: � (1800), � (1480), � (1620) and
� (1750). Some of these resonances, like, the � (1800)
and � (1750) have been also found in VB systems studied
using the t-channel interactions [10,18]. Also, the spin
parity of the � (1620) is controversial in nature as stated
in Ref. [24]. It has been found to be a 1=2þ resonance in
some of the recent works [25,26]. These findings indicate
that more than one interpretation should be included to
better clarify the nature of the strangeness �1 resonances
in the energy region: 1700–2000 MeV, which we believe is
an important direction to be considered in future works.
Besides we would like to keep the minimum number of
parameters in the present study and focus our attention to
the low-lying resonances in this work. We thus rely on the
WT interaction only to obtain the PB ! PB amplitudes.
We would like to point out that the VB interaction

[Eq. (17)] determined from the t-channel exchange gives
rise to spin independent amplitudes. Thus, the amplitudes
obtained and the poles found in the VB system possess spin
1=2 and 3=2. However, the coupling of the PB to VB
channels in s wave, as is the case of the present study,
would affect only the spin 1=2 amplitudes. Consequently,
only the results obtained for spin 1=2 meson-baryon sys-
tems will be discussed in the present work.
Finally, the entire set of interactions can be summarized

as shown in Table VII.

TABLE III. CPB
ij coefficients of the PB ! PB amplitudes

[Eq. (14)] in the isospin 0 configuration.

�KN �� 	� K�

�KN 3 �
ffiffi
3
2

q
3ffiffi
2

p 0

�� 4 0
ffiffi
3
2

q
	� 0 � 3ffiffi

2
p

K� 3

TABLE IV. CPB
ij coefficients of the PB ! PB amplitudes

[Eq. (14)] in the isospin 1 configuration.

�KN �� �� 	� K�

�KN 1 �1 �
ffiffi
3
2

q
�

ffiffi
3
2

q
0

�� 2 0 0 1

�� 0 0 �
ffiffi
3
2

q
	� 0 �

ffiffi
3
2

q
K� 1

TABLE V. CVB
ij coefficients of the VB ! VB amplitudes

[Eq. (17)] in the isospin 0 configuration.

�K�N !� �� �� K��
�K�N 3

ffiffi
3
2

q
�

ffiffi
3
2

q
� ffiffiffi

3
p

0

!� 0 0 0 �
ffiffi
3
2

q
�� 4 0

ffiffi
3
2

q
�� 0

ffiffiffi
3

p
K�� 3

TABLE VI. CVB
ij coefficients of the VB ! VB amplitudes

[Eq. (17)] in the isospin 1 configuration.

�K�N �� �� !� K�� ��

�K�N 1 �
ffiffi
3
2

q
�1 � 1ffiffi

2
p 0 1

�� 0 0 0 �
ffiffi
3
2

q
0

�� 2 0 1 0

!� 0 � 1ffiffi
2

p 0

K�� 1 1

�� 0

TABLE VII. A summary of all the interactions.

Vij VB PB

VB �CVB
ij

1
4f2�

ðK0
1 þ K0

2Þ �i
ffiffiffi
3

p
gKR
2f�

CPBVB
ij

PB i
ffiffiffi
3

p
gKR
2f�

CPBVB
ij �CPB

ij
1

4f2�
ðK0

1 þ K0
2Þ
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III. FORMALISM

A. Solving coupled channel equations

In the previous section we have discussed the basic
interactions for PB-VB coupled systems. Using the tree
level amplitudes, summarized in Table VII, as the kernels
V, we solve the Bethe-Salpeter equation

T ¼ V þ VGT; (18)

which, for a single meson-baryon channel case, can be
explicitly written as

Tðk1;k2Þ¼Vðk1;k2Þþ2Mi
Z d4q

ð2�Þ4

� Vðk1;qÞTðq;k2Þ
ðq2�m2þ i�ÞððP�qÞ2�M2þ i�Þ ; (19)

where k1ðk2Þ is the four momentum of the meson in the
initial (final) state, m, M (here and throughout this article)
are the meson and baryon masses, respectively, and P is the
total four momentum of the system. It has been shown in
earlier works (for example, in Refs. [3,27]) that in the low
energy studies of two hadron systems based on chiral
unitary dynamics, V and T can be factorized out of the
loop integral in Eq. (19). This simplifies the integral Bethe-
Salpeter equation to an algebraic one since the calculation
of the loop integral involves only the G function

G ¼ 2Mi
Z d4q

ð2�Þ4
1

ðq2 �m2 þ i�ÞððP� qÞ2 �M2 þ i�Þ :
(20)

These loop functions are divergent in nature and one either
calculates them by using the dimensional regularization
method or the cutoff method. The former scheme involves
subtraction constants as the parameters, while in the latter
case a cutoff is used. One could use any of the two methods
although sometimes one of them can be more suitable to a
particular case. For example, based on the behavior of the

loop calculated with a cutoff, in Ref. [28] it has been
discussed how dynamically generated states can be studied
while excluding the contribution from other possible states
to the amplitudes. It is worth discussing this issue in some
detail before going ahead.

