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We address the question of to what extent JIMWLK evolution is capable of taking into account angular

correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other)

correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops

in the evolution. As an example we study numerically the energy evolution of angular correlations

between dipole scattering amplitudes in the framework of the large Nc approximation to JIMWLK

evolution (the ‘‘projectile dipole model’’). Target correlations are introduced via averaging over an

(isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly

with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK

evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the

other hand, should remain sizable at any rapidity.
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I. INTRODUCTION AND CONCLUSIONS

The CMS observation of angular and long range rapidity
correlations in the hadron spectrum, the so-called ‘‘ridge’’
in proton-proton collisions [1], has triggered a lot of dis-
cussions in recent literature [2–5]. In particular, the ap-
proaches of the three last papers [3–5] are based on the idea
that correlated gluon emission is due to the correlations in
the impact parameter plane preexisting in the incoming
wave function of the target and projectile hadrons. Such
correlations certainly exist in a hadron wave function and,
in the context of high energy evolution, can be encoded in
the initial conditions for the evolution. It was also argued in
[4] that the correlations are leading effects in 1=Nc. The
purpose of the present paper is to address the question of
what the fate of such correlations is as the hadron is
evolved to high energy. In particular, we ask whether these
correlations can be studied by evolving the target/projectile
wave functions with JIMWLK evolution [6] [or the
Balitsky-Kovchegov (BK) equation, which is its large Nc

limit [7]]. To this end we perform simple numerical calcu-
lations and supplement them with a qualitative analysis
based on the physics of the JIMWLK evolution. Our nu-
merics is performed in the framework of the dipole model
approximation to JIMWLK evolution, and thus is sensitive
only to the leading Nc part of JIMWLK, but we believe
that, with minor modifications, our conclusions are valid
for full JIMWLK evolution as well.

Our conclusions are the following. We find that the
JIMWLK evolution leads to the exponentially quick dis-
appearance of correlations (including angular correlations
relevant for gluon emission) with rapidity. This disappear-
ance is straightforward to understand. It is the consequence
of the fact that JIMWLK evolution is valid only for color
field modes with transverse momenta smaller than the
saturation momentum where one indeed does not expect

correlations to be present. As was discussed in [4], we
expect correlations to be present only for points in the
transverse plane within the saturation radius of each other,
and therefore for momentum modes greater than or equal
to the saturation momentum. The evolution of these modes
even in a dense hadronic wave function is not governed by
the JIMWLK evolution but rather by KLWMIJ evolution
[8] for k � Qs and by Reggeon field theory including
Pomeron loops [9] for k�Qs.
The failure of JIMWLK to properly account for corre-

lations should be understood in the following way. The
evolved wave function of a hadron does indeed contain
correlations in impact parameter space, even in the leading
order in 1=Nc expansion. This has been shown analytically
and numerically for angular-independent correlations
within Mueller’s dipole model [10] in [11], and there is
every reason to expect that this is also the case for angle-
dependent correlations of interest to us. However,
JIMWLK evolution approximates the scattering amplitude
of two dipoles on a hadronic target by contributions where
the two dipoles scatter on gluons with vastly different
rapidities (this has been dubbed ‘‘long range multiple
scatterings’’ in [12]). Since the correlations in the wave
functions are between gluons which are close in rapidity to
each other, these correlations are simply not included in the
JIMWLK equation. While the JIMWLK approximation
does properly account for leading contributions to the
scattering amplitude in the saturated regime, it signifi-
cantly underestimates those for small (smaller than satu-
ration radius) dipoles. To account properly for rapidity
evolution of the scattering amplitude of small dipoles,
one needs to evolve it with the KLWMIJ evolution equa-
tion. The KLWMIJ evolution does indeed include the
‘‘short range multiple scattering contribution’’ [12] and
should correctly describe correlations in the impact pa-
rameter plane. The obvious complication here is that, since
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we are interested in a dense target (corresponding to high
multiplicity events in the CMS data), it certainly contains
low momentum modes which evolve according to
JIMWLK. Thus we are faced with the situation where
proper treatment of angular correlations at high energy
requires us to include both KLWMIJ and JIMWLK evolu-
tions within the same framework, and in this sense we have
to deal explicitly with the Pomeron loop effects. In fact,
this necessity is even more acute, since the Pomeron loops
give leading contributions to the evolution of the modes at
k�Qs, and it is presumably these modes that contribute
the most to angular correlations.

We thus conclude that future attempts to properly nu-
merically estimate the size of correlations at high energy
will require explicit inclusion of the Pomeron loop effects.
The notion that it is the Pomeron loops that are crucial for
correlations at high energy is not new [13]; here we merely
recast this argument in the framework of JIMWLK/
KLWMIJ evolution.

