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We recently derived explicit solutions of the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equations for the Q2 evolution of the singlet structure function Fsðx; Q2Þ and the gluon

distribution Gðx;Q2Þ using very efficient Laplace transform techniques. We apply our results here to

a study of the HERA data on deep inelastic ep scattering as recently combined by the H1 and ZEUS

groups. We use initial distributions F�p
2 ðx;Q2

0Þ and Gðx;Q2
0Þ determined for x < 0:1 by a global fit to the

HERA data, and extended to x ¼ 1 using the shapes of those distributions determined in the CTEQ6L and

MSTW2008LO analyses from fits to other data. Our final results are insensitive at small x to the details of

the extension. We obtain the singlet quark distribution Fsðx;Q2
0Þ from F�p

2 ðx;Q2
0Þ using small nonsinglet

quark distributions taken from either the CTEQ6L or the MSTW2008LO analyses, evolve Fs and G to

arbitrary Q2, and then convert the results to individual quark distributions. Finally, we show directly from

a study of systematic trends in a comparison of the evolved F�p
2 ðx;Q2Þ with the HERA data that the

assumption of leading-order DGLAP evolution is inconsistent with those data.
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I. INTRODUCTION

In recent papers [1,2], we showed that it is possible to
solve the coupled leading-order (LO) Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations
[3–5] for the singlet quark structure function Fsðx;Q2Þ ¼P

ix½qiðx;Q2Þ þ �qiðx;Q2Þ� and the gluon distribution
Gðx;Q2Þ ¼ xgðx;Q2Þ directly using a method based on
Laplace transforms. While the method is formally equiva-
lent through the known connection between Laplace and
Mellin transforms [6] to methods based on the latter—see,
e.g. [3,7]—we find the present approach to be clearer
intuitively and much more efficient numerically. In par-
ticular, the distributions Fsðx;Q2Þ and Gðx;Q2Þ at a vir-
tuality Q2 can be expressed simply as convolutions of
the distributions Fsðx;Q2

0Þ and Gðx;Q2
0Þ at a starting value

Q2
0 with analytically defined kernels in the ordinary vari-

ables. Alternatively, the results can be expressed as inverse
Laplace transforms of products of the kernels in Laplace

space with the Laplace transforms of the initial
distributions.
We perform the inverse Laplace transforms necessary in

our approach using very fast and accurate new numerical
algorithms [8,9]. These do not require that we work on a
preassigned numerical grid, and make the solution of the
evolution equations at arbitrary values x and Q2 straight-
forward on desktop or laptop computers. We have extended
the Laplace method elsewhere [2] to next-to-leading order
(NLO) in �s, including to nonsinglet distributions, but will
not pursue that extension here.
In the present paper, we apply these methods to test the

consistency of the assumed LO evolution of the structure
functions with the HERA data [10–12] on deep inelastic ep
(or ��p) scattering, using those data as recently combined
by the H1 and ZEUS experimental groups [13]. As shown
earlier [14,15], if a LO treatment of the DGLAP evolution
is sufficient, the necessary starting distribution G0ðxÞ �
Gðx;Q2

0Þ can be obtained from a global fit to the structure

function F�p
2 ðx;Q2Þ by requiring that the LO evolution

equation for F�p
2 ðx;Q2Þ be satisfied for Q2 ¼ Q2

0. Both

F�p
2 ðx;Q2

0Þ and Gðx;Q2
0Þ are then determined directly by

experiment.
To obtain our starting distributions, we perform the

required global fit to F�p
2 using the HERA data for
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x < 0:1, and extend the fit to x ¼ 1 using the shape of that
distribution as determined in the CTEQ6L [16] and
MSTW2008LO [17] analyses which included other deep
inelastic scattering (DIS) data at large x. Our final results at
small x are insensitive to the details of the extension. We
pick as a starting value for the Q2 evolution a value Q2

0 ¼
4:5 GeV2, which is well within the region of dense data,
and determine the starting G as described above.

The singlet distribution Fsðx;Q2Þ differs from
F�p
2 ðx;Q2Þ by small nonsinglet contributions that depend

primarily on the valence quark distributions, which agree
fairly well for different LO analyses at moderate Q2 (com-
pare, e.g. [16,17]). We will therefore simply use the results
of the CTEQ6L and MSTW2008LO analyses [16,17] to
make the necessary conversion from F�p

2 to Fs at Q2
0¼

4:5GeV2, and the evolved nonsinglet contributions to con-
vert the evolved Fsðx; Q2Þ back to the function F�p

2 ðx;Q2Þ,
which can be compared to the HERA data for Q2 � Q2

0.

We also combine the evolved Fs with the nonsinglet
distributions of CTEQ6L and MSTW2008LO to obtain a
new set of CTEQ6L-like or MSTW-like quark distribu-
tions. Even though we use the same nonsinglet distribu-
tions as those authors, our final results differ from the
originals because of our use of the combined HERA data
rather than the original H1 and ZEUS results, and, impor-
tantly, our use of starting distributions Fsðx;Q2

0Þ and

Gðx;Q2
0Þ determined directly from experiment up to the

small nonsinglet contributions to the former.
We find that the evolved F�p

2 ðx;Q2Þ calculated using LO
DGLAP evolution differs systematically in its dependence
on x andQ2 from the combined HERA data at values ofQ2

away from Q2
0. We conclude that LO DGLAP evolution is

not consistent with the data, a conclusion reached less
directly by other authors, e.g., in [13,17,18]. We emphasize
in this connection that the only fitting involved in our
approach is in the QCD-independent global fit to the data
on F�p

2 ; we do not need to solve the complete set of

evolution equations and then attempt to fit the data using
the many input parameters typically introduced in the
parametrization of initial parton distributions.

Our conclusion on the inconsistency of LO evolution is
not surprising. Next-to-leading-order effects on the evolu-
tion are known to be large. However, our results give a
direct demonstration of the necessity of going beyond
LO independent of the substantial complications that a
NLO analysis entails.

In the Appendix, we present an accurate alternative
method of testing LO evolution based on the exact LO
evolution equation for F�p

2 ðx;Q2Þ, and an approximate

evolution equation for Gðx;Q2Þ. Its advantage is that the
input necessary to test the assumption of LO evolution can
be obtained directly from the measured F�p

2 ðx;Q2Þ. The
application of this method to the HERA data leads to the
same conclusion as stated above: the assumption of LO
evolution is inconsistent with HERA data.

II. PRELIMINARIES

A. Solution of the coupled evolution
equations for Fs and G

In the present paper, we use the method developed in
detail in [1,2] to solve the coupled DGLAP evolution
equations for Fs and G. We will not give the details here,
but note that our method is based on Laplace transforms.
We first rewrite the evolution equations in terms of
the variables v ¼ lnð1=xÞ and Q2 instead of x and Q2.
The integral coupling terms in the equations then reduce
to a form that involves convolutions in v, and the equations
can be converted by Laplace transformation to factored
homogeneous first-order differential equations in Q2 and
a Laplace variable s, and solved directly.

Using the notation F̂sðv;Q2Þ�Fsðe�v;Q2Þ, Ĝðv;Q2Þ�
Gðe�v;Q2Þ for the distributions written in terms of v and
Q2, and introducing the Laplace transforms

fsðs; Q2Þ � L½F̂sðv;Q2Þ; s�;
gðs; Q2Þ � L½Ĝðv;Q2Þ; s�;

(1)

we find that the Laplace-space distributions generated
by evolution from Q2

0 to Q2 can be expressed in terms

of the initial distributions fs0ðsÞ � fsðs;Q2
0Þ and g0ðsÞ �

gðs;Q2
0Þ as
fsðs; Q2Þ ¼ kffðs; �Þfs0ðsÞ þ kfgðs; �Þg0ðsÞ; (2)

gðs;Q2Þ ¼ kgfðs; �Þfs0ðsÞ þ kggðs; �Þg0ðsÞ: (3)

The kernels kðs; �Þ in Eqs. (2) and (3) are given explicitly in
[1,2]. They depend onQ2 andQ2

0 only through the variable

�ðQ2; Q2
0Þ ¼

1

4�

Z Q2

Q2
0

�sðQ02ÞdðlnQ02Þ; (4)

which vanishes for Q2 ¼ Q2
0, with kffðs;0Þ¼kggðs;0Þ¼1

and kfgðs; 0Þ ¼ kgfðs; 0Þ ¼ 0. The kernels also depend on

the number nf of active quarks.