B. Calculation of the loops

The aim of the present work is to study the effect of the
VB channels on the poles corresponding to the dynami-
cally generated states found in the PB systems. Following
the discussions made in Ref. [28], from the time indepen-
dent perturbation theory, one would expect, up to the
second order, a correction to the mass of a resonance to
be proportional to

�E / X
q

jhVBjVjPBij2
E� EðqÞ ; (21)

where E is the total energy of the unperturbed system, and
EðqÞ is the energy of an intermediate state labeled by q.
The contribution of the above equation should be negative
for the closed channels, for which EðqÞ> E, and one
would näively expect a pole to shift to lower energies if
a coupling to a closed channel is introduced. From these
basics one can discuss the behavior of the G function
[Eq. (20)], though it is mathematically divergent [28].
It should be recalled that the divergent nature of this func-
tion arises if one assumes the hadrons to be point particles.
It would be convergent if the extended spatial structure of
the hadrons were taken into account. Thus, keeping in
mind that the regularization methods effectively corre-
spond to considering the finite structure of the hadrons, it
is possible to discuss the features of the G function, in-
tuitively, from the physics point of view.
Let us now look at the loop function calculated with

different regularizing schemes: the cutoff and the dimen-
sional regularization. As an example, we show the real part
of the loop for the �K�N channel in the left panel of Fig. 1.

FIG. 1. Real (left panel) and imaginary (right panel) parts of the loop calculated for the �K�N channel on the real energy axis.
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The dotted line shows the result of the calculation done by
using the dimensional regularization method with a sub-
traction constant a �K�N ¼ �2 and the dashed curve shows
the loop calculated by using a cutoff of 630 MeV. This
value of the cutoff is chosen such that the two schemes give
the same result at the threshold. It is interesting to see that
real part of the loop obtained within the dimensional
regularization scheme changes the sign and becomes large
and positive far below the threshold unlike the one ob-
tained by the cutoff method. Proceeding further with our
study of the PB-VB coupled systems by calculating the
loops with the dimensional regularization scheme, we
obtained some inconsistent results, for example, we found
that the�ð1405Þ poles moved to higher energies due to the
coupling to the VB channels. This is contrary to what we
would expect from the standard quantum mechanical two
level problem where the lower energy state is pushed
further down in energy by the coupling to the higher energy
state (which would correspond to the VB states in the
present case). A discussion on some problems related to
the loop calculated in the dimensional regularization
scheme has also been made in Ref. [29], where the authors
find that unphysical poles get developed with a repulsive
potential in their study due to the positive real part of
the loop far below the threshold. Thus for the purpose of
studying dynamically generated or molecularlike states in
the PB-VB coupled systems, we find that the loop calcu-
lated with the cutoff method is more suitable. Hence, we
proceed by using a cutoff to obtain the loops. However,
the loops calculated in this way possess sharp structures
(see the dashed lines in Fig. 1 near 2.2 GeV) precisely due
to the use of a sharp cutoff and additionally suffer other
limitations like violating the unitarity conditions. This
would limit our calculations to the energies below the
one corresponding to the cutoff momentum. In order to
solve this problem, we multiply the loops by a form factor

F ¼ e�ððq2�q2onÞ=�2Þ; (22)

and extend the upper limit of the loop integral to infinity,
which would correspond to taking the fact into account
that the hadrons possess an extended spatial structure. In
Eq. (22), qon is the on-shell momentum in the center of
mass system of the propagating meson-baryon pair and �
is the cutoff momentum. The loop

G ¼
Z 1

0

d3q

ð2�Þ3
1

2E1ð ~q; mÞ
2M

2E2ð ~q;MÞ
� F

E� E1ð ~q;mÞ � E2ð ~q;MÞ ; (23)

calculated in the nonrelativistic approximation, and using a
cutoff of 545MeVand the form factor of Eq. (22), is shown
as the solid curve in Fig. 1. We would like to emphasize
that the loop calculated in this way satisfies the unitarity
conditions. In Eq. (23), E refers to the total energy of
the meson-baryon system, which corresponds to the E in
Eq. (21). The loop shown in Fig. 1 has been calculated
using a cutoff 545 MeV because, as we shall show later,
this value gives very similar amplitudes as those obtained
by the dimensional regularization method. We further
show that the behavior of the loops, calculated using
Eq. (23), in the complex plane is as expected. For this we
depict the loop function on the Riemann sheets connected
to the physical scattering line, for the �K�N channel, in
Fig. 2.
In concluding the discussion of the loops, we would like

to mention that in the case of systems involving vector
mesons, which can possess large widths sometimes, like
the � and the K� mesons, we calculate the loop given by
Eq. (23), by convoluting them over the mass range of these
mesons as discussed in Ref. [10].
Further, to test the reliability of our method to calcu-

ate the loop, we obtain the amplitudes for the uncoupled
PB and VB systems with the loop given by Eq. (23). We
found that in order to reproduce the results of previous
uncoupled studies of PB and VB systems, which agree with
the available experimental data, we need to use a cutoff