The structure of this paper is the following. In Sec. II we
recap the arguments of [4] about angular correlations in
gluon emission, recasting them in a somewhat more trans-
parent semiclassical form. In Sec. III we present results of
our numerical calculations of the evolution of angular
correlations in the dipole model (leading Nc JIMWLK).
Finally, in Sec. IV we discuss the interpretation of these
results based on the physical picture of JIMWLK/KLWMIJ
evolution and flesh out the arguments for the necessity of
Pomeron loops.

II. ANGULAR CORRELATIONS

In our previous paper [4] we discussed a simple picture
of long range rapidity correlations and angular correlations
between particles produced in a collision of two high
energy dense objects. This qualitative picture also under-
lies the calculations of [3,5]. Long range rapidity correla-
tion is an almost trivial consequence of boost invariance of
a projectile wave function at high energy. Consider high
energy scattering of a hadronic projectile on a stationary
target in the lab frame. In the lab frame, the incoming
particles are very energetic and they scatter by a very small
angle with pþ � pT . Thus recoil is negligible and the
eikonal approximation is applicable at high enough energy.
Since the projectile is very energetic, its wave function is
approximately boost invariant. In a boost invariant wave
function, gluon distributions at rapidity Y1 and Y2 are the
same. These gluons scatter on exactly the same target, and
thus whatever happens at Y1 also happens at Y2. If for a
particular target field configuration a gluon is likely to be
produced at Y1 at some impact parameter, a gluon is also
likely to be produced at Y2 at the same impact parameter,
thus leading to long range rapidity correlations. Thus the
long range rapidity correlations come practically for free
whenever the energy is high enough so that the wave
function of the incoming hadron is approximately boost

invariant, and there is very little in the actual dynamics of
the collision that can affect this feature.
To understand why angular correlations also naturally

arise in the context of high energy, let us briefly recap our
understanding of the transverse structure of the hadron in
the saturation regime. It is convenient to think of the
distribution of the (color) electric field configurations in
the target.
The target wave function is characterized by the satura-

tion momentum Qs. The saturation momentum plays a
dual role in the hadronic wave function. First, it measures
the typical magnitude of the electric field in the wave
function. The scattering amplitude of a dipole on the target
is given in terms of a simple parton scattering amplitude

SðxÞ ¼ Peig
R

dxþA�ðxÞ as NðrÞ¼1� 1
Nc
Tr½Syð0ÞSðrÞ�. The

vector potential is simply related to the electric field as
@iA

� ¼ F�i. Let us, for convenience, define the electric
field integrated over the longitudinal extent of the target,
Ei ¼

R
dxþF�i. The dipole scattering amplitude is then

given in terms of gE, and assuming for illustrative pur-
poses that odd powers of E average to zero in the hadronic
ensemble [14], we have roughly

Nð ~rÞ � 1� e�ð1=2Þðg~r� ~EÞ2 : (2.1)

This is of order unity for r2s ¼ Q�2
s ¼ ðgEÞ�2.

On the other hand, it is known that the field components
with transverse momenta pT < Qs are suppressed in the
wave function [15]. This means that the electric fields in
the target are correlated on the length scale ��Q�1

s . Thus
the saturation momentum doubles up as the inverse of the
correlation length of target color fields. Typical field con-
figurations in the target can thus be thought of as having a
domainlike structure as in Fig. 1.
Now consider a projectile parton with charge q imping-

ing on one of the domains of the target. While traversing
the target field, the parton acquires transverse momentum,

�Pi ¼ gq
Z

dxþF�i ¼ gqEi: (2.2)

A parton at a different rapidity but with the same charge
will pick up exactly the same transverse momentum if it
scatters on the same ‘‘domain.’’ This of course results in
positive angular correlation of produced gluons.

Qs
−1

E

FIG. 1. Typical color electric field configuration in the target.
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We note in passing that this simple picture also explains
the fact noted in [4] that angular correlations at angle� and
�þ � have equal strength. At high energy, particle pro-
duction is dominated by gluons. Gluons of course belong to
a real representation of the gauge group; thus, it is equally
probable to find an incoming gluon with charge q and
charge �q in the projectile wave function at any rapidity.
Suppose, for example, that a given configuration of the
color field in the target is in the third direction in color
space Ea

i ¼ Ei�
a3, while the gluons in the incoming pro-

jectile correspond to the vector potential in the second
direction A2

i . One can always write A2 ¼ � i
2 ðAþ � A�Þ,

where Aþ ¼ A1 þ iA2 is positively charged with respect to
color charge in the third direction, and A� ¼ A1 � iA2 is
negatively charged. Thus, necessarily equal numbers of
gluons in the incoming projectile have opposite sign
charges and are kicked in opposite directions while scat-
tering on the target. This produces equal strength correla-
tions at angles zero and �. This is not the case for quarks
which carry fundamental charges, and it is quite clear that
taking into account the projectile quarks will lead to a
stronger positive angular correlation than a negative one.

