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We show that the lightest pseudotensor mesons JPC ¼ 2�þ can be regarded as molecules made of a

pseudoscalar ðPÞ 0�þ and a tensor 2þþ meson, where the latter is itself made of two vector (V) mesons.

The idea stems from the fact that the vector-vector interaction in s wave and spin 2 is very strong, to the

point of generating the 2þþ tensor mesons. On the other hand the interaction of a pseudoscalar with a

vector meson in s wave is also very strong and it generates dynamically the lightest axial-vector mesons.

Therefore we expect the PVV interaction to be strongly attractive and thus able to build up quasibound

PVV resonances. We calculate the three-body PVV interaction by using the fixed center approximation to

the Faddeev equations where the two vectors are clustered forming a tensor meson. We find clear resonant

structures which can be identified with the �2ð1670Þ, �2ð1645Þ and K�
2ð1770Þ (2�þ) pseudotensor mesons.
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I. INTRODUCTION

Unveiling the structure and nature of hadrons is of
crucial importance to understand the strong interaction.
Several different components can contribute to the wave
functions of the mesonic resonances besides the simple
quark-antiquark state. In many mesons the quark-antiquark
component is the dominant one. However, for some spe-
cific mesonic resonances, other contributions such as glue-
balls, tetraquarks and meson molecules can dominate their
wave function. If the meson-meson interaction is attractive
the meson molecule component may be dominant and the
dynamical generation of the resonances may be more
efficient than the other Fock space terms. In the present
work, this will be a recurrent idea for many resonances
considered. In the mesonic sector, important results regard-
ing the molecular interpretation have been obtained by the
unitary extensions of chiral perturbation theory (UChPTor
chiral unitary approach). Using as input lowest orders
chiral Lagrangians and implementing unitarity in coupled
channels, many resonances are obtained from the meson-
meson or meson-baryon interaction [1–11], which are also
usually called dynamically generated resonances.

In particular, it is of special interest for the presentwork the
pseudoscalar-vector and vector-vector unitarized interaction.
In the last few years several works [12–15] have reported
arguments and evidence for a dynamical nature of the lightest
axial-vector resonances, implementing variants of the chiral
unitary approach. The axial-vector resonances naturally ap-
pear [12,13] as poles in the scatteringmatrixof the interaction
of pseudoscalar mesons with vector mesons. Therefore most
of the low-lying axial-vector mesons can be described by
dynamics of a pseudoscalar and a vector meson and thus can
be regarded asmoleculesmade of a pseudoscalar and a vector
meson.At this point it isworth clarifyingwhat themeaningof
molecule is in the present work. Following the philosophy
of the chiral unitary approach, we use the word molecule, or
dynamically generated resonance, to refer to a resonance that

can be obtained from the meson-meson interaction using
proper unitarization techniques. It is worth noting, that this
is not incompatible with a possible relevant contribution
from a q �q state. The quantification of the weight of each
contribution is certainly a difficult task both conceptually
and analytically (for a discussion on the issue we refer to
[15–17]). In Ref. [17] it is discussed that the subtraction
constant of the loop function may encode information on
the contribution of pure q �q states. Also analysis on the
behavior at the large Nc limit can shed light into the impor-
tance of the different components [18–20]. The application of
this kind of analysis to the resonances considered in the
present work would certainly deserve a separate study but it
is not necessary for the calculations done in the present work.
In other words, by meson resonances or molecules in the
present work we mean that there is an important coupling to
the meson component and that the meson-meson elementary
amplitude encodes the information to get the right parameters
of the generated resonances, without ruling out another pos-
sible important q �q contribution.
The vector-vector interaction has been recently studied

[21–23] using the techniques of the chiral unitary approach,
using as input for the vector-vector potential the lowest-
order hidden gauge symmetry Lagrangian [24–27]. In [22]
eleven resonant states were found in nine strangeness-
isospin-spin channels. In particular, and of interest for the
present work, the lightest tensor 2þþ mesons a2ð1320Þ,
f2ð1270Þ and K�

2ð1430Þ were dynamically generated from
the VV interaction in s wave and spin two and they where
found to be dominantly molecules made of K� �K�, ��
and �K�, respectively.1 On the other hand, for a given

1Actually, in Ref. [22] the pole in K� �K� amplitude was not
associated to the a2ð1320Þ resonance since it was far from the
experimental mass. However we discuss in the present work that
the a2ð1320Þ can indeed be found in this channel with a slight
modification of the only free parameter of Ref. [22], as pointed
out in Ref. [28].
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resonance, whether the molecular picture is correct or
partially correct should ultimately be judged by experimen-
tal data. One should test as extensively as possible whether
the proposed picture is consistent with (all) existing data,
make predictions, and propose experiments where such
predictions can be tested. For instance, the radiative decay
of a mesonic state has been argued to be important in
determinations of the nature of the state. Actually the
study of the radiative decays has been applied to test the
possible vector-vector molecular picture of vector mesons
used in the present work with very positive results when
compared to the experimental data [29,30]. Therefore the
molecular vector-vector picture of the tensors considered in
the present work is strongly supported by experimental
data.