If we have parametrized the initial distributions accu-
rately analytically, and Laplace transformed the results to
obtain fs0ðsÞ and g0ðsÞ, we can calculate the inverse
Laplace transforms of fsðs; Q2Þ and gðs; Q2Þ directly to

obtain the evolved distributions F̂sðv;Q2Þ and Ĝðv;Q2Þ,
with

F̂ sðv;Q2Þ¼L�1f½kffðs;�Þfs0ðsÞ;v�þ½kfgðs;�Þg0ðsÞ;v�g;
(5)

Ĝðv;Q2Þ¼L�1f½kgfðs;�Þfs0ðsÞ;v�þ½kggðs;�Þg0ðsÞ;v�g:
(6)

Alternatively, using the convolution theorem to write
the transforms of the products on the right-hand sides as
convolutions, and using the fact that the inverse transforms
of fs0ðsÞ and g0ðsÞ are the initial v-space distributions
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F̂s0ðvÞ ¼ F̂sðv;Q2
0Þ, Ĝ0ðvÞ ¼ Ĝðv;Q2

0Þ, we can write the

solutions in the more intuitive form

F̂ sðv;Q2Þ¼
Z v

0
KFFðv�w;�ðQ2;Q2

0ÞÞF̂s0ðwÞdw

þ
Z v

0
KFGðv�w;�ðQ2;Q2

0ÞÞĜ0ðwÞdw; (7)

Ĝðv;Q2Þ¼
Z v

0
KGFðv�w;�ðQ2;Q2

0ÞÞF̂s0ðwÞdw

þ
Z v

0
KGGðv�w;�ðQ2;Q2

0ÞÞĜ0ðwÞdw; (8)

where the v-space kernels KFF, KFG, KGF and KGG, given
by the inverse Laplace transforms of the corresponding k0s,
describe the smearing and growth of the original distribu-

tions F̂sðv;Q2
0Þ and Ĝðv;Q2

0Þ through QCD radiation and

splitting processes.
The inverse Laplace transforms needed to implement

Eqs. (5) and (6) can be calculated efficiently using the very
accurate and extremely fast algorithms discussed in [8,9];
these were used in the calculations reported here, and
the results then converted to distributions in x and Q2.
The numerical techniques needed are discussed in detail
in the Appendix in [1]. These allow the fast solution of the
complete set of DGLAP evolution equations on a standard
desktop or laptop computer. The kernel technique will be
discussed elsewhere.

The one-step inversion in Eqs. (5) and (6) is particularly
useful in the case of devolution from large to small Q2:
the variable � is then negative, the integrals that defineKFF

and KGG do not converge as ordinary integrals, and those
kernels must be defined as generalized functions. This
problem does not appear with the forms in Eqs. (5) and

(6) provided F̂sðv;Q2Þ and Ĝðv;Q2Þ vanish sufficiently
rapidly for v ! 0 that the products in Eqs. (2) and (3)
vanish as a power of 1=s for s ! 1. These conditions are
satisfied in practice.

The evolved F̂sðv;Q2Þ and Ĝðv;Q2Þmust be continuous
at quark thresholds where nf changes. We treat the thresh-

olds inQ2 as in [16–18]. In the course of the evolution from
the initial Q2

0 to a larger final virtuality, Q2 may cross a

threshold at Q2 ¼ M2
i , where quark i becomes active,

and the number nf of active quarks increases by 1. This

changes nf-dependent coefficients in the evolution equa-

tions. However, the continuity of F̂sðv;Q2Þ and Ĝðv;Q2Þ
as functions of Q2 is guaranteed if we evolve first from Q2

0

to M2
i , take the results at Q2 ¼ M2

i as new starting distri-
butions, and then continue the evolution from M2

i to Q2

with nf ! nf þ 1. We otherwise neglect mass effects on

the evolution. The same remarks apply to the case of
devolution from Q2

0 to a smaller Q2, with nf then decreas-

ing by 1 at each transition.
We have checked that our methods accurately reproduce

the LO results of CTEQ6L [16] for the evolution of Fs

and G when we use starting distributions taken from their
published results. The errors in the evolved distributions
are & 0:05% for CTEQ6L, as discussed in [1]. Similarly,
we reproduce the results of MSTW2008LO [17] for the
evolved Fs and G to & 0:1� 0:5% [1].
The solution of the nonsinglet evolution equations for

quark distributions such as xq�i ðx;Q2Þ ¼ x½qiðx;Q2Þ �
�qiðx;Q2Þ� is simpler because of the absence of any coupling
to the gluon distribution. The results in LOhave the form [2]

F̂ nsðv;Q2Þ ¼ L�1½knsðs; �Þfns;0ðsÞ;v�; (9)

where knsðs; �Þ is the common LO nonsinglet evolution

kernel and fns;0 ¼ L½F̂nsðv;Q2
0Þ; s�.

We have discussed the generalization of these results to
next-to-leading order in [2]. The decoupling of the evolu-
tion equations in that case requires a double Laplace trans-
form and is considerably more complicated in detail, but
can still be carried through analytically. We will not pursue
that here.

B. Determination of the initial distributions

In the following sections, we will apply our methods to
an analysis of the combined HERA data [13] on deep in-
elastic ep scattering. Those data determine the behavior of
F�p
2 ðx;Q2Þ very well for x & 0:1 for a wide range of Q2.

F�p
2 ðx;Q2Þ can therefore be taken as accurately known

throughout that region through a global fit to the HERA data.
Our objective is to check the consistency of LO QCD

evolution with the HERA data by starting at an initial Q2
0,

and evolving or devolving to the final values of Q2, where
we can compare the evolved F�p

2 ðx;Q2Þ directly to the

experimental results. To do this, we need to determine
the initial gluon distribution Gðx;Q2

0Þ, which is not mea-

sured directly, and the initial singlet distribution Fsðx;Q2
0Þ,

both over the entire range ðx; 1Þ, evolve or devolve the
distributions as discussed above, and then convert the
resulting Fsðx;Q2Þ back to F�p

2 ðx;Q2Þ. We will discuss
the elements of this procedure in the following subsections.

1. Determination of G0ðxÞ ¼ Gðx;Q2
0Þ

The LO evolution equation for F�p
2 ðx;Q2Þ, easily

constructed from the evolution equations for the individual
quark distributions and the relation F�p

2 ðx;Q2Þ ¼P
ie

2
i xðqi þ �qiÞðx;Q2Þ, is

4�

�sðQ2Þ
@F�p

2 ðx;Q2Þ
@ lnðQ2Þ

¼ 4F�p
2 ðx;Q2Þ � 16

3

Z 1

x

@F�p
2

@z
ðz;Q2Þ

� ln

�
z� x

z

�
dz� 8

3
x
Z 1

x
F�p
2 ðz;Q2Þ

�
1þ x

z

�
dz

z2

þX
i

e2i

Z 1

x
Gðz;Q2Þ

�
1� 2x

z
þ 2x2

z2

�
dz

z2
: (10)
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We have shown elsewhere [14,15] that, assuming that a
LO treatment of the DGLAP evolution of F�p

2 is consistent,
we can invert Eq. (10) to obtainGðx;Q2Þ at any given x,Q2

directly from a global fit to F�p
2 ðx;Q2Þ which includes the

interval ðx; 1Þ and a range of Q2 around the desired value.
In particular,

Gðx;Q2Þ ¼ 3FF ðx;Q2Þ � x
@FF ðx;Q2Þ

@x

�
Z 1

x
FF ðz; Q2Þ

�
x

z

�
3=2

�
6ffiffiffi
7

p sin

� ffiffiffi
7

p
2

ln
z

x

�

þ 2 cos

� ffiffiffi
7

p
2

ln
z

x

��
dz

z
; (11)

where FF ðx; Q2Þ is the function
FF ðx;Q2Þ

¼
�X

i

e2i

��1
�

4�

�sðQ2Þ
@F�p

2 ðx;Q2Þ
@ lnðQ2Þ � 4Fp

2 ðx;Q2Þ

þ 16

3

Z 1

x

@F�p
2

@z
ðz;Q2Þ ln

�
z� x

z

�
dz

þ 8

3
x
Z 1

x
F�p
2 ðz; Q2Þ

�
1þ x

z

�
dz

z2

�
(12)

obtained by combining all the F�p
2 -dependent terms in

Eq. (10) and dividing the result by
P

ie
2
i .

Since FF is determined by F�p
2 , Eq. (11) determines G

directly from experiment provided the assumption of
LO evolution is valid. We have found that the result for
Gðx;Q2Þ at small x is fairly insensitive to the behavior of
F�p
2 ðx;Q2Þ at large x, so Gðx;Q2Þ is determined at small x

primarily by the HERA data. However, to get precise
results, we need a global fit to F�p

2 that extends to x ¼ 1.
We will discuss that extension below.