Going beyond the qualitative picture described above,
the two gluon inclusive production probability discussed in
[4] is given by [16] (see also [17]) [18]

dN

d2pd2kd�d�
¼ h�ðkÞ�ðpÞiP;T (2.3)

with

�ðkÞ ¼
Z
z;�z

eikðz��zÞ Z
x1;x2; �x1; �x2

~fð�z� �x1Þ � ~fðx1 � zÞ~�ðx1Þ

� ½Syðx1Þ � SyðzÞ�½Sð �x1Þ � Sð �zÞ�~�ð �x1Þ: (2.4)

Here

fiðx� yÞ ¼ ðx� yÞi
ðx� yÞ2 (2.5)

and ~� � �iTa�a. In these formulas �aðxÞ is the valence
color charge density in the projectile wave function, while
SabðxÞ is the eikonal scattering matrix determined by the
target color fields. The charge density is normalized such
that for a single gluon �a ¼ gTa. The two gluons here are
produced independently of each other, but from exactly the
same configuration of color charge sources while scatter-
ing on the same target field configuration.

The average in Eq. (2.3) denotes averaging over the
projectile and the target wave functions. The averaging
over � is understood as averaging over a classical ensemble
with a probability distribution function WP½�� [6],

hOiP ¼
Z

D�WP½��O; (2.6)

and similarly for the target average. After averaging over
all target and projectile configurations, the single gluon

emission amplitude h�iP;T must be isotropic. However, for

any given configuration it is not isotropic and peaked in
one particular direction. This anisotropy produces angular
correlation among the emitted gluons as discussed above.
To reiterate, for a fixed configuration of the projectile
sources �ðxÞ and target fields SðxÞ, the function �ðkÞ as a
function of momentum has a maximum at some value
k ¼ q. Therefore, the product in Eq. (2.4) is maximal for
k ¼ p ¼ q. The value of the vector q of course differs
from one configuration to another, but the fact that mo-
menta k and p are parallel does not. Therefore, after
averaging over the ensemble, d2N=dkdp has a maximum
at a relative zero angle between the two momenta (as we
have explained above, there is actually a second degenerate
maximum at the relative angle �� ¼ �). The strength of
the maximum of course depends on the detailed nature
of the field configurations constituting the two ensembles
(the projectile and the target).
Thus, angular correlations emerge as a result of the

target/projectile averaging procedure over isotropic en-
sembles of anisotropic configurations.
We note that Eq. (2.4) holds in the case when one of the

colliding objects is dense and another one is dilute
[16,17,19,20]. This is most likely not quite the situation
encountered in the high multiplicity p� p events at the
LHC, where the density in the proton wave function is
likely still not parametrically large, but is already not
perturbatively small. The main features of our discussion
are, however, borne out by the expression Eq. (2.3), and we
believe this approximation to be qualitatively correct. We
note that the numerical calculations of [3] use a further
perturbatively expanded version of Eq. (2.4). The approach
to the dense-dense regime has been developed in [21] and
has been used in [22]. It is, however, not clear that in the
LHC environment it is quantitatively more reliable than the
simple expression Eq. (2.4). When the dense system is
produced in the final state, we expect the correlations
produced by this mechanism to be washed out by the final
state interactions and finally disappear for a very dense
final state. There may be an alternative mechanism of
producing angular correlations via radial flow effects [23]
which could be relevant to the ridge structure observed at
the Relativistic Heavy Ion Collider [24], but this is far
beyond the scope of the present work.
Returning to Eq. (2.3), we note that angular correlations

should be the leading 1=Nc effect [4,25–27]. The leading
Nc piece in Eq. (2.3) comes from the configuration where
the charge densities in each one of the single gluon pro-
duction amplitudes are in the color singlet. The relevant
average to calculate is

h�aðx1Þ�að �x1Þ�bðx2Þ�bð �x2ÞiPhTrf½Syðx1Þ�SyðzÞ�
�½Sð �x1Þ�Sð�zÞ�gTrf½Syðx2Þ�SyðuÞ�½Sð �x2Þ�Sð �uÞ�giT:

(2.7)
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On the target side one needs to calculate averages of
observables of the type described in the large Nc limit by
the dipole model [10]

1

N4
c

hTrf½SyðxÞSðzÞ�gTrf½SyðyÞSðuÞ�giT
¼ hsðx; zÞsðz; xÞsðy; uÞsðu; yÞiT; (2.8)

where sðx; yÞ ¼ 1
Nc

Tr½SyFðxÞSFðyÞ� is the scattering

amplitude of the fundamental dipole, and the equality in
Eq. (2.8) holds in the large Nc limit. The approximation
which is frequently used in the literature to calculate the
averages of this type also invokes factorization,

hsðx; yÞsðu; vÞi ¼ hsðx; yÞihsðu; vÞi: (2.9)

Strict factorization of the type in Eq. (2.9) is only possible
if either the statistical ensemble consists of a single con-
figuration, or the target fields on which the two dipoles
scatter are completely independent of each other. There is
of course no reason to expect that in the large Nc limit
fluctuations around some leading configurations are sup-
pressed by powers of 1=Nc. Likewise, since we are inter-
ested in dipoles which scatter within the correlation radius
of each other, the field configurations should be, by defi-
nition, correlated. Thus the factorization Eq. (2.9) is not
appropriate for the study of correlations.

Our objective in this paper is a pilot study of the evolu-
tion in energy of correlations which one can encode in the
initial target ensemble. As a framework for the evolution,
we take the projectile dipole model, which describes the
evolution of s in the leading Nc limit. It is important at this
point to avoid confusion and understand clearly which
dipole model we are talking about, as there are two distinct
approximations to the high energy evolution which are
both sometimes called the dipole model.

In the first, whichwewill call the target dipolemodel, one
follows the evolution of the target wave function in terms of
the density of dipoles (and their cumulants). This evolution,
as formulated in [10], does not take into account finite
density effects in the target wave function and is the large
Nc limit of the KLWMIJ evolution [8]. Reference [11]
studied correlations and fluctuations of dipole density in
this approach for a single dipole target and found them to
be significant in the leading order in 1=Nc.

Another dipole approach, which we will refer to as the
projectile dipole model, evolves the projectile wave func-
tion according to dipole evolution. The projectile scatter-
ing amplitude is then calculated by approximating the
scattering amplitude of each projectile dipole by an eikonal
factor. This approximation can be reformulated as the
evolution of the target wave function. In this form it is a
large Nc approximation to the JIMWLK evolution of the
target wave function; that is, it does indeed take into
account nonlinearities in the target evolution.

The two dipole approximations implement very differ-
ent physics in the target wave function. Our choice of the

projectile dipole approximation is motivated by the expec-
tation that high density effects in the target evolution
should be important, and also by the fact that it is this
approximation (or JIMWLK which includes 1=Nc correc-
tions to it [28]) that is used in current numerical studies of
the ridge [3]. We note, however, that this approximation
does not take into account proper splittings of the target
dipoles, as stressed in [29]. As we show in the next section
numerically, and explain qualitatively in Sec. IV, this de-
ficiency turns out to be crucial in the inability of this
approximation to correctly evolve correlations present in
the initial ensemble.
The target probability distributionWT½s� in the projectile

dipole model evolves with rapidity according to [25,27]

d

dY
WT½s�¼ �	s

2�

Z
x;y;z

ðx�yÞ2
ðx�zÞ2ðz�yÞ2 ½sðx;yÞ�sðx;zÞsðy;zÞ�

� �

�sðx;yÞW
T½s� (2.10)

with �	 the ’t Hooft coupling, which is finite at infinite Nc.
Our strategy is to choose an ensemble WT

0 ½s� of initial

configurations sðx; yÞ, which contains nontrivial angular
correlations. Each configuration of the ensemble is evolved
independently according to the BK equation [25]. The cor-
relations at thefinal rapidity are then calculated by averaging
the correlator over the ensemble of solutions sYðx; yÞ.
Z
DsWT

Y ½s�sðx; yÞsðu; vÞ ¼
Z
DsWT

0 ½s�sYðx; yÞsYðu; vÞ;
(2.11)

where sYðx; yÞ is the solution of the BK equation with the
initial condition sðx; yÞ.
This procedure is similar to the one implemented in [30].