FIG. 2 (color online). Real (left panel) and imaginary (right panel) parts of the loop [Eq. (23)] calculated for the �K�N channel on the
Riemann sheets connected to the physical scattering line.
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�VB ¼ 545 MeV for the VB and �PB ¼ 750 MeV for PB
systems. Using these two parameters, we have found that
we can reproduce all of the previous results of Refs. [3,10]
reasonably well. As an example, in Fig. 3, we show a
comparison of the �� and �K�N amplitudes obtained by
solving the coupled channel Bethe-Salpeter equation with
the loops calculated by using the dimensional regulariza-
tion method with the subtraction constants taken from
Refs. [10,30] and by using the cutoff method involving a
form factor [Eq. (23)]. As can be seen in Fig. 3, the two
results are satisfactorily similar. In the following, we will
also discuss the poles obtained in the uncoupled PB-VB
systems, along with their coupling to the related channels,
in the calculations done with the loops obtained by using
Eq. (23).

IV. RESULTS AND DISCUSSIONS

A. Coupled PB-VB systems in isospin 0

Let us first study the total isospin zero systems, in which
case we have nine (four PB and five VB) coupled channels:
�KN, ��, 	�, K�, �K�N,!�, ��, ��, and K��. We first
obtain the amplitudes keeping the coupling between the PB
and VB channels, gKR, as zero, i.e., treating them as un-
coupled systems, and by calculating the loops [Eq. (23)]
using the cutoffs �VB ¼ 545 MeV for the VB loops and
�PB ¼ 750 MeV for the PB case. The amplitudes obtained
on the real axis in this case are shown as the dotted curves
in Figs. 4 and 5. The corresponding poles are listed in the
second column of Tables VIII, IX, X, XI, XII, and XIII.
There are six poles found in this case: two related to the
�ð1405Þ, one to the �ð1670Þ and the rest three are spin
degenerate in nature due to the spin-independent form of
the vector-baryon interaction. Together, Figs. 4 and 5 and

Tables VIII, IX, X, XI, XII, and XIII show that the results
obtained with gKR ¼ 0 are in good agreement with the
ones reported in Refs. [3,10].
Next, we change the coupling between the PB and

VB channels, gKR, from zero to its maximum value which
is 6 and show how the amplitudes and poles found in the
uncoupled PB-VB systems (gKR ¼ 0) change their be-
havior due to the coupling between these channels.
Figs. 4 and 5 show the isospin 0 PB, VB amplitudes for
gKR ¼ 0, 1.5, 3, and 6 and Tables VIII, IX, X, XI, XII, and
XIII show the poles found by changing gKR gradually from
0 to 6 in steps of 1. In the following subsections, we discuss
each of these poles separately.

1. Two poles of the �ð1405Þ resonance:
As shown in Tables VIII and IX, we find two poles for

the�ð1405Þ resonancewhen gKR ¼ 0 at: 1377� i63 MeV
and 1430� i15 MeV. The former one couples strongly to
�� and the latter one to �KN in agreement with the findings
of Refs. [16,17].
By switching on the coupling between PB-VB channels,

but keeping it small, i.e., gKR ¼ 1, we see that the cou-
plings remains very similar for the PB channels while a
small coupling for the VB channels develops. On increas-
ing gKR merely to 2, we find that the coupling of the lower
pole to the closed VB channels �� and K�� becomes
similar to those of the �KN and �� channels and the
coupling of the higher pole (1430� i15 MeV) to �K�N
becomes comparable to that of �KN. If gKR is fixed to
half of its strength (which is 3), the couplings of the two
�ð1405Þ poles to the PB channels remain almost un-
changed but increase for the VB channels.
The full strength of gKR leads to a slight shift in the

masses and widths of the two poles, we find them at

FIG. 3. Squared amplitude of the �� (left panel) and �K�N (right panel) channels obtained by considering uncoupled PB-VB
systems. The dashed and solid lines are the results of the calculation done with the loops obtained with the dimensional regularization
and cutoff method [Eq. (23)], respectively.
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1363� i56 MeV and 1412� i11 MeV which couple
much stronger to some VB channels than to PB. The
coupling of the pole at 1363� i56 MeV to �� and K��
is twice the one to �� while the latter coupling is very
similar to the one obtained for gKR ¼ 0. The pole at
1412� i11 MeV turns out to couple strongly to the �K�N

channel, almost 2 times more than to the �KN channel.
Interestingly, since neither the pole positions nor the cou-
pling of the �ð1405Þ poles to PB are altered much by the
inclusion of VB as coupled channels, the amplitudes for
the PB channels on the real energy axis continue looking
very similar, except for a change in the strength, as shown

FIG. 4 (color online). Isospin 0 amplitudes of the PB and VB systems for the energy � 1900 MeV. The purpose of the inset figures
is to show the structure of the amplitudes hidden in the corresponding large figures due to their smaller magnitudes.
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in Fig. 4 (left column). The amplitude for the �� channel,
for which data is available, changes only slightly. Though
it depicts one curious feature, that is, a zero at the mass
of the higher pole at gKR ¼ 6, unlike the amplitude calcu-
lated with gKR ¼ 0. Our results show that although the

PB channels can generate the �ð1405Þ and the avail-
able data can be explained with this information, a better
understanding of the structure of the �ð1405Þ requires the
consideration of the VB channels. The (diagonal) ampli-
tudes for the VB channels are also shown in Fig. 4 (right

FIG. 5 (color online). Isospin 0 amplitudes of the PB and VB systems for the energy region 1700–2200 MeV. The inset figures here
have the same objective as those in Fig. 4.
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column), where the presence of the two poles of the
�ð1405Þ can be seen.