If LO evolution is consistent with the HERA data, the
distributionGðx;Q2

0Þ determined by Eq. (11) should satisfy

the gluon evolution equation. We observed very early in
our analysis that this condition was not satisfied. In par-
ticular, the derivative @Gðx;Q2Þ=@ lnQ2 was not equal to
the sum of terms in the gluon evolution equation that
involve weighted integrals of G and Fs. While this indi-
cated that the assumption of LO evolution was not consis-
tent, the strength of this conclusion was limited by the
somewhat limited accuracy with which the derivative of G
could be determined. We have therefore adopted the alter-
native approach that we pursue here, and limit our consis-
tency tests to the evolution of F�p

2 , where direct

comparisons with the HERA data are possible.

2. Determination of the singlet distribution Fsðx;Q2Þ
In the LO CTEQ6L [16] and MSTW2008LO [17] analy-

ses which we will use for comparisons, the singlet quark
distribution function Fsðx; Q2Þ was determined through a
simultaneous fit to all the quark distributions and the gluon

distribution. Those analyses used earlier variations of the
HERA data [10–12] in combination with other data on
deep inelastic electron and neutrino scattering that are
concentrated at higher x. Because of apparent incompati-
bilities among various data sets discussed in [16,17], and
the high accuracy of the combined HERA data at small x,
we will adopt instead a hybrid approach in which we write
Fsðx;Q2Þ in terms of F�p

2 ðx; Q2Þ and relatively small non-

singlet quark distributions. We will then take F�p
2 ðx;Q2Þ

from a global fit to the combined HERA data, and will use
the nonsinglet contributions obtained in the CTEQ6L and
MSTW2008LO analyses to construct Fsðx; Q2Þ. Those
analyses differ in their treatments of �s in NLO and LO,
respectively.
Introducing the nonsinglet quark distributions [19]

Vi ¼ xðqi � �qiÞ; i ¼ 1; 2; 3; (13)

T3 ¼ xðuþ �u� d� �dÞ; (14)

T8 ¼ xðuþ �uþ dþ �d� 2s� 2�sÞ; (15)

T15 ¼ xðuþ �uþ dþ �dþ sþ �s� 3c� 3�cÞ; (16)

T24¼xðuþ �uþdþ �dþsþ �sþcþ �c�4b�4 �bÞ; (17)

we can write Fsðx;Q2Þ for different numbers nf of active

quarks as

Fsðx; Q2Þ ¼ 9
2F

�p
2 ðx;Q2Þ � 3

4T3ðx;Q2Þ � 1
4T8ðx;Q2Þ;

nf ¼ 3; (18)

Fsðx; Q2Þ ¼ 18
5F

�p
2 ðx;Q2Þ � 3

5T3ðx;Q2Þ � 1
5T8ðx;Q2Þ

þ 1
5T15ðx;Q2Þ; nf ¼ 4; (19)

Fsðx;Q2Þ¼ 45
11F

�p
2 ðx;Q2Þ� 15

22T3ðx;Q2Þ� 5
22T8ðx;Q2Þ

þ 5
22T15ðx;Q2Þ� 3

22T24ðx;Q2Þ; nf¼5: (20)

Our procedure is now the following. We start with
our global fit to F�p

2 ðx;Q2Þ and pick an initial value of
Q2 in a region where F�p

2 is well determined, here Q2
0 ¼

4:5 GeV2, a value between the charm and bottom thresh-
olds. We start by using the nonsinglet distributions T3, T8,
and T15 from the CTEQ6L (or MSTW2008LO) fit to the
older HERA and high-x data to get an initial result for
the singlet distribution Fsðx;Q2

0Þ from F�p
2 ðx;Q2Þ using

Eq. (19). We also determine Gðx;Q2
0Þ from F�p

2 ðx;Q2
0Þ

using Eq. (11).
We next devolve Fsðx;Q2Þ to the charm quark threshold

at Q2 ¼ M2
c . The c and �c distributions should vanish at

Q2 ¼ M2
c , with T15ðx;M2

cÞ ¼ Fsðx;M2
cÞ for nf ¼ 3. How-

ever, because we have started with somewhat different data
on F�p

2 ðx;Q2Þ than used in earlier analyses, this threshold
condition will not be satisfied exactly. We therefore use the
continuity of Fsðx;Q2Þ at the nf ¼ 3, nf ¼ 4 transition, set
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T15ðx;M2
cÞ equal to the devolved Fsðx;M2

cÞ for nf ¼ 4, and

evolve T15 back to Q2
0 using the LO nonsinglet procedure

discussed in [2] to obtain a modified T15ðx;Q2
0Þ. This is

used to get a modified Fsðx;Q2
0Þ from F�p

2 ðx; Q2
0Þ, and the

process is repeated if necessary until the result for T15 does
not change significantly. The changes in Fs introduced by
this procedure are small except near the charm threshold.
The Fsðx;Q2

0Þ obtained from F�p
2 ðx;Q2

0Þ using the modified

T15 and the CTEQ6L (or MSTW2008LO) distributions
T3ðx;Q2

0Þ and T8ðx;Q2
0Þ gives the initial singlet distribution

for use in our subsequent calculations.
The situation with respect to T24ðx; Q2Þ is simpler.

This distribution comes in at the b �b threshold, where
T24ðM2

bÞ ¼ Fsðx;M2
bÞ for nf ¼ 4. We therefore determine

the initial distribution T24ðx;M2
bÞ by evolving Fsðx;Q2Þ

from Q2
0 toM

2
b, and its extension to higherQ

2, by evolving

T24 from M2
b to Q2 using the results of [2] restricted to LO

for nonsinglet evolution.
Finally, the evolved or devolved F�p

2 ðx;Q2Þ is deter-
mined from evolved or devolved Fsðx;Q2Þ for a given nf
using the appropriate one of Eqs. (18)–(20). The corre-
sponding quark distributions can be obtained from
Fsðx;Q2Þ and the (modified) nonsinglet distributions, as
discussed later.

C. A global fit to the combined
HERA data for F�p

2 ðx;Q2Þ
The constructions above depend on our having a global

fit to the x and Q2 dependence of the structure function
F�p
2 ðx;Q2Þ. Berger, Block, and Tan [20] showed that ZEUS

data from HERA [10,11] could be parametrized accurately
as a function of x and Q2 for x � 0:1 by an expression of
the form

Fp
2 ðx;Q2Þ ¼ ð1� xÞ

�
FP

1� xP
þ A ln

xPð1� xÞ
xð1� xPÞ

þ Bln2
xPð1� xÞ
xð1� xPÞ

�
: (21)

We will use the same parametrization for the complete
HERA data sets as combined in [13].

In the expression in Eq. (21), xP specifies the location in
x of an approximate fixed point observed in the data where
curves of F�p

2 ðx;Q2Þ for different Q2 cross. At that point,

@F�p
2 ðxP;Q2Þ=@ lnQ2 � 0 for all Q2; FP ¼ F�p

2 ðxP;Q2Þ
is the common value of F�p

2 . The Q2 dependence of
F�p
2 ðx;Q2Þ is given in those fits by

AðQ2Þ ¼ a0 þ a1 lnQ
2 þ a2ln

2Q2;

BðQ2Þ ¼ b0 þ b1 lnQ
2 þ b2ln

2Q2:
(22)

We used this parametrization to fit the combined HERA
data for Q2 * 1 GeV2. These data included 34 different
Q2 values with x � 0:11, specifically, Q2 ¼ 0:85, 1.2, 1.5,
2.0, 2.7, 3.5, 4.5, 6.5, 8.5, 10, 12, 15, 18, 22, 27, 35, 45, 60,

70, 90, 120, 150, 200, 250, 300, 400, 500, 650, 800, 1000,
1200, 1500, 2000, and 3000 GeV2. The scaling point value
xP ¼ 0:11 was taken to be fixed.
The data set has a total of 356 datum points. The use of

the sieve algorithm to sift the data to eliminate outliers as
described in [21] eliminated 14 points whose contribution
to the �2 of the fit was 125.0, roughly a quarter of the total.
The values of the 7 fit parameters, along with their statis-
tical errors, are given in Table I. The fit using the sieve
algorithm gives a minimum with �2

min ¼ 352:8. This must

be corrected by the sieve factor R ¼ 1:109 to account for
the change in normalization of the �2 function [21]. This
gives a corrected value R� �2

min ¼ 391:4, so a corrected

�2 per degree of freedom of 1.17, a reasonable result for
this much data.
For the 296 points with Q2 � 2:7 GeV2 that we will

consider later, the fit is excellent, with �2 ¼ 295. For
comparison, the CTEQ6L [16] and MSTW2008LO [17]
fits, made using the separate H1 [12] and ZEUS [10,11]
data rather than the combined results, give �2 of 3339 and
1329, respectively, with uncorrected values of �2=d:o:f: of
11.3 and 4.5.
Curves of the fitted F�p

2 ðx;Q2Þ plotted as a function x
are compared with the data in Fig. 1 for 24 values of Q2.
The quality of the fit is evident.
We emphasize that our fitting procedure is quite differ-

ent from that used in other analyses. Our fit is directly to
F�p
2 ðx;Q2Þ, and its adequacy can be tested at that level.