However, the focus of [30] was in fluctuations of the
saturation scale, and thus all configurations in the initial
ensemble in [30] were chosen to be isotropic. In order to
study angular correlations we have to allow the individual
members sðx� yÞ of the initial ensemble to be anisotropic.
The rotational invariance is restored by averaging over the
whole ensemble rather than configuration by configuration.
Here we report on our initial results, which mostly aim at

the qualitative understanding of the rapidity dependence of
angular correlations within the projectile dipole evolution.
Like inmost BK studies, we do not consider impact parame-
ter dependence. We view the resulting correlations as corre-
lations at a fixed impact parameter; thus, strictly speaking,
the study of correlations in the impact parameter plane are
beyond our current calculation. Nevertheless, we do not
expect our results onweakening of correlationswith rapidity
at a fixed impact parameter to be affected by configuration-
by-configuration fluctuations in the impact parameter plane.
For the sake of simplicity, we do not calculate the two

gluon production rate Eq. (2.3) but rather examine the sim-
plest observable that can exhibit angular correlations—the
correlator of two dipole scattering amplitudes sðx; yÞsðu; vÞ.

ALEX KOVNER AND MICHAEL LUBLINSKY PHYSICAL REVIEW D 84, 094011 (2011)

094011-4



III. BK EQUATION, INITIAL CONDITIONS,
AND ANGULAR DEPENDENCE

A. BK equation and initial conditions

The BK equation for the imaginary part of the dipole
scattering amplitude Nð ~rÞ ¼ 1� sð ~rÞ (assuming impact
parameter-independent configurations) is

@YNð ~rÞ ¼ CF	s

2�

Z
d2 ~r0

~r2

~r02ð~r� ~rÞ2 ½Nð ~r0Þ þ Nð~r� ~r0Þ
� Nð~rÞ � Nðr0ÞNð ~r� ~r0Þ�: (3.1)

Here ~r ¼ ~x� ~y is a vector (in the transverse plane) con-
necting the two legs of the dipole, and r ¼ j~rj. In Eq. (3.1)
N is not regarded as being target averaged, but rather as
corresponding to a single target configuration.

As discussed above, we have to specify the initial en-
semble of configurations of Nð ~rÞ. We emphasize again that
this is different than in most approaches to the BK evolu-
tion, where a single configuration of NðrÞ is evolved in
rapidity. For our purposes it is crucial to follow the evolu-
tion of a nontrivial ensemble of initial conditions which at
initial rapidity encodes finite correlations between dipole
scattering amplitudes.

We choose all the configurations of the ensemble to have
similar radial dependence, but distribute them homogene-
ously with respect to the angle 
. A representative con-
figuration at some initial rapidity Y0 ¼ ln1=x0 is taken as

NðY0; ~rÞ ¼ 1� Expf�ar2xgLO CTEQ6ðx0; 4=r2ÞFð
Þg;

a ¼ 	sðr2Þ�
2NcR

2
:

(3.2)

Apart from the angle-dependent function F, this is the same
initial condition as used in [31] to fit HERAdata. In [31], the
F2 low x data were reproduced using the BK equation with
running coupling [32]. The parameters used in [31] are as
follows: x0 ¼ 10�2 and the effective proton’s radiusR fitted

to theF2 data,R
2 ¼ 3:1 ðGeV�2Þ, and thegluondistribution

xgLO CTEQ6 from the LO CTEQ6 parametrization.
The function Fð
Þ takes into account angular modula-

tions of the scattering amplitude relative to some axis,
thereby reflecting the anisotropy of a given target field
configuration. For our study we choose Fð
Þ of the form

Fð
Þ ¼ 1
4 þ 3

2cos
2ð
Þ: (3.3)

In contrast to numerous previous studies of the BK equa-
tion, in which the initial conditions were parametrized with
respect to the dipole size only, Eq. (3.2) provides a two-
dimensional initial data set (Fig. 2; for all the plots r is
given in GeV�1).
The cos2ð
Þ dependence is motivated by the dipole

interaction with a constant target chromo-electric field ~E,
Eq. (2.1). In fact, even though this is quantitatively not
quite true, qualitatively the scattering amplitude (3.2) can
be thought of as the scattering amplitude on a fixed,
constant chromo-electric field configuration in the target.
The function Fð
Þ has a period � and is symmetric under

 ! �� 
. For this reason in what follows we will be
quoting only results in the first quarter.
We now define the ensemble of initial conditions by

homogeneously distributing the direction of the target field
in the impact parameter plane. In practical terms this
amounts to shifting the angle 
 in Eq. (3.3) by another
angle �, which is taken to be a random variable with the
probability distributionWT½�� ¼ 1=2�, constant for any �
ranging from 0 to 2�. Averaging over such an ensemble
restores rotational invariance. In particular, for example,

hFi� ¼
Z 2�

0
d�Fð
þ �ÞWT½�� ¼ 1: (3.4)

Below, we will consider various observables, such as
hNðY; r; 
; �Þi�, as well as the two-dipole correlator
hNðY; r1; 
1; �ÞNðY; r2; 
2; �Þi� averaged with respect to
� with the weight WT½��.