2. �ð1670Þ:
A resonance around 1700MeV, which was interpreted as

aK� bound state, was found in a study of PB systems [30].

The pole associated to this resonance was found to be very
sensitive to the subtraction constant for the K� channel
(aK�), it appeared at 1680� i20 MeV with aK� ¼ �2:67
and at 1708� i21 MeV with aK� ¼ �2:52. In our case,
using the same cutoffs throughout our study (�VB ¼
545 MeV for the VB systems and �PB ¼ 750 MeV for

TABLE VIII. gi couplings for the lower mass pole of the �ð1405Þ to PB and VB channels for different strengths of the coupling
between PB-VB systems. Note that the couplings have been listed with a precision to the first decimal place in this (and subsequent)
table(s), which leads to rounding off of a number smaller than 0.05 to 0.0 for gKR > 0.

PB-VB coupling: gKR 0 1 2 3 4 5 6

MR � i�=2 ðMeVÞ ! 1377� i63 1376� i63 1374� i62 1372� i61 1368� i59 1363� i56 1357� i53
Channels # Couplings (gi) of the poles to the different channels

�KN 1:4� i1:6 1:4� i1:6 1:4� i1:6 1:3� i1:6 1:3� i1:5 1:2� i1:5 1:1� i1:4
�� �2:3þ i1:4 �2:3þ i1:5 �2:2þ i1:5 �2:3þ i1:4 �2:3þ i1:4 �2:2þ i1:4 �2:2þ i1:4
	� 0:2� i0:7 0:2� i0:6 0:2� i0:6 0:1� i0:6 0:1� i0:6 0:1� i0:6 0:1� i0:6
K� �0:4þ i0:4 �0:4þ i0:4 �0:4þ i0:4 �0:5þ i0:4 �0:5þ i0:4 �0:5þ i0:4 �0:6þ i0:4
�K�N 0:0þ i0:0 �0:4þ i0:1 �0:7þ i0:2 �1:1þ i0:3 �1:4þ i0:5 �1:6þ i0:5 �1:7þ i0:7
!� 0:0þ i0:0 �0:2� i0:1 �0:3� i0:1 �0:4� i0:2 �0:6� i0:2 �0:7� i0:3 �0:7� i0:3
�� 0:0þ i0:0 0:1þ i1:2 0:3þ i2:3 0:4þ i3:6 0:7þ i4:7 0:9þ i5:7 1:3þ i6:8
�� 0:0þ i0:0 0:2þ i0:1 0:4þ i0:2 0:6þ i0:3 0:8þ i0:3 0:9þ i0:4 1:0þ i0:5
K�� 0:0þ i0:0 0:2þ i1:0 0:4þ i2:0 0:5þ i3:0 0:7þ i3:9 0:9þ i4:8 1:3þ i5:7

TABLE IX. gi couplings for the higher mass pole of the �ð1405Þ.
PB-VB coupling: gKR 0 1 2 3 4 5 6

MR � i�=2 ðMeVÞ ! 1430� i15 1430� i15 1428� i15 1426� i14 1422� i14 1418� i12 1412� i11
Channels # Couplings (gi) of the poles to the different channels

�KN 2:4þ i1:1 2:4þ i1:1 2:4þ i1:0 2:5þ i0:9 2:6þ i0:8 2:7þ i0:7 2:8þ i0:5
�� �0:2� i1:4 �0:2� i1:3 �0:2� i1:3 �0:2� i1:3 �0:2� i1:2 �0:2� i1:2 �0:2� i1:1
	� 1:3þ i0:3 1:4þ i0:3 1:4þ i0:3 1:4þ i0:2 1:4þ i0:2 1:5þ i0:1 1:5þ i0:1
K� 0:0� i0:3 0:0� i0:3 0:0� i0:3 0:0� i0:3 0:0� i0:3 0:0� i0:3 0:0� i0:3
�K�N 0:0þ i0:0 0:1� i0:9 0:1� i1:8 0:2� i2:7 0:1� i3:6 0:0� i4:5 �0:1� i5:3
!� 0:0þ i0:0 0:1� i0:3 0:1� i0:6 0:2� i0:9 0:2� i1:2 0:2� i1:5 0:2� i1:8
�� 0:0þ i0:0 �0:5� i0:3 �0:9� i0:6 �1:3� i0:9 �1:7� i1:2 �2:1� i1:4 �2:4� i1:6
�� 0:0þ i0:0 �0:1þ i0:4 �0:2þ i0:9 �0:2þ i1:3 �0:3þ i1:7 �0:3þ i2:2 �0:3þ i2:6
K�� 0:0þ i0:0 �0:4� i0:1 �0:8� i0:3 �1:1� i0:4 �1:5� i0:5 �1:7� i0:5 �2:0� i0:5