From the previous considerations, it is reasonable to
expect that a systemmade of a pseudoscalar and two vector
mesons (PVV) is bound given the strong attraction be-
tween the two vector mesons in s wave with parallel spins
(which in turn form a tensor meson) and the strong inter-
action of the pseudoscalar with the two constituent vector
mesons. These possible bound (or quasibound) states
would have JPC ¼ 2�þ quantum numbers which could
correspond to some known (or still undiscovered) pseudo-
tensor resonances. The main aim of the present work is to
carry out the theoretical study of such possibility. Indeed,
and bringing forward some results of this work, we
will find several PVV resonant structures which may
be associated to the �2ð1670Þ, �2ð1645Þ and K�

2ð1770Þ
resonances.

The idea of the existence of three-body resonances is of
course not new. However, while much work has been done
in the baryonic sector, (e.g. [31–34]), less studies have
been devoted to three meson molecules [35–37]. The
proper analysis of the three-body problem, like the one
required in the present work to study the PVV interaction,
can be conceptually tackled by the implementation of the
Faddeev equations [38]. However they are very difficult to
solve exactly, hardly ever possible, and almost always one
has to recur to approximations. For a recent fresh look into
the problem see Ref. [33] for two meson-one baryon
systems and [36,37,39] for three mesons.

When two of the three particles are bound forming a
cluster, as will be the case in the present work, one can use
the fixed center approximation (FCA) to the Faddeev equa-
tions [40–44]. When applicable, the idea is very simple and
considers that one particle collides against the two particles
of the cluster which is not much altered by the collision,
which requires energies close or below threshold [45].
Recently, the FCA has been successfully applied in many
three-body interactions [43,46–50]. In the present work we
apply the FCA to the Faddeev equations to evaluate the
interaction of a pseudoscalar meson with two vector me-
sons in spin 2 and s wave, where the vector mesons are
bound making up a tensor meson.

II. TWO-BODY INTERACTIONS

In the system that we consider in the present work, one
pseudoscalar (P) and two vector (V) mesons, one of the
most important ingredients are the two-body interactions,
VV and PV. The VV interaction is needed in order to show
that the VV amplitudes in s wave and spin 2 is very
attractive, which generate dynamically the lightest 2þþ
tensor mesons, and to know to which particular VV chan-
nel each tensor resonance couples most.
On the other hand, the PV amplitudes are needed in the

FCA equations since we will write the three-body scatter-
ing amplitudes in terms of the two-body interaction of the
pseudoscalar meson with each of the two particles in the
cluster. We summarize in what follows the models for
the VV [21,22] and PV [13] unitarized interaction properly
adapted to the present work.

A. Vector-vector unitarization

The model of Refs. [21,22] applies the ideas of the chiral
unitary approach to the evaluation of the VV scattering
amplitudes. The implementation of unitarity in coupled
channels and the exploitation of the analytic properties of
the scattering amplitudes leads to the full two-body scat-
tering amplitude for a given partial wave. Three different
approaches to the chiral unitary approach have commonly
been used: the inverse amplitude method [3,51], the N/D
method [4], and the Bethe-Salpeter equation [2,7,52],
although very similar results are obtained between these
approaches. (For a summarized review of the different
approaches see Ref. [53]). For the sake of completeness,
we next sum up the derivation of the unitarized amplitude
following the N/D method which leads to a Bethe-
Salpeter–like expression. Let ti;j be the meson-meson scat-

tering matrix between the i and j meson-meson channels.
Unitarity in coupled channels can be written as

Im ti;j ¼ ti;l�lt
�
l;j (1)

where �i � qi=ð8�
ffiffiffi
s

p Þ with qi the modulus of the c.m.
three-momentum and s the usual invariant Mandelstam
variable. This equation is most efficiently written in terms
of the inverse amplitude as

Im t�1ðsÞij ¼ ��ðsÞi�ij; (2)

From Eq. (1) or (2) we see that the amplitude is real for
ffiffiffi
s

p
below the lowest threshold and complex above. This im-
plies the existence of a cut in the t matrix of partial wave
amplitudes from energies above the lowest threshold to
infinity, which is usually called the unitarity or right-hand
cut. Hence one can write down a dispersion relation for
t�1ðsÞ

t�1ðsÞij¼��ij

�
~aiðs0Þþs�s0

�

Z 1

si

ds0
�ðs0Þi

ðs0�sÞðs0 �s0Þ
�

þ~t�1ðsÞij; (3)
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where si is the value of the s variable at the threshold of
channel i and ~t�1ðsÞij indicates other contributions coming

from local and pole terms, as well as crossed channel
dynamics but without right-hand cut. Notice also that

gðsÞi ¼ ~aiðs0Þ þ s� s0
�

Z 1

si

ds0
�ðs0Þi

ðs0 � sÞðs0 � s0Þ (4)

is the familiar scalar loop integral, which for the vector-
vector case is given by

Gl ¼ i
Z d4q

ð2�Þ4
1

ðP� qÞ2 �M2
l;V1

1

q2 �M2
l;V2

; (5)

where P is the total four-momentum of the VV system and
Ml;V1 and Ml;V2 are the masses of the two vector mesons

of the corresponding lth channel. In the loop function, the
widths of the vector mesons are accounted for by folding
Eq. (5) with their spectral functions as explained in
Ref. [22].