FIG. 2 (color online). Initial conditions (3.2). Left panel: Profile of N as a function of r and 
. Right panel: The same but in polar
coordinates; the ‘‘blackness’’ of the target is shown with respect to the dipole’s orientation.
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B. Single configuration solution

In Fig. 3 we present our numerical solution of the BK
equation with the initial conditions (3.2) and (3.3).

The main qualitative feature of the evolution is quick
isotropization even on a single initial configuration, with-
out the ensemble averaging. One way to quantify the effect
is to focus on the saturation scale, defined in a standard
manner,

NðY; RS; 
Þ ¼ 1=2:

The resulting saturation radius Rs is now both rapidity and
angle dependent. The initial strong angular dependence of
RS completely disappears after evolution by about five
units of rapidity, as shown in Fig. 4.

In Fig. 5 we plot another measure of anisotropy,

AðY; rÞ � NðY; r; 0Þ � NðY; r; �=2Þ
NðY; r; 0Þ þ NðY; r; �=2Þ ; (3.5)

as a function of Y and r. Again we observe an exponen-
tially fast disappearance of the anisotropy.
Figure 5 has a curious feature, which may or may not be

important. The anisotropy A seems to be maximal at a fixed
scale r ’ rmax ¼ 0:5 GeV�1 independent of rapidity. The
origin of this scale is not clear to us, and it may just be a
numerical accident related to the form of our initial con-
figuration. We have checked, however, that A remains
maximal at r ’ rmax even when R of the initial condition
is varied, thus possibly hinting at another origin. At any
rate, one can follow the weakening of anisotropy by fol-
lowing the ratio A at rmax. We find

AðrmaxÞ � e��AY; �A ’ 0:6: (3.6)

We also fit in the presaturation regimeNðY; rmax; 0Þ � e0:2Y

while NðY; rmax; �=2Þ � e0:4Y [34].
We have also looked at the rate with which the scale of

fixed anisotropy shrinks with rapidity. We follow the scale
r at which A takes a constant value, say 10%. Solving for
AðY; rÞ ¼ 0:1 leads to the scale r ¼ aðYÞ. The scale r
moves towards smaller dipole sizes with what looks like
a constant rate. Our fit gives aðYÞ ’ 8:5� Y. Note, how-
ever, that the fit is limited to not very high rapidities. At
larger rapidities the angular dependence of Nð~rÞ is washed

FIG. 3 (color online). N as a function of r and 
 at various values of rapidity: Y ¼ Y0 ’ 4:6, Y ¼ 6, Y ¼ 10.

FIG. 4 (color online). Saturation radius as a function of angle
and rapidity.
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away and the anisotropy drops below the 10% level for all
dipole sizes. This is clearly seen on the A plot.

It is important to stress that the wash-away of angular
anisotropy occurs even for very small dipole sizes, where
the evolution is governed entirely by the Baltsky-Fadin-
Kuraev-Lipatov (BFKL) dynamics. The mechanism be-
hind this fast isotropization therefore must be rapid angular
decorrelation of emitted gluons inside the BFKL ladder.

C. Averaged fluctuations

Moving on to observables averaged over the whole
ensemble of initial conditions, we first plot the fluctuation
of the simplest angle-independent correlator (Fig. 6),

�ðY; rÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hNðY; r; 
; �Þ2i� � hNðY; r; 
; �Þi2�

q

hNðY; r; 
; �Þi� : (3.7)

We again observe the appearance of a rapidity-
independent maximum at the scale rmax, although this
maximum is quite shallow. The fluctuation � decays ex-
ponentially fast with rapidity with the same exponential �A:

�ðY; rmaxÞ � e��AY: (3.8)

We have found that the exponent �A emerges in several
other observables we looked at. Defining the angular-
averaged saturation scale hRsi and plotting the fluctuation
� at the scale hRsi (Fig. 7), we again find

�ðY; hRsiÞ � e��AY (3.9)

and conclude that all fluctuations are rapidly washed away
at the saturation scale.

D. Angular correlations

Finally, we looked at angle-dependent fluctuations of the
dipole amplitude and related quantities. The first quantity
we plot (Fig. 8) is the correlator of two saturation scales
hRsð
1ÞRsð
2Þi� and the normalized correlation of the
saturation radii,
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FIG. 6 (color online). The angle-independent correlator �.
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FIG. 7 (color online). Averaged saturation radius and the fluctuation �ðY; hRsiÞ.
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FIG. 8 (color online). Left panel: Angular correlations of the saturation radius. Right panel: Normalized correlations.