An investigation of possible alternative models with more
parameters gave essentially equivalent results in the ex-
perimental region. We use the model in Eq. (21) and (22)
because of its simplicity and its reasonable behavior for
small x [20], and more importantly, for its excellent �2 fit
with a minimum number of parameters. With this ap-
proach, our fit to the HERA data is independent of any
assumptions about QCD evolution, and will allow us later
to obtain a direct test of the validity of purely LO evolution.
In contrast, the usual methods, such as those in [16–18],
start by assuming the validity of QCD evolution to some

TABLE I. Results of a 7-parameter fit to the HERA combined
data for F�p

2 ðx;Q2Þ for 0:85 � Q2 � 3000 GeV2.

Parameters Values

a0 �8:471� 10�2 	 2:62� 10�3

a1 4:190� 10�2 	 1:56� 10�3

a2 �3:976� 10�3 	 2:13� 10�4

b0 1:292� 10�2 	 3:62� 10�4

b1 2:473� 10�4 	 2:46� 10�4

b2 1:642� 10�3 	 5:52� 10�5

FP 0:413	 0:003
�2
min 352.8

R� �2
min 391.4

d.o.f. 335

R� �2
min=d:o:f: 1.17
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order in the strong coupling �s, calculate F
�p
2 from a com-

plete set of parton distributions evolved from some initial
Q2

0, and then attempt to fit the data by adjusting the (many)

parameters in the initial parton distributions.

D. Extension of the fit to high x

Our fit to the data on F�p
2 ðx;Q2Þ is so far restricted to the

region x � xP; we have not attempted to fit the DIS data for
x > xP from other experiments. Since the expressions for
the evolved Fsðx;Q2Þ and Gðx;Q2Þ in terms of their initial
distributions at Q2

0 given in Eqs. (7) and (8), and that for G
in terms of F�p

2 given in Eq. (11), involve integrals that

extend to x ¼ 1, we need also to extend the parametriza-
tion of F�p

2 ðx;Q2Þ to x ¼ 1. Wewill again use the results of

earlier analyses, this time less directly, in making the
extension.

We have found that the CTEQ6L and MSTW2008LO
versions of F�p

2 ðx;Q2
0Þ for Q2

0 ¼ 4:5 GeV2 are well ap-

proximated at large x by expressions of the form

F�p
2 ðx;Q2Þ ¼ F0

�
x

x0

�
�ðQ2Þ� 1� x

1� x0

�
n 1þ axþ bx2

1þ ax0 þ bx20
;

1 � x � x0: (23)

We will use this form to extend our fit to F�p
2 ðx;Q2Þ to the

high-x region, where the HERA data are restricted to
values of Q2 much larger than our chosen Q2

0, and

F�p
2 ðx;Q2

0Þ is not well determined. In making this exten-

sion, we must choose the starting x0 sufficiently small that
we avoid problems with our lack of precise knowledge

of the x and Q2 dependence of F�p
2 ðx;Q2Þ for x near the

fixed point in our fit. We have used x0 ¼ 0:03 in the pre-
sent calculations. With this choice, the CTEQ6L result for
F�p
2 is well fitted with a ¼ 6:83, b ¼ 13:0, and n ¼ 3:75 in

Eq. (23). For MSTW2008LO, a ¼ 4:83, b ¼ 13:7, and
n ¼ 3:66.
We match the expression in Eq. (23) in value and slope at

x0 ¼ 0:03 to the expression in Eq. (21) which describes the
HERA data by adjusting the parameters F0 and �, retain-
ing the initial values of a, b, and n. The changes necessary
in � are fairly small, with increases of 4.6% and 4.0% in
magnitude from the CTEQ6L and MSTW2008LO values,
respectively. The changes in the normalizations are some-
what larger, 11.8% and 8.7%. To a good approximation, the
extended distributions in the region x > 0:03 are simply
scalings of the CTEQ6L and MSTW2008LO results for
F�p
2 ðx;Q2

0Þ, retaining the shapes of those distributions. Our
final results at small x are insensitive to the details of these
extensions.
The determination of the initial gluon distribution at Q2

0

involves further complications. As discussed in Sec. II B 1,
Gðx;Q2

0Þ can be determined directly from F�p
2 ðx;Q2Þ. It

can be shown from Eqs. (11) and (12) that Gðx;Q2
0Þ is ac-

tually determined mainly by F�p
2 ðx;Q2

0Þ and its derivative

@F�p
2 ðx;Q2Þ=@lnQ2 at Q2

0; the integral terms in Eq. (12)

are small. The need to know @F�p
2 ðx;Q2Þ=@ lnQ2 introdu-

ces some complication because the fixed point imposed in
Eq. (21) reflects the observedQ2 dependence ofF�p

2 ðx;Q2Þ
for x near xP ¼ 0:11 only qualitatively, and not precisely.
The HERA data near that point are restricted to Q2 
 Q2

0,

and do not determine @F�p
2 ðx;Q2Þ=@ lnQ2 in the region

- -

- -

FIG. 1 (color online). Comparison of our fit to the proton structure function F�p
2 ðx;Q2Þ with the combined HERA data [13], plotted

as functions of the Bjorken variable x, with Q2 increasing from the bottom to the top curves in each panel: (a) Q2 ¼ 3:5, 6.5, 15, 27,
120, 650 GeV2; (b)Q2 ¼ 4:5, 10, 22, 45, 150, 800 GeV2; (c)Q2 ¼ 0:85, 2.7, 12, 35, 90, 400 GeV2; and (d)Q2 ¼ 1:5, 8.5, 18, 70, 250,
1200 GeV2. The fixed point in the fit was taken as xP ¼ 0:11.
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Q2 � Q2
0 where it is needed. The derivative at Q2

0 is, in

fact, only determined well by the fit to the HERA data for
x <<xP and Q2 � Q2

0. In particular, the fit to F�p
2 and its

extension to high x do not give reliable results on its Q2

dependence for x 
 0:03. As a result, the expression in
Eq. (11) cannot be used to determine G in that region.

We therefore adopt an approach similar to that used
with F�p

2 . We choose a small value of x0, x0 ¼ 0:03 where
F�p
2 and its Q2 dependence are well determined, and

determine Gðx;Q2
0Þ for x � x0 from the fit to F�p

2 ðx; Q2Þ
using Eq. (11). The small uncertainties in the extensions
of F�p

2 to large x affect only the integral terms in Eqs. (11)

and (12), and do not affect the result for G significantly in
the region of concern, x � 0:03.

To extend the result forG to higher x, we fit the shapes of
the gluon distributions Gðx;Q2

0Þ given by CTEQ6L and

MSTW2008LO for x > x0 ¼ 0:03 using the same func-
tional form as in Eq. (23). We use the results to extendG to
x > x0 by adjusting the analogs of the parameters� and F0

so that the extensions match the G derived for x < x0 in
magnitude and slope at x ¼ x0. The result is a gluon
distribution Gðx;Q2

0Þ that retains the basic shape of the

CTEQ6L or MSTW2008LO gluon distribution for x > x0,
merges smoothly into the form derived from F�p

2 for

x � x0, and, in contrast to other analyses, involves no
a priori assumptions about the form of G in the latter
region.

III. APPLICATIONS TO THE HERA
DATA ON F�p

2 ðx;Q2Þ
In this section, we summarize the results we obtained by

applying our methods to an analysis of the HERA data on
deep inelastic electron-proton scattering as combined by
the H1 and ZEUS experimental groups [13].

We first examine the consistency of our results for
F�p
2 ðx;Q2Þ, Gðx;Q2Þ, and the quark distributions with

other LO results, represented here by CTEQ6L and
MSTW2008LO. We find qualitative, but not quantitative
agreement, with our evolved F�p

2 ðx;Q2Þ agreeing much

better with the combined HERA data, and our Gðx; Q2Þ
generally increasing much less rapidly at small x than the
distributions found elsewhere. These changes will affect
the results of cross section and other calculations per-
formed using LO quark and gluon distributions.