One can further simplify the notation by employing a
matrix formalism. Introducing the matrices GðsÞ ¼
diagðGðsÞiÞ, t and ~t, the latter defined in terms of the matrix
elements tij and ~tij, the t matrix can be written as

tðsÞ ¼ ½I � ~tðsÞ � GðsÞ��1 � ~tðsÞ; (6)

which can be recast in the form

tðsÞ ¼ ~tðsÞ þ ~tðsÞGðsÞtðsÞ: (7)

If for the kernel ~t we take the amplitudes V obtained
from lowest-order Lagrangians as explained in the next
paragraph, then the former equation resembles the
Bethe-Salpeter equation:

t ¼ V þ VGt ¼ ð1� VGÞ�1V (8)

where the kernel V is a matrix containing the elementary
vector-vector transition amplitudes. While a true Bethe-
Salpeter equation is an integral equation, Eq. (8) is alge-
braic since the derivation justifies the on-shell factorization
of the V amplitudes out of the integrals in G.

The mechanisms contributing to the vector-vector po-
tential V, the kernel of Eq. (8), are depicted in Fig. 1. The
full kernel V is represented by a thick dot in Fig. 1, to
which the mechanisms ðaÞ, ðbÞ, ðcÞ and ðdÞ provide differ-
ent contributions. In this figure the solid lines represent
vector mesons and the dashed lines pseudoscalar ones. For
the evaluation of these diagrams we need the 4-vectors,
3-vectors and one vector–2-pseudoscalars vertices which
are obtained from the hidden gauge symmetry Lagrangian
[24–27] for vector mesons. Explicit expressions for the
Lagrangians and the V matrix elements for the different
channels can be found in Refs. [21,22,46]. The dominant
contribution to the potential comes from the contact term,
Fig. 1(a), and the t, u channel exchange, Fig. 1(b). The s
channel, Fig. 1(c), is very small since it is basically pwave.
The box diagram, Fig. 1(d), is relevant only for the width of

the generated resonance [21,22] and it allows the decay
into two pseudoscalar mesons.
The previous formalism can be applied to any possible

strangeness-isospin-spin channel but we are interested in
the present work in the spin 2 channel in s wave. In the
modulus squared of the different scattering amplitudes,
prominent resonant shapes appear (we refer to Ref. [22]
for explicit plots) which also correspond to poles in un-
physical Riemann sheets in the complex energy plane,

ffiffiffi
s

p
.

For spin 2 there are three possible channels. The first one is
strangeness 0 and isospin 1 to which K� �K�, ��, ��, !!
and!� contribute. A pole was found at

ffiffiffi
s

p ¼ ð1275� 1iÞ
which clearly corresponds to the f2ð1270Þ resonance. By
evaluating the residues of the scattering amplitudes at the
pole position, the couplings of the dynamically generated
f2ð1270Þ resonance to the different channels can be ob-
tained. The coupling to �� is by far the strongest one [22].
This is one of the reasons why the f2ð1270Þ resonance can
be considered a �� molecule or, in other words, a dynami-
cally generated state from �� interaction. Another of the
possible VV spin 2 channels is the strangeness 1, isospin
1=2, to which K��, K�! and K�� contribute in coupled
channels. The unitarized amplitude in this case shows up a
resonant shape and a pole at

ffiffiffi
s

p ¼ ð1431� i1Þ which
corresponds to the K�

2ð1430Þ resonance. In this case, the

largest coupling (by a factor 4) is to K�� channel.
Therefore we will consider in the present work the
K�

2ð1430Þ as a quasibound state of K�� interaction.

Finally, another VV channel is possible: strangeness 0
and isospin 1. For this channel the K� �K�, ��, �! and
�� channels are allowed. In Ref. [22] a pole was found atffiffiffi
s

p ¼ ð1519� i16Þ with the strongest coupling to K� �K�.
The authors of that reference could not clearly assign this
pole to any experimental a2 resonance. However we are
going to argue that this channel can produce the a2ð1320Þ
by doing a fine tuning of the only free parameter in the
model, which is the regulator parameter of the VV loop
functions of Eq. (5). The loop function in Eq. (5) needs to
be regularized and this can be accomplished either with a
three-momentum cutoff or with dimensional regulariza-
tion. The equivalence of both methods for meson-meson

+

+

(c)

(a) (b)

(d)

+

FIG. 1. Mechanisms contributing to the kernel V (thick dot) of
the Bethe-Salpeter equation, Eq. (8), for vector-vector scattering.
Solid lines represent vector mesons and dashed lines pseudosca-
lar ones.
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scattering was shown in Ref. [3]. In Ref. [22] the regulari-
zation method was used with subtraction constants, a,
around a natural value of �1:65, which corresponds to
using a three-momentum cutoff of 1 GeV. With this natural
value the bulk of the resonances appear but a slight fine
tuning can be done to agree better with the experimental
masses of the f2ð1270Þ and K�

2ð1430Þ (see Ref. [22] for the
specific values of the subtraction constants used in the
original work), but it is worth mentioning that it only
provides a slight modification in the position of the peaks.
We have checked that using the cutoff regularization the
peaks of the f2ð1270Þ and K�

2ð1430Þ are reproduced using
three-momentum cutoffs of 875 MeV for the isospin 0
channel and 972 for the isospin 1=2 channel. Coming
back to the isospin 1 channel we can produce a peak in
the VV amplitude at the position of the a2ð1320Þ experi-
mental mass using a three-momentum cutoff of 1590 MeV.
Therefore we can consider the a2ð1320Þ as a K� �K� mole-
cule. The values of the cutoffs described so far will also
play a role in the FCA equations later on in the evaluation
of the tensor form factors.