ANGULAR CORRELATIONS AND HIGH ENERGY EVOLUTION PHYSICAL REVIEW D 84, 094011 (2011)

094011-7



�Rs
ðY; r; 
Þ � hRsðY; 
1; �ÞRsðY; 
2; �Þi� � hRsðY; 
1; �Þi�hRsðY; 
2; �Þi�

hRsðY; 
1; �Þi2�
; 
 ¼ 
1 � 
2: (3.10)

Both quantities become angle independent when evolved by about five units of rapidity.
The angular correlations of the dipole amplitude itself behave in a similar fashion. We plot (Fig. 9) the correlator

hNðY; r; 
1ÞNðY; r; 
2Þi� and the normalized fluctuation (Fig. 10) [35],

�
ðY; r; 
Þ � hNðY; r; 
1; �ÞNðY; r; 
2; �Þi� � hNðY; r; 
1; �Þi�hNðY; r; 
2; �Þi�
hNðY; r; 
1; �Þi2�

; 
 ¼ 
1 � 
2: (3.11)

The normalized fluctuation decreases with rapidity approximately as

�
ðY; RsðYÞ; 
Þ � e�2�AY:

Finally, we plot the normalized correlation at the saturation scale as a function of rapidity in Fig. 11.

FIG. 9 (color online). Angular correlations of N. Left panel: Y ¼ Y0 ’ 4:6; right panel: Y ¼ 6.

FIG. 10 (color online). Normalized angular correlations �
. Left panel: Y ¼ Y0 ’ 4:6; middle panel: Y ¼ 6; right panel: Y ¼ 7:5.
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FIG. 11 (color online). Angular correlations at the saturation scale RsðYÞ. Left panel: hNðY; RsðYÞ; 
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�
ðY; RsðYÞ; 
Þ.
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IV. POMERON LOOPS RULE

The question we have to ask is how our numerical results
of the previous section sit together with the picture of color
electric fields having correlations on the scale of the satu-
ration momentum, described in Sec. II. Also, it is, at first
sight, surprising that we do not find correlations in the
target wave function which have been discussed analyti-
cally and numerically in [11] (albeit for a single dipole
target).

To understand why this is the case, we note again that
our calculation is done in the framework of the projectile
dipole model, while that of [11] is done in the target dipole
model. These two dipole models are large Nc limits of the
JIMWLK and KLWMIJ evolutions, respectively, and in
the rest of this section we will not distinguish between
the corresponding evolution and its large Nc limit.

As discussed in [12] the JIMWLK and KLWMIJ evolu-
tions are very different as far as the target wave function is
concerned. KLWMIJ is the normal perturbative evolution
of the target wave function. It is well known that in such an
evolution the number of gluons grows exponentially fast.
The gluon density, which in this regime satisfies the BFKL
equation, depends on the total rapidity as

gðp; YÞ / ec	sY; (4.1)

where c is a number of order one and Y is the total rapidity
by which the target wave function has been boosted from
‘‘rest.’’ The exponential dependence is also true for the
differential gluon density at any rapidity �< Y, namely
(we suppress the momentum dependence in the prefactor
for simplicity)

d

d�
gðp;�Þ / ec	s�
ðY � �Þ: (4.2)

Gluons in thewave function which are separated in rapidity
by no more than ���Oð	sÞ are correlated. Since the
gluon density in the wave function exponentially grows
with rapidity, any projectile that probes such a wave func-
tion effectively feels only the gluons in the last rapidity
‘‘bin.’’ Thus such a probe is sensitive to any correlation that
exists between the softest gluons in the wave function.

Now consider JIMWLK evolution. The rapidity depen-
dence of gluon density generated by the JIMWLK evolu-
tion is very different. As discussed in [12], while the
probability to emit an additional gluon in the dilute regime
is proportional to the number of gluons in the wave func-
tion, in the dense regime this probability approaches a
constant. The amplitude of the emission depends on the
color fields in the target Ei, roughly as (in the target light
cone gauge Ei is the vector potential)

A / Di

D2
Ei; Di ¼ @i � gEi: (4.3)