We then turn to a central question, the consistency of a
LO treatment of the QCD evolution, and examine the
consistency of the structure function F�p

2 ðx;Q2Þ deter-

mined by LO evolution with the HERA data. We conclude
on the basis of systematic, Q2-dependent discrepancies
that LO evolution cannot give an adequate description of
those data. At least NLO corrections are needed. We
emphasize that this conclusion is independent of any cal-
culation of the NLO corrections, and follows directly from
the Q2 dependence of the data.

A. Basic results and comparisons with other analyses

1. Starting distributions and sum-rule tests

Our results are based on the smooth global fit to the
measured F�p

2 ðx;Q2Þ discussed in Sec. II C. The fit was

very good, as seen in Fig. 1, and determined our starting
distributions at Q2

0 ¼ 4:5 GeV2, a value chosen in the

region of dense data where the x and Q2 dependence of
F�p
2 are tightly constrained.

F�p
2 ðx;Q2

0Þ is fixed by the fit. We determined the initial

Gðx;Q2
0Þ directly from the fit to F�p

2 ðx;Q2Þ using Eq. (11)

and the extensions to high x discussed in Sec. II D. The
uncertainty in our derived G at small x is determined
mainly by @F�p

2 ðx;Q2Þ=@ lnQ2, and is quite small [14].

We compare these initial distributions with those that
resulted from the CTEQ6L and MSTW2008LO analyses
in Fig. 2. There are clearly significant differences in the
magnitudes and x dependence of distributions among the
sets.
We note first in Fig. 2(a) that the difference between

the extensions of F�p
2 ðx;Q2

0Þ for x > 0:03 we obtain for

CTEQ6L-like and MSTW2008LO-like shapes is very
small. These differences lead to negligible effects in the
evolution of F�p

2 and G at small x. The differences evident
between our curve for F�p

2 and those shown for CTEQ

and MSTW in Fig. 2(a) result from their failure to fit this
quantity accurately, presumably attributable in part to their
use of the older H1 and ZEUS versions of the data.
The differences in our curves for G in Fig. 2(b) from

those of the CTEQ6L and MSTW2008LO analyses result
from the difference between their F�p

2 and ours. The

marked difference between the curves shown for our
CTEQ-like and MSTW-like gluon distributions results
from the different treatments of �s used by the two groups,
which we follow here. CTEQ6L treats �s to NLO, with

�sðQ2Þ¼ 4�

�0 lnðQ2=�2Þ
�
1�2�1

�2
0

ln½lnðQ2=�2Þ�
lnðQ2=�2Þ

�
; (24)

�0ðnfÞ ¼ 11� 2
3nf; �1ðnfÞ ¼ 51� 19

3 nf: (25)

The value of �s is fixed to the measured value at the
Z-boson mass, �sðM2

ZÞ ¼ 0:118 for nf ¼ 5, and the value

of�ðnfÞ is then adjusted at the b and c thresholds where nf
decreases by 1 to assure continuity.
MSTW2008LO, in contrast, uses only the first, LO, term

in Eq. (25) for presumed consistency in a LO analysis,
and treats the value of �s at Q

2 ¼ 1 GeV2 as a parameter
in their fitting procedure. This leads to a value �sðM2

ZÞ ¼
0:139. The two versions of �s do not agree well, with the
MSTW2008LO version being considerable larger at allQ2.
We note that the Q2 dependence of �s is actually well
determined by experiment [22], with the results well de-
scribed by the NLO expression [23] for�s fixed to�sðM2

ZÞ.
Since F�p

2 is also known, the CTEQ-like determination
of Gðx;Q2

0Þ is based entirely on measured quantities, with
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the assumption that a LO analysis of the evolution is ade-
quate. Our MSTW-like approach uses the MSTW2008LO
version of �s, but at the expense of poor agreement with
the measured Q2 dependence of �s.

Figures 2(c) and 2(d) show the extensions of the curves
in 2(a) and 2(b) to small x. We emphasize that with the
assumption that the LO evolution equation for F�p

2 is

satisfied, a necessary condition for a consistent LO analy-
sis, our initial gluon distribution G at Q2

0 ¼ 4:5 GeV2

follows directly from our global fit to the x and Q2 depen-
dence of the HERA data on F�p

2 ðx;Q2Þ and its extension to
large x. In this sense, F�p

2 ðx;Q2
0Þ, Gðx;Q2

0Þ, and up to small

corrections, Fsðx;Q2
0Þ are all determined by experiment for

x * 10�4 where there are substantial HERA data, and
determined to lesser accuracy down to x� 10�5 where
the data at presumably perturbative values of Q2 run out.
It is not necessary to determine these quantities indirectly
through initial parametrizations of the complete set of
quark distributions and G, with the many parameters de-
termined only in a fit to the data.

We conclude that the strong divergences of F�p
2 and G

evident in the MSTW2008LO curves in Figs. 2(c) and 2(d)

are not realistic in a LO analysis. The lesser differ-
ences between the CTEQ6L results and ours in Figs. 2(c)
and 2(d) are mainly in the region x < 10�5 where some
extrapolation from the data is necessary, so it is less
definitive.
Following the procedures discussed in Sec. II B 2, we

used the fit to F�p
2 ðx;Q2Þ and the results for the nonsinglet

quark distributions Vi, T3, T8, and the initial T15 given by
CTEQ6L or MSTW2008LO, to determine the correspond-
ing LO result for Fsðx;Q2

0Þ.
As a test of our procedures, we evaluated the QCD

momentum sum rule, which should give

Z 1

0
dx½Fsðx;Q2

0Þ þGðx;Q2
0Þ� ¼ 1: (26)

We find that it is satisfied to �0:1% (1.2%) at Q2 ¼
4:5 GeV2 for the Fs and G derived from the extended fit
to F�p

2 using the nonsinglet distributions from CTEQ6L

(MSTW2008LO) and the method of Sec. II B 2. Because of
the structure of the splitting functions, the sum rule for the
evolved distributions is automatically satisfied to similar
accuracy at all Q2.
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FIG. 2 (color online). Comparison of our starting distributions F�p
2 ðx; Q2

0Þ and Gðx;Q2
0Þ with those of CTEQ6L and MSTW2008LO

at Q2
0 ¼ 4:5 GeV2. (a) F�p

2 from our fit to the HERA data, extended to x > 0:03 using the method described in the text based on the

CTEQ-like (red dashed lines) or MSTW-like (blue dotted lines) shape of F�p
2 at larger x. The original CTEQ6L (red solid lines) and

MSTW2008LO (blue dot-dashed lines) versions of F�p
2 are shown for comparison. (b) The Gðx;Q2

0Þ derived from F�p
2 using the

condition that F�p
2 satisfy its DGLAP evolution equation in LO, using the NLO (red dashed lines) or LO (blue short dashed lines)

versions of �s, compared to the corresponding CTEQ6L (red solid lines) and MSTW2008LO (blue dot-dashed lines) distributions. (c)
Extension of (a) to small x. The CTEQ-like and MSTW-like shapes for F�p

2 for x > 0:03 cannot be distinguished on the scale of the

figure, and only the former is shown. (d) Extension of (b) to small x.

BLOCK et al. PHYSICAL REVIEW D 84, 094010 (2011)

094010-8



This result may seem startling: the CTEQ6L and
MSTW2008LO results for Fsðx;Q2

0Þ and Gðx;Q2
0Þ also

satisfy the sum rule, used in those fits as a constraint, but
our global fit to the combined HERA data at Q2

0 lies

considerably above the F�p
2 ðx; Q2

0Þ calculated from their

quark distributions as seen in Fig. 2, with similar differ-
ences in Fs. However, the gluon distribution Gðx;Q2

0Þ,
calculated from the requirement that F�p

2 satisfy its LO
DGLAP evolution equation exactly, is smaller than the G
obtained in other analyses in the region of x that contrib-
utes significantly to the sum rule, as seen in Fig. 2.