In summary, in the later evaluation the PVV interaction
we will regard the f2ð1270Þ as a cluster made of ��, the
K�

2ð1430Þ as K�� and the a2ð1320Þ as K� �K�.

B. Pseudoscalar-vector unitarization

The explicit PV unitarized amplitudes are of crucial
importance in the evaluation of the PVV interaction, since
we will need to know the interaction of the pseudoscalar
meson with each of the two vector mesons. The PV ampli-
tudes we use in the present work are essentially based on the
model of Ref. [13], where most of the lightest axial vector
resonances were dynamically generated from the interac-
tion of a vector and a pseudoscalar meson. With the only
input of the lowest-order chiral Lagrangian and the imple-
mentation of unitarity in coupled channels the axial vector
resonances manifest themselves as poles in unphysical
Riemann sheets of the PV scattering amplitudes.

Considering the vector mesons as fields transforming
homogeneously under the nonlinear realization of chiral
symmetry [54], the interaction of two vector and two
pseudoscalar mesons at lowest order in the pseudoscalar
fields can be obtained from the following interaction
Lagrangian [55]:

L ¼ �1
4fðr�V� �r�V�Þðr�V� �r�V�Þg; (9)

which is invariant under chiral transformations SUð3ÞL �
SUð3ÞR. In Eq. (9) r�V� ¼ @�V� þ ½��; V�� is the SUð3Þ
matrix valued covariant derivative, with the SUð3Þ connec-
tion defined as��¼ðuy@�uþu@�u

yÞ=2,u¼ expðP= ffiffiffi
2

p
fÞ

andP andV areSUð3Þmatrices containing the pseudoscalar
and vector fields, respectively.

From this Lagrangian, the VP ! VP tree level ampli-
tudes can be obtained expanding Eq. (9) up to two vector
and two pseudoscalar meson fields: [12,13]

L VP ¼ � 1

4f2
h½V�; @�V��½P; @�P�i; (10)

where hi stands for SUð3Þ trace. The explicit expression of
the potentials, properly projected onto s wave, is thus

VijðsÞ ¼ � 1

8f2
Cij

�
3s� ðM2

i þm2
i þM2

j þm2
j Þ

� 1

s
ðM2

i �m2
i ÞðM2

j �m2
j Þ
�
; (11)

where f ¼ 92 MeV is the pion decay constant, the index
iðjÞ represents the initial (final) VP state in the isospin
basis and MiðMjÞ and miðmjÞ correspond to the masses of

the initial (final) vector mesons and initial (final) pseudo-
scalar mesons, for which we use an average value for each
isospin multiplet. In Eq. (11) we have omitted an �i � �j
term for the polarization of the vector mesons which
factorizes. The explicit values of the numerical coeffi-
cients, Cij, can be found in Ref. [13].

Following the ideas of the chiral unitary approach the
full PV T matrix can now be obtained by unitarizing the
previous tree level amplitudes which in this case leads to
the following Bethe-Salpeter equation:

T ¼ �½1þ VG��1V; (12)

which can be diagrammatically represented by the resum-
mation series shown in Fig. 2.
Analogously to Eq. (5), G is a diagonal matrix but now

with the lth element, Gl, given by the loop function of a
pseudoscalar and a vector meson,

GlðPÞ¼ i
Z d4q

ð2�Þ4
1

ðP�qÞ2�M2
l þ i�

1

q2�m2
l þ i�

; (13)

where P is the total four-momentum, P2 ¼ s, of the VP
system. In order to take into account the width of the vector
mesons, we fold Eq. (13) by the corresponding vector
spectral function [14].
There are nine different possible channels characterized

by their strangeness (S), isospin (I) and G parity (G), but
not all them have resonant poles in unphysical Riemann
sheets of the complex energy plane, i.e. do not generate
dynamically resonances. The channels that manifest reso-
nant poles are ðS; I; GÞ ¼ ð0; 0;þÞ, for which K�KðþÞ is
possible; ðS; I; GÞ ¼ ð0; 0;�Þ for which ��, !�, �� and
K�Kð�Þ are allowed; ðS; I; GÞ ¼ ð0; 1;þÞ with K�KðþÞ,
��, !�, �� as allowed channels; ðS; I; GÞ ¼ ð0; 1;�Þ

+++ ...
V

P

FIG. 2. Diagrammatic interpretation of the unitarization of the
VP ! VP amplitude.
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with �� and K�Kð�Þ and ðS; IÞ ¼ ð1; 1=2Þ where �K,
!K, �K, K�� and K�� channels are allowed. In the above
paragraph K�Kð�Þ represent the G-parity eigenstates2

1=
ffiffiffi
2

p ðj �K�Ki � jK� �KiÞ with eigenvalues �1.
In Ref. [13] seven poles were found in the unphysical