TABLE X. gi couplings for the pole related to �ð1670Þ.
PB-VB coupling: gKR 0 1 2 3 4 5 6

MR � i�=2 ðMeVÞ ! 1767� i25 1766� i25 1763� i25 1759� i25 1754� i26 1749� i27 1744� i28
Channels # Couplings (gi) of the poles to the different channels

�KN 0:2� i0:5 0:2� i0:5 0:2� i0:6 0:2� i0:6 0:2� i0:6 0:2� i0:6 0:3� i0:6
�� 0:1þ i0:2 0:1þ i0:2 0:1þ i0:2 0:1þ i0:2 0:1þ i0:3 0:1þ i0:3 0:1þ i0:3
	� �1:0þ i0:3 �1:0þ i0:3 �1:0þ i0:3 �1:0þ i0:3 �1:0þ i0:3 �1:0þ i0:3 �1:0þ i0:3
K� 3:2þ i0:3 3:2þ i0:3 3:2þ i0:3 3:2þ i0:3 3:3þ i0:3 3:3þ i0:3 3:4þ i0:2
�K�N 0:0þ i0:0 0:0þ i0:4 �0:1þ i0:6 �0:2þ i0:8 �0:2þ i0:9 �0:3þ i1:0 �0:3þ i1:1
!� 0:0þ i0:0 0:0þ i0:1 0:1þ i0:1 0:1þ i0:1 0:1þ i0:1 0:1þ i0:0 0:1� i0:1
�� 0:0þ i0:0 0:0� i0:8 0:0� i1:6 0:0� i2:2 0:1� i2:8 0:2� i3:2 0:3� i3:5
�� 0:0þ i0:0 �0:1� i0:1 �0:1� i0:1 �0:1� i0:1 �0:1� i0:1 �0:1� i0:0 �0:2þ i0:1
K�� 0:0þ i0:0 0:0� i0:3 0:1� i0:6 0:2� i0:8 0:3� i1:0 0:4� i1:1 0:5� i1:2
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PB channels) we find an isoscalar pole at 1767� i25 MeV
when PB and VB are not coupled (keeping gKR ¼ 0). This
pole couples strongly to the K� channel, as can be seen in
Table X. By allowing the PB-VB systems to couple, we
find that the coupling of this pole to the PB channels
remains almost unchanged (see Table X). However it de-
velops a very strong coupling to the �� channel. The pole

position is found to shift to lower energies while gKR
increases. It ends up at 1744� i28 MeV for gKR ¼ 6.
This value is still high as compared to the observed mass
of the�ð1670Þ but we have shown that the inclusion of VB
coupled channels improves the agreement.
The behavior of this pole can be seen in the K� ampli-

tudes shown in Fig. 4, which hardly change with gKR, and

TABLE XII. gi couplings for the Pii pole as a function of gKR. The sign ** in this table indicates the unphysical nature of a pole.

PB-VB coupling: gKR 0 1 2 3 4 5 6

MR � i�=2 ðMeVÞ ! 1923� i4 1926� i6 1934� i10 1948� i16 1969� i11�� 2012� i6�� 2090� i14��
Channels # Couplings (gi) of the poles to the different channels

�KN 0:0þ i0:0 �0:1þ i0:1 �0:2þ i0:1 �0:3þ i0:2 � � � � � � � � �
�� 0:0þ i0:0 �0:1þ i0:0 �0:2þ i0:1 �0:3þ i0:1 � � � � � � � � �
	� 0:0þ i0:0 0:0þ i0:0 0:0þ i0:0 0:0þ i0:1 � � � � � � � � �
K� 0:0þ i0:0 �0:1� i0:0 �0:2� i0:1 �0:3� i0:3 � � � � � � � � �
�K�N 0:1� i0:5 0:0� i0:5 0:0� i0:6 �0:1� i0:7 � � � � � � � � �
!� 0:3� i0:2 0:3� i0:2 0:3� i0:2 0:4� i0:3 � � � � � � � � �
�� 3:7þ i0:2 3:6þ i0:2 3:2þ i0:4 2:6þ i0:9 � � � � � � � � �
�� �0:5þ i0:3 �0:5þ i0:3 �0:5þ i0:3 �0:5þ i0:4 � � � � � � � � �
K�� 1:0þ i0:0 0:9þ i0:0 0:7þ i0:1 0:3þ i0:3 � � � � � � � � �

TABLE XI. gi couplings of the Pi pole as a function of gKR.