The two effects compensate for each other numerically.
The contributions to the momentum sum rule from Fs and
G at Q2

0 ¼ 4:5 GeV2 are 0.550 (0.622) and 0.452 (0.377)

for the CTEQ6L (CTEQ6L-like) distributions, with the
calculated sum rule equal to 1.002 (0.999). The results
for the MSTW2008LO (MSTW-like) distributions are
similar, with contributions to the sum rule from Fs and G
of 0.565 (0.637) and 0.434 (0.373) at Q2

0 ¼ 4:5 GeV2, for

total of 0.999 (1.010). We have not used the sum rule as a
constraint, as is done in other analyses. Its satisfaction
follows from the data and our determination of G in terms
of F�p

2 . We conclude that our extensions of F�p
2 and G to

the large-x region cause no problems.
The quark number sum rules

Z 1

0
dxðu� �uÞðx;Q2

0Þ¼2;
Z 1

0
dxðd� �dÞðx;Q2

0Þ¼1; (27)

are different. Because we set the nonsinglet distributions
u� �u and d� �d equal to the corresponding CTEQ6L or
MSTW2008LO distributions and do not change them in
our hybrid analysis, the quark number sum rules are sat-
isfied automatically to the extent that they were satisfied by
the CTEQ6L and MSTW distributions, namely, to �0:4%
(� 0:5%). The changes introduced in the separate u and �u,
and d and �d distributions by the changes in F�p

2 and Fs, are

confined to the singlet combinations uþ �u and dþ �d, and
cancel in the differences u� �u and d� �d.
The corresponding sum rules for s� �s, c� �c, and b� �b

give zero in the CTEQ6L-based analysis since those quarks
are produced only in pairs through gluon splitting. For the
MSTW2008LO-based input, s � �s initially. The very
small difference is not changed in our analysis because
we keep the nonsinglet distributions fixed, and the strange-
quark sum rule remains constant at� 0:0028. The c, �c and
b, �b quarks are produced only in pairs, and the quark sum
rules give zero.

2. Leading-order gluon and quark distributions

We evolved the starting distributions for Fs and G from
Q2

0 to lower and higher values of Q2 using the Laplace

transform methods sketched in Sec. II A, using the numeri-
cal techniques discussed in the Appendix to [9]. We com-
pare the evolved gluon distributions Gðx;Q2Þ to those of
CTEQ6L [16] and MSTW2008LO [17] in Fig. 3.
It is evident from the figure that our gluon distribu-

tions are somewhat smaller than those of CTEQ6L and
MSTW2008LO, quite significantly so for the latter at small
values of x where MSTW uses a strongly power-law di-
vergent parametrization with their initial Gðx;Q2

0Þ. Our
CTEQ- and MSTW-based results also differ significantly,
the result of the differing initial distributions seen in
Fig. 2 and the different treatments of �s as NLO and LO,
respectively.
It is straightforward to combine our results for Fsðx;Q2Þ

with the original nonsinglet distributions Vi, T3, T8, and the
modified T15 and T24, Eqs. (13)–(17), to obtain the quark
distributions that lead to these results. The results differ
from the individual quark distributions given by CTEQ6L
and MSTW2008LO because of the changes in the HERA
data, and, more importantly, because of our treatment of
the starting distributions for the evolution of Fsðx;Q2Þ and
Gðx;Q2Þ.
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FIG. 3 (color online). Comparison of our evolved gluon distributions Gðx;Q2Þ with the CTEQ6L and MSTW2008LO distributions.
(a) Our G (dashed curves) at Q2 ¼ 10 (black), 35 (red), and 120 (blue) GeV2, bottom to top, compared to the CTEQ6L G (solid
curves). (b) Our G (dotted curves) at Q2 ¼ 10 (black), 35 (red), and 120 (blue) GeV2, bottom to top, compared to the MSTW2008LO
G (solid curves).
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Our results for the quark distributions are shown in
Figs. 4 and 5 for the treatments based on the CTEQ6L
and MSTW2008LO nonsinglet terms, respectively. The
differences from the input distributions are not large in
the region of the HERA data, but some changes are evident
at higher values of x, and, especially for MSTW, at very
small x. We attribute the differences to the parametriza-
tions of the quark and gluon distributions used by those
authors, which have a strong power-law dependence on
1=x at small x, with the many parameters adjusted to fit the
data used.

Our method is based instead on our overall fit to
F�p
2 ðx;Q2Þ, and the information that can be derived from

it. It uses the earlier nonsinglet distributions only in calcu-
lating small terms involved in the transitions between F�p

2

and Fs. The results on the fit shown in Fig. 1 suggest that its
x and Q2 dependence are well determined for Q2 of a few
GeV2 for x > 10�5. This allows the reliable derivation of
the starting distributions needed in the solution of the LO
evolution equations in that region. In that sense, our results
are as reliable as allowed by the assumption of strict LO
evolution. They do not depend on choices of parametriza-
tions for initial quark and gluon distributions. The results
shown in Figs. 3–5 follow.

B. Check of the consistency of LO DGLAP
evolution with the HERA data

As a final application of our methods, we turn to the
question of the consistency of LO evolution with experi-
ment. We show that the structure functions F�p

2 ðx; Q2Þ
obtained by LO evolution from the initial distributions at
Q2

0 determined by the HERA data are not consistent with

the data at higher and lower values of Q2. A consistent
analysis must therefore include higher-order terms in �s in
the evolution equations, and distributions evolved out of
the experimental region using the LO DGLAP equations
cannot be used with confidence.
We plot the ratios ðF�p

2;evolved � F�p
2;HERAÞ=F�p

2;HERA for 20

values of Q2 where there are data in Figs. 6 and 7. Here
F�p
2;evolved is the distribution evolved (or devolved) from

Q2
0 ¼ 4:5 GeV2, and F�p

2;HERA is our fit to the HERA data.

We also show the ratios with F�p
2;HERA replaced in the

numerators by the actual data points.
We can see from the figures that the evolved distribu-

tions differ systematically from the fit and the data, falling
too low forQ2 >Q2

0 for x in the range�5� 10�4 � 10�1,

and too high for x & 5� 10�4. The discrepancies increase
systematically with increasingQ2, span about a 10% range
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FIG. 4 (color online). Plots of the quark distributions obtained by our method using the nonsinglet distributions from CTEQ6L [16],
shown for: (a) Q2 ¼ M2

c ¼ 1:69 GeV2; (b) Q2 ¼ 10 GeV2; (c) Q2 ¼ 35 GeV2; and (d) Q2 ¼ 120 GeV2. The solid lines give our
distributions. The dashed lines are the CTEQ6L distributions. The curves show xqðx;Q2Þ for, top to bottom in each panel at x � 0:1,
the u (red), �u (blue), d (black), �d (green), s ¼ �s (purple), c ¼ �c (orange), and b ¼ �b (brown) quarks.
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for 0:001 & x & 0:01, and have the same pattern for the
analyses based on the CTEQ6L and MSTW2008LO non-
singlet distributions. The datum points follow the curves,
as they should; the problem is not in the fit. The systematic
increase of the discrepancies with increasing Q2 indicates
that they are the result of incorrect evolution at LO, with
the evolved F�p

2 not growing sufficiently rapidly with Q2.

We conclude that LO DGLAP evolution of F�p
2 is incon-

sistent with the combined HERA data.
The systematic trends are evident quantitatively in

Table II. Using the 296 data points in our sample of the
combined HERA data for Q2 � 2:7 GeV2, we find a �2

(�2 per degree of freedom) of 295 (0.996) for our fit from
Sec. II C, 1480 (5.00) for the evolved F�p

2 that used the

CTEQ6L nonsinglet terms to convert between F�p
2 and Fs,

and 502 (1.70) for the evolved F�p
2 that used the nonsinglet

distributions of MSTW2008LO. Our direct fit to the
HERA data is quite good given the large amount of data,
with probability P ¼ 0:126 when �2 is corrected for the
sieve factor [21] R ¼ 1:109. The evolved distributions
have essentially zero probabilities of being correct
statistically.

The difference in the values of �2 for the CTEQ6L-
and MSTW2008LO-based treatments of the nonsinglet

terms is the result primarily of the different treatments of
�s in the two cases. The NLO treatment in CTEQ6L is
fixed to the value of �s at M2

Z, and agrees well with the
measured values of �s down to M2

�. In contrast, the value

of the LO version of �s at Q2 ¼ 1 GeV2 is used in
MSTW2008LO as a fitting parameter. The result is an �s

that is larger than the NLO version by about 40% at Q2 ¼
1 GeV2, and 18% at M2

Z, so it does not agree with the

measured values. This results in rather different starting
distributions atQ2

0 ¼ 4:5 GeV2 in the two cases, as seen in

Fig. 2, and to more rapid QCD evolution in the case of the
MSTW2008LO-based treatment. Although the resulting
�2 is reduced, the systematic problems with the evolved
F�p
2 remain, as seen in Fig. 7, and the result is still

unacceptable statistically.
This failure of LO evolution to give an accurate des-

cription of the separate H1 and ZEUS data has been noted
in [17,18], and no doubt elsewhere, in connection with
poor values of the �2 for F�p