Riemann sheets of the unitarized scattering amplitudes
which can be associated to most of the lightest axial-vector
resonances quoted in the Particle Data Group tables
(PDG): b1ð1235Þ, h1ð1170Þ, h1ð1380Þ, a1ð1260Þ, f1ð1285Þ
and the K1ð1270Þ resonance. Actually two poles are
present in the unitarized PV amplitude for the K1ð1270Þ
resonance. This double pole structure was studied in
Ref. [14]. In Ref. [13] all these resonances were obtained
using a single value of the parameter needed to regularize
the PV loop function, Eq. (14). This parameter was a
subtraction constant a ¼ �1:85 for the dimensional
regularization method or three-momentum cutoff
qmax ¼ 1 GeV. However we can now fine tune slightly
the subtraction constant or the cutoff to agree better with
the experimental value of the axial vector resonances.
Furthermore, as done in Ref. [14], we can also allow
that the f constant in Eq. (10) may be f ¼ 115 MeV
instead of 92 MeV in some cases due to the kaon and eta
effects. Thus, in the present work we use the following
values of the subtraction constant, a, and f for the different
channels: for I ¼ 1, a ¼ �1:95, f ¼ 92 MeV; for I ¼ 0,
G parity þ, a ¼ �1:88, f ¼ 92 MeV; for I ¼ 0, G
parity �, a ¼ �0:80, f ¼ 115 MeV; and for I ¼ 1=2,
a ¼ �1:85, f ¼ 115 MeV. It is important to emphasize
that once this slight fine tune of the regularization parame-
ters is done, the model discussed later in the present
work for the three-body interaction will have no further
freedom.

In Fig. 3 we show the modulus squared of some of the
diagonal PV unitarized amplitudes. Note that the plots
differ slightly from those in Ref. [13] since we have used
now slight different values of the subtraction constants and
the loop function with dimensional regularization is now
folded with the vector meson width, which was not done in
Ref. [13].

It is worth stressing that the unitarized amplitudes pro-
vide not only the masses and widths of the dynamically
generated resonances but also the actual shape of the
scattering amplitude. Certainly that includes whatever
background it could contain which would be also gener-
ated thanks to the highly nonlinear dynamics involved in
the unitarization procedure. Thus, even if there is no reso-
nance in a particular channel the method provides the right
amplitude for it.

III. THREE-BODY INTERACTION

In this section we explain the technical details for the
evaluation of the three-body interaction between one pseu-
doscalar particle and two vector mesons in spin two and s
wave. As seen in Sec. II A, whenever we have two vector
mesons with parallel spins they tend to bind very strongly.
For instance, we have seen that two � mesons in spin two
and s wave bind very strongly forming an f2ð1270Þ. This
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FIG. 3. Modulus squared of the pseudoscalar-vector unitarized
scattering amplitudes for the different isospin channels. The
labels indicate the correspondent experimental particles to which
the resonances dynamically generated are associated.

2Recall that the G-parity operation can be defined through its
action on an eigenstate of hypercharge (Y), isospin (I), and third
isospin projection (I3) as GjY; I; I3i ¼ �ð�1ÞY=2þIj � Y; I; I3i,
with � being the charge conjugation of a neutral nonstrange
member of the SUð3Þ family.
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implies a binding energy per � particle of about 140 MeV
which is almost 20% of the � meson mass. Similar quali-
tative reasonings can be done for the other tensor mesons
discussed in Sec. II A, (K�

2ð1430Þ as a K�� cluster and
a2ð1320Þ as K� �K�). Therefore we can expect that inside
the three-body PVV system with spin two the two vector
mesons will be clustered forming a tensor meson. In such a
case, we can apply the fixed center approximation to the
Faddeev equations, which otherwise would be very diffi-
cult to solve exactly. As mentioned in the introduction, the
FCA has been proved suited and good enough in similar
three-body systems when two of the particles tend to
cluster together.

For the technical details we follow closely the steps of
Refs. [46,47] with the proper adaptations and modifica-
tions to the present case. In what follows we are going to
explain generically the interaction of a particle A with a
cluster B made of two particles, b1 and b2. For the present
work the particle A will represent the pseudoscalar particle
and b1, b2, the two vector mesons that build up the tensor
cluster B. Specifically, we study the system PVV with
JPC ¼ 2�þ with three different possible isospin, I ¼ 1,
0, and 1=2. The VV clusters are the 2þþ tensor mesons
a2ð1320Þ, f2ð1270Þ and K�

2ð1430Þ and the pseudoscalars
are �, K and �. In the following we represent a2ð1320Þ,
f2ð1270Þ and K�

2ð1430Þ by a2, f2 and K�
2 , respectively.

The allowed channels for the different isospins, taking
also into account the G-parity restrictions, are shown in
Table I. These are: for I ¼ 1, �f2 and �a2; for I ¼ 0, �a2
and �f2; and for I ¼ 1=2, �K�

2 , Ka2, Kf2 and �K�
2 . Note

that in principle for isospin I ¼ 1 the K �K�
2 and �KK�

2

are possible with the negative G-parity combination

1=
ffiffiffi
2

p jK �K�
2 þ �KK�

2i, however, when doing later the PV
interaction to evaluate the three-body amplitude, the pos-
sible configurations with these channels do not respect the
total G parity and are thus not allowed. A similar argument

forbids the 1=
ffiffiffi
2

p jK �K�
2 � �KK�

2i G parity (þ ) channel in
the I ¼ 0 case. (This is explained in further detail at the
end of the Appendix).