PB-VB coupling: gKR 0 1 2 3 4 5 6

MR � i�=2 ðMeVÞ ! 1795� i0 1797� i0:5 1802� i2 1812� i4 1822� i6:5 � � � 1844� i94
Channels # Couplings (gi) of the poles to the different channels

�KN 0:0þ i0:0 �0:1þ i0:0 �0:2þ i0:1 �0:3þ i0:1 �0:4þ i0:0 � � � �1:2� i0:5
�� 0:0þ i0:0 �0:1þ i0:0 �0:1þ i0:1 �0:1þ i0:1 �0:1þ i0:0 � � � �0:4� i0:3
	� 0:0þ i0:0 �0:1� i0:0 �0:2� i0:1 �0:2� i0:1 �0:3� i0:1 � � � �0:6� i0:2
K� 0:0þ i0:0 0:1þ i0:2 0:0þ i0:3 0:0þ i0:4 0:1þ i0:3 � � � 0:4þ i0:3
�K�N 3:8� i0:0 3:7þ i0:0 3:4þ i0:1 2:9þ i0:3 2:3þ i0:5 � � � 1:6� i0:8
!� 1:2� i0:0 1:2þ i0:0 1:1þ i0:0 0:9þ i0:1 0:7þ i0:1 � � � 0:7� i0:1
�� �1:9� i0:0 �1:9þ i0:0 �1:8þ i0:1 �1:9þ i0:2 �2:0þ i0:1 � � � �5:4þ i0:0
�� �1:8� i0:0 �1:8� i0:0 �1:6� i0:1 �1:4� i0:1 �1:1� i0:2 � � � �1:2þ i0:1
K�� �0:6� i0:0 �0:5þ i0:0 �0:5þ i0:0 �0:5þ i0:1 �0:5þ i0:0 � � � �1:2� i0:2

TABLE XIII. gi couplings for the Piii pole as a function of gKR.

PB-VB coupling: gKR 0 1 2 3 4 5 6z}|{
MR � i�=2 ðMeVÞ ! 2138� i21 2138� i21 2140� i22 2143� i23 2149� i25 2159� i33 2151� i119 2160� i73
Channels # Couplings (gi) of the poles to the different channels

�KN 0:0þ i0:0 0:0þ i0:0 0:0þ i0:0 �0:1þ i0:0 �0:1þ i0:0 �0:1þ i0:2 1:3� i0:3 0:2þ i0:9
�� 0:0þ i0:0 0:0þ i0:0 �0:1þ i0:0 �0:1þ i0:1 �0:2þ i0:1 �0:3þ i0:2 1:0þ i0:1 �0:2þ i0:8
	� 0:0þ i0:0 0:0þ i0:0 0:0þ i0:0 0:0þ i0:1 0:0þ i0:1 0:0þ i0:2 0:7þ i0:0 0:0þ i0:6
K� 0:0þ i0:0 0:0þ i0:0 0:0þ i0:0 0:0þ i0:0 �0:1þ i0:1 �0:1þ i0:1 0:9þ i0:3 �0:3þ i0:7
�K�N 0:0� i0:4 0:0� i0:5 �0:1� i0:5 �0:1� i0:5 �0:1� i0:6 �0:2� i0:6 �0:4þ i1:3 �1:0� i0:6
!� �0:5þ i0:3 �0:5þ i0:3 �0:6þ i0:3 �0:6þ i0:3 �0:6þ i0:2 �0:6þ i0:1 �0:2þ i1:1 �1:2� i0:0
�� 0:1þ i0:1 0:1þ i0:1 0:1þ i0:1 0:1þ i0:0 0:0� i0:1 �0:2� i0:2 �0:5þ i1:7 �1:3� i0:4
�� 0:7� i0:4 0:8� i0:4 0:9� i0:4 0:9� i0:4 0:9� i0:4 0:9� i0:2 0:5� i1:6 1:8þ i0:1
K�� 4:2þ i0:2 4:3þ i0:2 4:9þ i0:3 4:7þ i0:3 4:5þ i0:5 4:3þ i1:1 5:4� i4:9 6:6þ i4:1
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in the �� amplitude in Fig. 5 which shows a clear peak
near 1740 MeV for gKR ¼ 3, 6 (dashed-dotted and solid
curves).

3. States with higher masses
(in the range of 1800–2100 MeV):

The main objective of the present work is to study the
effect of the VB coupled channels on the low-lying reso-
nances. In order to draw any concrete conclusion about
higher mass resonances, we should take into account more
complete VB ! VB interactions as shown in Ref. [18].
However, within the present formalism, we can test if the
widths of the resonances in 1800–2100 MeV region in-
crease a lot by coupling the lower mass (PB) open
channels.

In this energy region, we find three (spin degene-
rate) poles in the isospin 0 VB systems (with gKR ¼ 0):
1795� i0 MeV, 1923� i4 MeV, and 2138� i21 MeV,
quite in agreement with Ref. [3]. The little differences in
the pole positions found in our work and Ref. [3] arise due
to the differences in the calculations of the loops. First, we
regularize the loops using a cutoff while the dimensional
regularization scheme is used in Ref. [3]. We do not use the
scheme of Ref. [3] since, as discussed in Sec. III A, it gives
rise to an inappropriate behavior of the loops at energies
much lower than the threshold. Second, to consider the fact
that the vector mesons can sometimes possess considerably
large widths, as is the case of � and K�, a convolution of
the loops over the � and K� widths was made for the
related channels in Ref. [3] and, hence, the amplitudes
and poles were obtained using the convoluted loops in
the calculations. However, we restrict the calculation of
the convoluted loops to the real energy axis because con-
sideration of a varied mass for the vector mesons implies
the presence of a band of (meson-baryon) thresholds in-
stead of a fixed value, which sometimes makes it difficult
to look for poles moving in the complex plane. This
difficulty was also encountered by the authors of
Ref. [3], although not in the case of systems with total
isospin 0 and strangeness �1.