2 obtained in LO in those

analyses, and the improvements afforded by a NLO treat-
ment of the parton distributions. The systematic nature of
the problem is somewhat obscured there by the way initial
conditions are imposed through many-parameter descrip-
tions of the complete set of parton distributions, and the
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FIG. 5 (color online). Plots of the quark distributions obtained by our method using the nonsinglet distributions fromMSTW2008LO
[17], shown for: (a)Q2 ¼ M2

c ¼ 1:96 GeV2; (b)Q2 ¼ 10 GeV2; (c)Q2 ¼ 35 GeV2; and (d)Q2 ¼ 120 GeV2. The solid lines give our
distributions. The dashed lines are the MSTW2008LO distributions. The curves show xqðx;Q2Þ for, top to bottom in each panel at
x � 0:1, the u (red), �u (blue), d (black), �d (green), s (purple), �s (magenta), c ¼ �c (orange), and b ¼ �b (brown) quarks.
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FIG. 6 (color online). Fractional accuracy ðF�p
2;evolved � F�p

2;HERAÞ=F�p
2;HERA evolved from Q2

0 ¼ 4:5 GeV2 relative to our fit to the
combined HERA data [13], compared to the same ratio with the data for F�p

2 used in the numerator. The initial and final conver-

sions between F�p
2 and the singlet distribution Fs are based on the CTEQ6L nonsinglet quark distributions [16]. Results are given for

(a) Q2 ¼ 2:7 (black dots), 12 (red squares), 35 (green diamonds), 90 (blue triangles), 400 (orange inverted triangles) GeV2; (b) Q2 ¼
3:5 (black dots), 8.5 (red squares), 18 (green diamonds), 70 (blue triangles), 250 (orange inverted triangles) GeV2; (c) Q2 ¼ 6:5 (black
dots), 15 (red squares), 27 (green diamonds), 120 (blue triangles), 650 (orange inverted triangles) GeV2; and (d) Q2 ¼ 10 (black dots),
22 (red squares), 45 (green diamonds), 150 (blue triangles), 1200 (orange inverted triangles) GeV2.
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FIG. 7 (color online). Fractional accuracy ðF�p
2;evolved � F�p

2;HERAÞ=F�p
2;HERA of the structure function F�p

2 ðx;Q2Þ evolved from Q2
0 ¼

4:5 GeV2 relative to our fit to the combined HERA data [13], compared to the same ratio with the data for F�p
2 used in the numerator.

The initial and final conversions between F�p
2 and the singlet distribution Fs are based on the MSTW2008LO nonsinglet quark

distributions [17]. Results are given for (a) Q2 ¼ 2:7 (black dots), 12 (red squares), 35 (green diamonds), 90 (blue triangles), 400
(orange inverted triangles) GeV2; (b) Q2 ¼ 3:5 (black dots), 8.5 (red squares), 18 (green diamonds), 70 (blue triangles), 250 (orange
inverted triangles) GeV2; (c) Q2 ¼ 6:5 (black dots), 15 (red squares), 27 (green diamonds), 120 (blue triangles), 650 (orange inverted
triangles) GeV2; and (d) Q2 ¼ 10 (black dots), 22 (red squares), 45 (green diamonds), 150 (blue triangles), 1200 (orange inverted
triangles) GeV2.
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subsequent adjustment of those parameters to minimize the
�2 of the fit.

IV. SUMMARYAND CONCLUSIONS

In the present paper, we have applied recently developed
methods based on Laplace transforms to a LO analysis
of the HERA data on deep inelastic ep scattering as
combined by the H1 and ZEUS experimental groups
[13]. We have used a hybrid method, in which we convert
the measured structure function F�p

2 ðx;Q2Þ to the singlet

distribution Fsðx;Q2Þ which enters the evolution equa-
tions, taking the small contributions of nonsinglet quark
distributions to this conversion from other analyses, and

extending the fit to the HERA data for x < 0:1 to x ¼ 1
using the shape of F�p

2 determined in those analyses.

Here we used the results of the CTEQ6L [16] and
MSTW2008LO [17] analyses, which used the older H1
[12] and ZEUS [10,11] data along with data from other
experiments, mostly at higher values of x than the HERA
data. This procedure determines the starting distribution
Fsðx;Q2

0Þ at the starting point Q2
0 ¼ 4:5 GeV2 chosen for

the DGLAP evolution.
As shown earlier [14,15], the necessary starting distri-

bution G0ðxÞ � G0ðx;Q2
0Þ for the coupled evolution of Fs

and G can be obtained in LO directly from a global fit
to the structure function F�p

2 ðx;Q2Þ by requiring that the

TABLE II. The �2 of the F�p
2 from our fit to the combined HERA data, and of the evolved F�p

2

obtained by LO evolution from Q2
0 ¼ 4:5 GeV2. The starting distribution Gðx;Q2

0Þ was derived
from the fit to F�p

2 . The initial Fsðx; Q2
0Þ was obtained from F�p

2 using nonsinglet corrections

from the CTEQ6L [16] and MSTW2008LO [17] analyses. The last lines give sums of all the
rows above them except for the starting value Q2

0 ¼ 4:5 GeV2.

Q2 (in GeV2) No. of datum

points
�2

(our fit)

�2
evolved, CTEQ c

orrections

�2
evolved, MSTW

corrections

2.7 9 10.0 15.4 28.0

3.5 9 11.1 11.6 11.5

4.5 9 6.1 6.1 6.1

6.5 13 14.2 13.6 14.3

8.5 9 7.6 7.6 10.7

10 7 2.4 3.8 7.1

12 10 11.5 15.1 19.5

15 10 10.6 5.0 28.5

18 9 2.74 25.0 15.9

22 9 12.4 14.0 10.4

27 12 9.1 52.9 15.4

35 11 8.8 81.2 11.0

45 11 8.0 96.9 7.3

60 10 17.2 158.9 19.4

70 9 13.7 68.7 12.6

90 11 13.0 175.9 49.1

120 12 6.8 102.0 25.1

150 12 15.9 71.0 16.5

200 14 21.0 114.6 33.5

250 14 15.8 86.6 25.6

300 15 18.9 83.5 24.4

400 14 18.7 76.0 21.6

500 11 5.8 37.7 18.7

650 12 10.4 57.5 21.4

800 9 11.0 40.8 18.8

1000 9 6.1 13.3 5.9

1200 9 10.0 33.1 18.2

1500 6 5.8 9.9 5.7

2000 5 0.33 0.26 1.1

3000 5 6.3 7.5 4.7

Sum (without Q2 ¼ 4:5) 296 295.2 1480 502

�2=d:o:f: 1.003 5.00 1.70
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LO evolution equation for F�p
2 ðx;Q2Þ be satisfied for

Q2 ¼ Q2
0. Both F20ðxÞ � F�p

2 ðx;Q2
0Þ and G0ðxÞ are there-

fore determined directly by experiment through our fit to
the HERA data for x < 0:1 and its extension to higher x,
without the need for a solution of the complete set of
coupled parton evolution equations or any assumptions
about the functional form of G. Our results at small x are
insensitive to the details of the extensions.

We picked a starting value Q2
0 ¼ 4:5 GeV2 for the

evolution which is well within the region of dense data.
We then solved the LO evolution equations using very fast
and accurate methods discussed elsewhere [8,9], and
combined the evolved Fs with the evolved nonsinglet
distributions of CTEQ6L and MSTW2008LO to obtain a
new set of quark distributions. These differ from the quark
distributions obtained in those analyses because of our use
of the combined HERA data rather than the original H1
and ZEUS results, and our different determination of the
starting distributions in Fs and G for the evolution. The
differences in the quark distributions are significant in
some regions. Our gluon distributions differ markedly
from those of MSTW2008LO at small x as seen in
Figs. 2 and 3.

Finally, we compared the evolved structure function
F�p
2 ðx;Q2Þ to the HERA data as a test of the consistency

of LO DGLAP evolution. The initial distributions of Fs

and G at Q2
0 were determined by F�p

2 up to the small

nonsinglet corrections, and were consistent with LO evo-
lution by construction. We concluded that LO evolution is
actually not consistent with those data on the basis of
systematic trends evident in the evolved distributions.
This conclusion does not depend on the explicit calculation
of NLO effects. It is supported by a �2 analysis, but in
contrast to other approaches, we could not attempt to
reduce the �2 by adjusting the shapes of the initial distri-
butions: we had no arbitrary parameters to adjust.

In the Appendix, we give an equally accurate, though
approximate, method which works directly with the exact
DGLAP LO evolution equation for F�p

2 coupled to an

approximate evolution equation for G. This approach is
independent of the nonsinglet distributions, and its imple-
mentation uses only the experimental results as extended
above. The results of the analysis are the same: LO evolu-
tion of F�p

2 is inconsistent with the HERA data.
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APPENDIX A: APPROXIMATE
COUPLED EVOLUTION EQUATIONS

FOR F�p
2 ðx;Q2Þ AND Gðx;Q2Þ

In this Appendix, we point out that we can obtain a
direct test of the adequacy of LO evolution using evolution
equations coupling F�p

2 ðx;Q2Þ and Gðx;Q2Þ. In particular,

we use the exact LO evolution equation for F�p
2 , and an

approximate version of the evolution equation for G in
which Fs is replaced by a multiple of F�p

2 .