The FCA to the Faddeev equations is represented dia-
grammatically in Fig. 4. The pseudoscalar particle, A,
rescatters repeatedly with each of the vector mesons, bi,
which form the tensor resonance cluster, B. The thick
squared dots in the figure represent the unitarized PV
interaction discussed in Sec. II B. In the figure only the
interaction starting with particle b1 is represented, but an

analogous mechanism where particle A starts the interac-
tion against particle b2 must also be considered.
Mathematically, the FCA can be written as a system of
coupled equations

T1¼ t1þ t1G0T2; T2¼ t2þ t2G0T1; T¼T1þT2; (14)

where T1, T2, are the two partition functions which sum up
to the total scattering matrix, T. The Ti amplitudes ac-
counts for all the diagrams starting with the interaction of
the particle A with particle bi of the compound system B.
In Eq. (14) G0 is the Green function for the exchange of a
particle A between the b1 and b2 particles (intermediate
dashed lines in Fig. 4) which expression will be given
below, [see Eq. (25)]. The mechanism in Fig. 4(a) repre-
sents the single scattering contribution [t1 in Eq. (14)]
and Fig. 4(b) the double scattering mechanism (the next
contribution: t1G0t2). The addition of Fig. 4(c) represents
the full resummation of mechanisms to get the full T1

TABLE I. Possible pseudoscalar-tensor channels for the different total PVV isospins. The
particles in parenthesis represent the main vector-vector component of the tensor resonances.
The a2, f2 and K�

2 symbols stand for a2ð1320Þ, f2ð1270Þ and K�
2ð1430Þ, respectively.

Total PVV isospin Channels ABðb1b2Þ
I ¼ 1 �f2ð��Þ �a2ðK� �K�Þ
I ¼ 0 �a2ðK� �K�Þ �f2ð��Þ
I ¼ 1

2 �K�
2ð�K�Þ Ka2ðK� �K�Þ Kf2ð��Þ �K�

2ð�K�Þ

1 2
1 2

(p )1

(q)

(p )1 1b1b2b1
b2

b1 b2
b1 b2

(k’)A

+

+

. . .++

c)

(k)

1 2

2

(p’)1 (p’)1

A

A

A

B

B

B

B

A

P V V
a) b)

P
V V

V V
P

P

P

P V V

V

FIG. 4. Diagrammatic representation of the fixed center ap-
proximation to the F a pseudoscalar particle, A, with a tensor
particle, B, which is a cluster made of two vector mesons, b1 and
b2. Diagrams (a) and (b) represent the single and double scat-
tering contributions, respectively, and (b) and (c) the multiple
scattering contribution.
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partition function in the FCA. An analogous figure starting
with the particle A interacting with b2 would account for
the T2 amplitude.

Note that the FCA equations, Eq. (14), are essentially
given in terms of the two-body pseudoscalar-vector ampli-
tudes, t1 and t2, for which we used the unitarized PV
amplitudes given in Sec. II B. The argument of the function
TðsÞ in Eq. (15) is the total invariant mass energy of the
PVV system, s. However the argument of t1 and t2 are s1
and s2, where siði ¼ 1; 2Þ is the invariant mass of the
interacting particle A and the particle bi of the B molecule
and is given by

si¼m2
Aþm2

bi
þ 1

2m2
B

ðs�m2
A�m2

BÞðm2
Bþm2

bi
�m2

bj�i
Þ;
(15)

where mAðBÞ is the mass of the AðBÞ system and mbi is the

mass of each vector meson of the B molecule.
The derivation of the expression of the single scattering

amplitudes, ti, in terms of the unitarized two-body PV
amplitudes of Sec. II B is explained in detail in theAppendix.

Proceeding in an analogous way to the derivation done in
Refs. [46,47], properly adapted to the present problem, we
can obtain theSmatrix for the single scattering contribution:

Sð1Þ ¼ Sð1Þ1 þ Sð1Þ2 ; (16)

with

Sð1Þi ¼�itAbi
1

V 2

1ffiffiffiffiffiffiffiffiffiffi
2!pi

p 1ffiffiffiffiffiffiffiffiffiffi
2!p0

i

q 1ffiffiffiffiffiffiffiffiffi
2!k

p 1ffiffiffiffiffiffiffiffiffiffi
2!k0

p

�ð2�Þ4�ðkþkB�k0�k0BÞFB;i

�
�

mi

ð ~k� ~k0Þ
�
: (17)

where tAbi are the single scattering amplitudes given in the

Appendix, V represents the volume of a box where we
normalize to unity the plane wave states, the momenta are
defined in Fig. 4(b),!p represents the on-shell energy of the

corresponding particle with momentum p, kB (k0B) repre-
sents the total momentum of the initial (final) cluster B and
� is the reduced mass of the b1b2 system with masses m1,
m2, respectively. In Eq. (17), FB;i is the form factor of the

particleBwhich represents essentially the Fourier transform
of its wave function. The derivation of the form factor is
similar to the one done in Refs. [46,56], where we refer also
for further discussion and interpretation. The form factor has
to be projected onto swave, the onewe are considering in the
present work. Hence, FB;i in Eq. (17) is replaced by