We would also like to remind the reader that although
the VB interaction obtained from the t-channel exchange
gives rise to spin independent amplitudes, the coupling of
the PB and VB channels affects only the spin 1=2 ampli-
tudes. As a matter of course, in the present work we are
only discussing the results obtained in the spin 1=2 case.

To make the further discussion clearer, we will denote
the (spin 1=2) poles found in the VB systems at 1795�
i0 MeV, 1923� i4 MeV, and 2138� i21 MeV as Pi, Pii,
and Piii, respectively, since we cannot label them as N�’s.
This is so because a clear association of these poles to the
known resonances cannot be made easily as the status of
the known N� resonances in this energy region is very poor
and a very little related information is available. Going
back to the study of the poles, we find that the Pi, Pii poles

move to higher energies as the coupling between the PB
and VB systems increases (see Tables XI and XII).
For small values of gKR (0–3), these poles are found to

couple strongly to �K�N and ��, respectively. For gKR ¼ 4,
we find the coupling of the Pi pole to the �� and �K�N
channel becomes comparable and the Pii pole becomes
unphysical (�� virtual state). For gKR ¼ 5, we do not find
any physical pole in 1800–2000 MeV but for gKR ¼ 6 we
find one physical pole at 1844� i94 MeV, which is listed
in Table XI, although it cannot be connected to any of the
two poles we started with. The couplings given in Table XI
show that the pole found at 1844� i94 MeV can be in-
terpreted as a �� bound state.
The behavior of the poles Pi and Pii can also be seen in

the amplitudes shown in Fig. 5, most clearly in the ��
channel. The result corresponding to gKR ¼ 3 (dashed-
dotted line) shows three peaks; one for the �ð1670Þ and
the other two related to the Pi and Pii poles. Further, the
solid line, which corresponds to the full PB-VB coupling,
shows a peak near 1844 MeV.
The third pole found in the VB systems, in the

1800–2100 MeV region, denoted as Piii, is found to couple
strongly to K�� (see Table XIII). This pole is found to
shift to higher energies as the coupling between PB and
VB channels increases, until gKR ¼ 6 when we find a
double pole structure with the pole positions being
2151� i119 MeV and 2160� i73 MeV. Both poles are
found to couple strongly to theK�� channel but the former
one appears to couple to PB channels slightly more than
the latter one.
To summarize, we started with three poles in the

1800–2100 MeV energy region in the VB systems un-
coupled to PB: 1795� i0 MeV, 1923� i4 MeV, and
2138� i21 MeV and end up also with three poles in the
PB-VB coupled systems: 1844� i94, 2151� i119 MeV,
and 2160� i73 MeV but the nature of the latter set of
poles is different as compared to the former ones.
An interesting finding of our work is that the width of the

poles does not change a lot when they are allowed to
couple to more open channels. Although such a notion
exists that a pole would become moderately modified by
taking into account those coupled channels, which consist
of hadrons with the total mass much smaller than the mass
of the resonance, it has not been explicitly verified earlier.
Our results show that the general notion may not be very
far from the reality.

B. Isospin ¼ 1

In the isospin 1 case, only one pole was found in the PB
study of Ref. [30] at 1579� i264 MeV which was related
to the 1=2� �ð1620Þ resonance, although the width of the
�ð1620Þ is� 100 MeV. Besides, this pole was found to be
very sensitive to the subtraction constant parameters. Also,
in the vector meson-baryon study of Ref. [10], two peaks
were found in the amplitudes but no corresponding poles
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were found in the complex plane. It was explained in
Ref. [10] that finding poles was sometimes difficult due
to the consideration of the widths of the vector mesons. We
find that even without this consideration, i.e., without

convoluting the loops, only one physical pole appears in
isospin 1 VB systems, with its position being very close to
the �K�N threshold. In view of the uncertain situation in the
isospin 1 case, we do not try to adjust the cutoffs in our

FIG. 6 (color online). Isospin 1 amplitudes of the PB and VB systems.
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calculations to reproduce these poles. We, thus, keep the
same cutoffs that we used in the isospin 0 case, which
reproduce the results of the previous PB studies. We show
the amplitudes obtained in this way for the uncoupled PB
and VB systems in the isospin 1 configuration as dotted
lines in Fig. 6. We find that these amplitudes are very
similar to the ones obtained by calculating the loops with
the dimensional regularization method as done in
Refs. [3,10].

Corresponding to the amplitudes obtained with gKR¼0,
we find a pole at 1479� i285 MeV in the PB systems and
another at 1831� i0 in the VB systems. The pole obtained
in the PB channels is found to couple mostly toK� and the
one in the VB system couples mostly to �K�N. We show the
couplings of these poles to the related channels in
Table XIV.