In the dilute system this is proportional to the chromo-
electric field E, while in the dense regime, where D� E,

this is a constant. The evolution with constant probability
of emission generates gluon density which is uniformly
distributed in rapidity. This can be thought of as a random
walk in color space as in [12]. So now one has

d

d�
gðp;�Þ ¼ C; (4.4)

with C a function of transverse momentum, but not of
rapidity. It is still true, like in the KLWMIJ case, that gluons
separated by a small rapidity interval are correlated, while
the correlation disappears for gluons at very different rap-
idities. Now, as opposed to KLWMIJ, however, if one scat-
ters any projectile on such a target, the projectilewill sample
gluons at all rapidities equally. Thus, for example, if the
projectile consists of two dipoles, the two dipoles will most
likely scatter on color field components (gluons) with very
different rapidities. Since such fields are not correlated, the
two dipoles will scatter independently and the two dipole
scattering amplitude will not exhibit any correlations.
Another way of understanding the difference between

the nature of JIMWLK and KLWMIJ evolutions is the
following. In KLWMIJ evolution one starts initially with
the target wave function which contains a small number of
gluons. The probability to emit an additional gluon in one
step of the evolution is small [Oð	sÞ]; however, if a gluon
is emitted, the end configuration strongly differs from the
initial one, since the number of gluons has changed by a
factor of order unity. Such evolution thus generates a very
rough ensemble of target field (gluon) configurations. In
this ensemble configurations with very different properties
are present, albeit with small weight. Such an ensemble
must exhibit large fluctuations in a variety of observables.
On the other hand, in JIMWLK evolution the probability

to emit an extra gluon is large—of order unity. However,
emission of an extra gluon produces a new configuration
which is hardly distinct from the existing one, since the one
extra gluon is produced on the background of 1

	s
gluons

which already exist in the wave function. Thus the
JIMWLK ensemble is very different—it contains many
configurations, but all these configurations have very simi-
lar properties. The fluctuations in observables in such an
ensemble are very small.
Thus we conclude that KLWMIJ evolution must produce

(and preserve) correlations (and fluctuations) between scat-
tering amplitudes of two projectile dipoles at leading order
in 1=Nc. These are indeed the correlations discussed in
[11]. On the other hand, JIMWLK evolution must lead to
the disappearance of any correlations initially present in
the target ensemble, as we have seen in our calculations.
Given that the two approximations to high energy evo-

lution lead to such qualitatively different answers for the
observable we are interested in, naturally one should ask
which one of them, if any, should be used in quantitative
calculations. Naively one might think that, since we are
interested in a high multiplicity situation, the target is
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dense and JIMWLK evolution is more suitable. This, how-
ever, is not the case. Recall that we expect the correlations
to arise due to scattering at close values of the impact
parameter. The transverse distances in question should be
smaller or of the order of the saturation radius Rs. This
means that the scattering occurs on the components of the
target color field with transverse momenta p <Qs.
However, at these momenta the target wave function, by
definition, is still dilute. Even for a dense target JIMWLK
evolution is not appropriate for all wavelengths. Referring
to Eq. (4.3) we see that the amplitude is independent of the
field only when we can neglect the derivative relative to the
field gE in the expression for the covariant derivative, in
other words, only for momenta greater than the saturation
momentum. Thus, in the dense target, we expect the gluon
density to behave roughly as

d

d�
gðp;�Þ / ec	s�
ðp�QsðYÞÞ þ C
ðQsðYÞ � pÞ: (4.5)

At large momenta p >Qs the appropriate evolution is
KLWMIJ and not JIMWLK.

Thus to be able to describe fluctuations, one needs to be
able to evolve the high momentum modes according to
KLWMIJ and low momentum modes according to
JIMWLK. In fact, the situation is even more complicated.
One expects that the largest contribution to correlations
comes from the modes with p of order Qs, since the
relative distances of order Rs should dominate the integral
over impact parameter. For these modes, however, the
Pomeron merging and splitting (JIMWLK and KLWMIJ
contributions) are of equal importance. In other words, this

momentum range is sensitive at the leading order to the
Pomeron loop contributions. We thus conclude that
Pomeron loops need to be included for proper treatment
of this question.
Finally, we note that the approach of [3] does not contain

Pomeron loops and nevertheless finds a correlated emis-
sion contribution which has the same physical origin as
discussed in Sec. II. The correlated contribution utilized in
[3] is, however, subleading in 1=Nc. This contribution
indeed exists in the JIMWLK evolution of high momentum
modes, where the nonlinear corrections are unimportant,
and JIMWLK is equivalent to the BFKL evolution. Such
correlated terms did not show up in the numerical calcu-
lations of Sec. III because of their subleading nature. In the
linear regime the projectile dipole model is equivalent to
the BFKL equation for a single dipole scattering ampli-
tude, but contains only leading Nc terms for scattering of
two dipoles. We stress again that our interest in this paper is
only in the leading terms in 1=Nc, and it is the proper
treatment of these leading terms that requires recourse to
Pomeron loops.
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