FðsÞ
B;iðsÞ ¼

1

2

Z 1

�1
d cos	sFBð ~vÞ (18)

where ~v � �
mi
ð ~k� ~k0Þ with j ~vj ¼ �

mi
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos	sÞ

p
, k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� ðMA þMBÞ2Þðs� ðMA �MBÞ2

p Þ=2 ffiffiffi
s

p
above the AB

threshold and zero below. The B resonance form factor,
FBð ~vÞ, is given by

FBð ~vÞ¼ 1

N

Z
j ~pj<�j ~p� ~vj<�

d3p

� 1

mB�!1ð ~pÞ�!2ð ~pÞþ i�1þ�2

2

� 1

mB�!1ð ~p� ~vÞ�!2ð ~p� ~vÞþ i�1þ�2

2

;

N ¼
Z
j ~pj<�

d3p
1

ðmB�!1ð ~pÞ�!2ð ~pÞþ i�1þ�2

2 Þ2 : (19)

where !jð ~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

j

q
and �j is the width of the bj

particle. In Eq. (19), � represents a three-momentum
cutoff with a similar physical meaning [46] as the three-
momentum cutoff of the vector-vector loop function
of Eq. (5). For that reason we take for B ¼ a2, f2 and K�

2

the same values for � as for the cutoffs mentioned in
Sec. IIA for the corresponding channels. The 1=N factor
is introduced in order to normalize to unity the form factor at
zero momentum.
In Fig. 5 we show the form factors for the a2, f2 and K

�
2

as a function of the modulus of the momentum.
The inclusion of the form factor in the single scattering

contribution, Eq. (17), can be relevant for energies far
above the AB threshold. In the present work we are above
threshold only in the channels where the particle A is a
pion. We have checked that, in any case, the numerical
effect of this form factor in the single scattering mecha-
nism is small. However for the multiple scattering mecha-
nisms the form factor is a key ingredient as we shall see
below.
The next order contribution of the FCA to the Faddeev

equations is the double scattering mechanism, which cor-
responds to Fig. 4(b). The S matrix for this contribution
takes the form

Sð2Þ ¼ Sð2Þ1 þ Sð2Þ2 ; (20)

with

0 500 1000 1500 2000 2500 3000 3500

q [MeV]

0

0.2

0.4

0.6

0.8

1

F B
(q_ > )

f
2

a
2

K
*

2

FIG. 5. Form factors for the a2, f2 and K�
2 tensor mesons.
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Sð2Þi ¼ �ið2�Þ4�ðkþ kB � k0 � k0BÞ
1

V 2

� 1ffiffiffiffiffiffiffiffiffi
2!k

p 1ffiffiffiffiffiffiffiffiffiffi
2!k0

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!p1

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

1

q 1ffiffiffiffiffiffiffiffiffiffiffi
2!p2

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!p0

2

q

�
Z d3q

ð2�Þ3 FB

�
~q�

~kmj�i þ ~k0mi

m1 þm2

�

� 1

q02 � ~q2 �m2
A þ i�

tAb1tAb2 : (21)

withq0ðs;A;BÞ¼ ðs�m2
A�m2

BÞ=ð2mBÞ. The term
~kmj�iþ ~k0mi

m1þm2

inside the argument of the form factor is small for bound
states, below threshold, and thus it is not considered in
previous works regarding the FCA. If one considers this
term, then FB must be projected onto s wave as in Eq. (18).

We have checked that the term
~kmj�iþ ~k0mi

m1þm2
inside the argument

of the form factor has a small numerical effect and thus we
have not considered it in the numerical evaluations for com-
putational time reasons.

On the other hand, taking into account the general form
of the S matrix of an AB interaction

S ¼ �iTð2�Þ4�ðkþ kB � k0 � k0BÞ
� 1

V 2

1ffiffiffiffiffiffiffiffiffi
2!k

p 1ffiffiffiffiffiffiffiffiffiffi
2!k0

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!kB

p 1ffiffiffiffiffiffiffiffiffiffiffi
2!k0B

q : (22)

and comparing this equation with Eqs. (17) and (21), we
obtain that the FCA Eqs. (14) take in our case the form

TAb1 ¼ FðsÞ
B;1

�t1 þ �t1G0TAb2 TAb2 ¼ FðsÞ
B;2

�t2 þ �t2G0TAb1

T ¼ TAb1 þ TAb2 (23)

with

�t i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!kB!k0B
!pi

!p0
i

s
tAbiðsiÞ: (24)

Note that the argument of the tAbi function is si of Eq. (15),

whereas the total amplitude T can be regarded as a function
of the global s. In Eq. (23)

G0ðs;A; BÞ ¼ 1

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!kB!k0B
p

Z d3q

ð2�Þ3 FBð ~qÞ

� 1

q0ðs;A;BÞ2 � ~q2 �m2
A þ i�

: (25)

As an example, we show in Fig. 6 the real and imaginary
parts of the G0 function for the channel �a2. Close to the
threshold it resembles the typical shape of the loop func-
tion of two mesons, in this case one � and one a2. For the
other channels G0 has similar qualitative shapes but with
different thresholds.