The advantage of this approach is that it deals directly
with the experimentally accessible function F�p

2 ðx;Q2Þ,
and gives a direct test of the adequacy of LO evolution
with no input beyond a global fit to F�p

2 . It does not require

direct knowledge of the nonsinglet quark distributions, but
correspondingly does not provide individual quark distri-
butions unless Vi, T3, T8, T15, and T24 are known. If these
are to be used, the method developed in Sec. II is to be
preferred.
The results on the evolution of F�p

2 ðx;Q2Þ from its initial

distribution at Q2
0 ¼ 4:5 GeV2 obtained by this method

differ insignificantly from those obtained with the method
in the body of the paper, with fractional differences small on
the scale of the differences of the evolvedF�p

2 from the data

shown in Figs. 6 and 7. We conclude again that the assump-
tion LO evolution is not consistent with the HERA data.
We obtain our evolution equations for F�p

2 and G as

follows. The exact LO evolution equation for F�p
2 ðx;Q2Þ is

given in Eq. (10). This equation couples F�p
2 to the gluon

distribution G. The exact evolution equation for G couples
G instead to the singlet quark distribution Fsðx;Q2Þ ¼P

ixðqi þ �qiÞðx;Q2Þ, and not to F�p
2 ¼ P

ie
2
i xðqi þ �qiÞ�

ðx;Q2Þ. Fsðx;Q2Þ is not determined directly by experiment.
However, we note that the nonsinglet contributions in the
transition from F�p

2 to Fs given in Eqs. (18)–(20) are very

small, and will simply replace Fsðx;Q2Þ in the usual evo-
lution equation forGðx;Q2Þ by the leading, F�p

2 -dependent

terms in Eqs. (18)–(20), Fsðx;Q2Þ � aðnfÞÞF�p
2 ðx;Q2Þ

with aðnfÞ ¼ 18=5 for M2
c < Q2 <M2

b, and 45=11 for

M2
b < Q2 <M2

t [24]. These relations are actually only

expected to hold for Q2 well above thresholds, where the
new quarks can be taken as fully excited; we will use them
as stated.
We use the resulting approximate evolution equation for

Gwith the exact LO evolution equation forF�p
2 in Eq. (10),

and solve for F�p
2 and G using the methods developed

earlier [1,2,14]. The accuracy of the method is evident
fromTable III, wherewe compare the results for the evolved
F�p
2 obtained using the approximate method with those

obtained using the exact evolution equations for Fs and G
and the CTEQ6L nonsinglet corrections in the F�p

2 , Fs

transition as described in Sec. II B 2. The accuracy is similar
for the MSTW2008LO-based nonsinglet corrections.
The approximation of replacing Fs by a multiple of F�p

2

is only good to about 5–7% atQ2 ¼ 5 GeV2, a value above
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the c-quark threshold but below the b-quark threshold, and
also at 100 GeV2, well above the b threshold, so the effect
of these errors on the final F�p

2 is clearly greatly reduced by

the nature of the evolution. We can understand this quali-
tatively as follows: the evolution of G at small x is driven
mainly by G itself, which is accurately known at the initial
Q2

0 from the condition that the measured F�p
2 ðx;Q2

0Þ satisfy
its evolution equation. The final errors in G are therefore
small at small x, and their effect on F�p

2 is further sup-

pressed by the contributions from F�p
2 itself to its evolu-

tion. In addition, G is small at large x, and errors in the
approximate G in that region have little effect on the final
F�p
2 . Overall, the limited accuracy of the approximate Fs

has only a small effect on the evolved G, and as a result,
even less effect on the exact evolution of F�p

2 from its

known initial distribution.
We have described the methods we use to solve the cou-

pled evolution equations for F̂sðv;Q2Þ and Ĝðv;Q2Þ in de-
tail elsewhere [1,2]. We use the same methods here to solve

the coupled equations for F̂2ðv;Q2Þ and Ĝðv;Q2Þ, so we
only point out the changes. We begin with Eqs. (2) and (3)
which express the Laplace transforms f2ðs; �Þ and gðs; �Þ of
the distribution functions in terms of their initial distribu-

tions, and, here, a set of new kernels kijðs; �Þ ! kð2Þij ðs; �Þ.
The kernels have the same form as those given in [1,2],

but with the coefficient functions �, � that appear there

replaced by functions �ð2Þ and �ð2Þ,

�ð2Þ
f ðsÞ ¼ 4� 8

3

�
1

sþ 1
þ 1

sþ 2
þ 2ðc ðsþ 1Þ þ �EÞ

�
;

(A1)

�ð2Þ
f ðsÞ ¼ X

i

e2i

�
1

sþ 1
� 2

sþ 2
þ 2

sþ 3

�
; (A2)

�ð2Þ
g ðsÞ ¼ 33� 2nf

3
þ 12

�
1

s
� 2

sþ 1
þ 1

sþ 2

� 1

sþ 3
� c ðsþ 1Þ � �E

�
; (A3)

�ð2Þ
g ðsÞ ¼ 8

3
aðnfÞ

�
2

s
� 2

sþ 1
þ 1

sþ 2

�
: (A4)

These functions differ from the corresponding functions
in the case of Fs, G in the coefficients in the�’s, hence the
introduction of the superscripts 2 to distinguish the two

cases. The kernels kð2Þij have the same formal structure as

the original kij, and the final solutions are obtained as

described in Sec. II A using the very fast and accurate
algorithms for calculating inverse Laplace transforms in-
troduced in [8,9]. The methods needed in practice are
discussed in the Appendix of [1]. The results are essentially
the same as those presented in Sec. III B, and we draw the
same conclusions as there.

TABLE III. Fractional differences �F and�G (in %) between the F�p
2 andG distributions obtained using the ‘‘exact’’ transformation

between Fs and F�p
2 described in Sec. II B 2, and those obtained using the approximate method based on the exact evolution equation

for F�p
2 , and an approximate gluon evolution equation with Fs replaced by a multiple of F�p

2 as described in this Appendix. The same

starting distributions for F�p
2 andG atQ2

0 ¼ 4:5 GeV2 were used in both cases. In the exact method, we used the nonsinglet terms from

CTEQ6L to convert between Fs and F
�p
2 . The last column shows the percentage rms differences between the distributions from the two

methods for 10�6 � x < 0:5. Results obtained using the nonsinglet terms from MSTW2008LO are very similar.

�F ¼ 1� F
approx
2 =Fexact

2 (%) �F;rms (%)

Q2 (in GeV2) x ¼ 10�6 x ¼ 10�5 x ¼ 10�4 x ¼ 10�3 x ¼ 10�2 x ¼ 10�1 10�6 � x < 0:5

1.69 0.4 0.3 0.1 0.0 �0:2 �0:2 0.2

3.5 0.2 0.0 0.0 �0:1 �0:1 �0:1 0.1

10 0.2 0.1 0.0 0.0 �0:1 �0:1 0.1

22 0.2 0.1 0.1 0.0 �0:2 �0:1 0.1

27 0.2 0.1 0.1 0.1 �0:2 �0:2 0.1

90 0.1 0.0 �0:1 �0:2 �0:4 �0:3 0.2

250 �0:1 �0:2 �0:3 �0:5 �0:7 �0:4 0.4

1200 �0:4 �0:5 �0:6 �0:9 �1:1 �0:6 0.8

�G ¼ 1�Gapprox=Gexact (%) �G;rms (%)

Q2 (in GeV2) x ¼ 10�6 x ¼ 10�5 x ¼ 10�4 x ¼ 10�3 x ¼ 10�2 x ¼ 10�1 10�6 � x < 0:5
1.69 �10:6 �3:6 �1:7 �0:8 0.1 1.8 4.6

3.5 �0:3 �0:2 �0:2 �0:1 0.0 0.4 0.7

10 0.4 0.3 0.2 0.1 �0:2 �1:2 1.8

22 0.4 0.3 0.2 0.0 �0:5 �2:3 3.3

27 0.3 0.2 0.1 �0:2 �0:7 �2:8 3.8

90 �0:3 �0:4 �0:6 �1:0 �2:0 �5:8 6.4

250 �0:5 �0:7 �1:0 �1:6 �2:9 �7:9 8.2

1200 �0:9 �1:2 �1:6 �2:3 �4:1 �10:6 10.4
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