We now discuss the T matrices calculated by coupling
the PB and VB system with gKR ¼ 6. The amplitudes
found with gKR ¼ 6 are shown by solid lines in Fig. 6.

The calculation in the complex plane results in the finding
of three poles at: 1426� i143 MeV, 1439� i194 MeV,
and 2372� i162 MeV. These poles and their couplings to
different channels are listed in Table XV. The poles at
1426� i143 MeV and 1439� i194 MeV couple mostly
to K�� and �� channels, respectively. However these
channels are closed for the decay of the corresponding
resonances. The open channels which couple strongly to
the pole at 1426� i143 MeV are �KN and �� and those
which couple mostly to the 1439� i194 MeV state are
K� and ��. These two poles could be associated with the
�ð1480Þ resonance although very tentatively since it is
reported to be much narrower (�� 60 MeV) [24,31].
It is important to notice that this resonance gets generated
due to the PB-VB coupled channel effect and here we have
used a simplified interaction for the VB interaction
(since we focus here on the low-lying resonances). Thus,
a more detailed VB interaction might improve the situ-
ation. It is also interesting to notice that a recent study of

TABLE XIV. gi couplings for the poles found in the uncoupled PB and VB systems in the
isospin 1 configuration.

MR � i�=2 ðMeVÞ ! 1479� i285 1831� i0
Channels # Couplings (gi) of the poles to the different channels

�KN 0:4� i1:1 0:0þ i0:0
�� 1:4� i1:6 0:0þ i0:0
�� �0:6þ i1:3 0:0þ i0:0
	� �0:5þ i1:2 0:0þ i0:0
K� 1:2� i2:4 0:0þ i0:0
�K�N 0:0þ i0:0 1:0� i0:6
�� 0:0þ i0:0 �0:7þ i0:4
�� 0:0þ i0:0 �0:7þ i0:4
!� 0:0þ i0:0 �0:4þ i0:2
K�� 0:0þ i0:0 0:1� i0:1
�� 0:0þ i0:0 0:6� i0:3

TABLE XV. gi couplings for the poles found in the coupled PB-VB systems (gKR ¼ 6) in the
isospin 1 configuration.

MR � i�=2 ðMeVÞ ! 1426� i143 1439� i194 2372� i162
Channels # Couplings (gi) of the poles to

the different channels

�KN �1:0� i0:7 0:7þ i0:3 �0:1þ i0:0
�� 1:7þ i1:8 1:2þ i1:3 �0:5þ i0:2
�� 0:1� i0:3 �1:0� i0:6 0:3� i0:2
	� 0:1� i0:1 �0:7� i0:3 0:3� i0:2
K� 0:7þ i0:8 1:4þ i1:0 �0:8þ i0:0
�K�N 1:7� i0:2 2:6� i0:1 �0:1� i0:1
�� �5:6þ i0:5 �5:8þ i1:1 0:2þ i0:5
�� 4:5� i0:2 6:5� i1:4 �0:1� i0:8
!� �0:1þ i0:3 0:2þ i0:1 0:0þ i0:2
K�� 5:7� i1:1 5:0� i1:1 0:4� i0:9
�� 0:2� i0:5 �0:3� i0:2 0:1� i0:3
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the K�p ! ����þ reaction shows a strong evidence of
existence of a �� with J� ¼ 1=2� near 1400 MeV [32].

The pole at 2372� i162 MeV is found to couple mostly
to the K�� channel; however, we do not see a clear
corresponding peak structure in theK�� amplitude (shown
in Fig. 6), which might be due to the presence of a negative
interference of the pole with the background. A very little
information is available about the � states above 2 GeV
region. Thus, for the moment, we do not relate our state
with any known resonance.

V. SUMMARY

The work discussed in this manuscript can be summa-
rized as follows:

(1) In order to study dynamically generated resonances
in the PB-VBcoupled systems,we find that the cutoff
method together with a Gaussian form factor is more
suitable to calculate the loops, which satisfy unitarity
conditions, as well as the dispersion relations.

(2) Coupling VB to the PB systems with strangeness
�1 and isospin 0 reveals large coupling of the low-
lying � resonances to the closed VB channels,
although the pole positions and the couplings of
these resonances to the PB channels remain almost
unaltered. It is important to mention here that the
large coupling of the low-lying �’s to the VB chan-
nels found in our work do not imply the presence
of a large fraction of VB component in the wave

function of these resonances since the large mass
difference between the two would suppress it.
Therefore, the interpretation of the low-lying �’s
as PB molecular states does not change. However,
our findings could have some implications on, for
example, the photoproduction of the � resonances
where the production mechanism proceeding
through exchange of a vector meson could become
important [33]. This should be verified in future.

(3) The isoscalar states with higher masses, which have
earlier been found to get generated in VB systems,
do not get much wider by coupling the open PB
channels.

(4) In the isospin 1 case, a double pole structure is found
near 1430 MeV and we tentatively relate this to the
�ð1480Þ [24,31].
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