Solving algebraically the system of Eqs. (23) gives the
following final three-body scattering amplitude

T¼TAb1 þTAb2

¼ �t1þ �t2þ2�t1 �t2G0

1� �t1 �t2 ~G
2
0

þ �t1ðFðsÞ
B;1�1Þþ �t2ðFðsÞ

B;2�1Þ (26)

Thus far we have not considered anywhere the finite
width of the tensor resonance B. We have taken this effect
into account by folding the final amplitude TðMBÞ, re-
garded as a function of MB, with the spectral function of
the B resonance:

T!T¼ 1

N B

Z ðMBþ2�0
BÞ2

ðMB�2�0
BÞ2

dsB

� Im

�
1

sB�M2
Bþ iMB�BðsBÞ

�
Tð ffiffiffiffiffi

sV
p Þ;

N B¼
Z ðMBþ2�0

BÞ2

ðMB�2�0
BÞ2

dsBIm

�
1

sB�M2
Bþ iMB�BðsBÞ

�
: (27)

where �BðsBÞ is the energy dependent width of the B
particle and �0

B ¼ �BðM2
BÞ.

Thus far we have only considered the interaction of one
single channel consisting of one pseudoscalar meson and
one tensor meson. We are going to estimate the possible
coupled channels effect. If we look at Table V in the
Appendix, we see that for total isospin I ¼ 1=2 of the
PVV system we can have for single scattering interaction
nondiagonal scattering amplitudes. (This is not the case for
I ¼ 1 and I ¼ 0). For instance, an initial �K�

2 state can
turn into Ka2 thanks to the transition t��;K �K� . However a

direct application of the FCA cannot be done in this case
since the FCA requires that the B cluster, the tensor meson
in our case, is not much altered by the interaction with the
A particle, the pseudoscalar meson. Otherwise one should
evaluate the mechanisms of the multistep processes with
quantum field theory evaluating the corresponding three
meson loops, etc. This will spoil the simplicity of the FCA
approximation since the problem becomes very involved
with the higher iterations and ultimately turns out into a
problem far more complicated than the use of the exact

√
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FIG. 6. G0 function for the �a2 channel.
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Faddeev equations from the beginning. The wave functions
used in the derivation of the S matrix and the form factors
(see Ref. [46]) are now different for the initial and final
cluster B and thus the derivation in this section is not
directly valid. The differences are essentially due to the
different masses between different channels. However, in
the present case the constituent particles of the B resonance
of the initial and final state are all vector mesons, and thus
they have a similar mass and so are the typical momenta
inside the clusters B. On the other hand, doing coupled
channels is in general relevant if the final amplitude for the
different channels have a similar strength. However, ad-
vancing some results, this is not the case in the present
work. From all this reasons we can conclude that the
couple channel effects will be small and thus we can
just estimate its effect adapting the formalism discussed
so far.

The equation for the coupled channel estimation is now
formally the same than Eq. (23) but now the amplitudes are
4� 4 matrices (since we have four pseudoscalar-tensor
channels for I ¼ 1=2) such that ðTiÞjk, i ¼ 1, 2; j, k ¼
1� 4, represents the interaction Ti

Ajbi;j!Akbi;k
of channel j

starting with particle i of the cluster to produce channel k.

Now ð�tiÞjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
!Bj

!Bk

!i;j!i;k

r
tiAjbi;j!Akbi;k

. The G0 function is now a

diagonal 4� 4 matrix which elements are G0ðs;Ai; BiÞ,
i ¼ 1, 4. The form factor that multiplies the single scatter-
ing contribution in Eq. (23) is now a diagonal matrix which

element jj is FðsÞ
Bj;i

. Finally, to take into account the width of

the B particles, an independent folding with their spectral
functions analogous to Eq. (27) is implemented for every
different B species.

IV. RESULTS

In Fig. 7 we show the modulus squared of the three-body
scattering amplitudes for each channel and for total isospin
I ¼ 1, I ¼ 0 and I ¼ 1=2. The calculation accounts for the
full model but without coupled channels in I ¼ 1=2, which
will be discussed later on. In all the plots the dotted line
represent the results for the dominant channels but consid-
ering only the single scattering contribution. The single
scattering plots have been normalized to the peak of the
dominant channel for every isospin in order to make easier
the comparison of the position of the maxima (the real size
of the dotted plots for I ¼ 1 and I ¼ 0 is actually about a
factor three larger than the solid lines). In the I ¼ 1=2 case
the dotted and solid lines overlap. The particle labels over
the dominant peaks indicate the experimental pseudotensor
mesons to which we associate our dynamically generated
resonances.

Considering only the single scattering, resonant shapes
are clearly visible in the plots but the position of the
maxima do not agree well with the experimental value of
the closest resonance in the corresponding channel, except

for I ¼ 1=2. In Table II the value of the masses of the
dynamically generated pseudotensor systems are shown in
comparison with the experimental values at the PDG [57].
The second column of Table II indicates the dominant
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FIG. 7. Modulus squared of the three-body pseudoscalar-vec-
tor-vector scattering amplitudes for the different total isospin
channels. No coupled channels effect is considered for the I ¼
1=2 case. The particle labels over the dominant peaks indicate
the experimental pseudotensor 2�þ mesons to which our dy-
namically generated are associated.
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channel, which is the one chosen to get the mass quoted in
the table obtained from the position of the maximum.

When the multiple scattering mechanisms are added, an
important improvement in the agreement with experimental
masses is obtained for I ¼ 1 and I ¼ 0. For the I ¼ 1=2
channel no change is appreciable when adding the multiple
scattering mechanisms but for this channel the mass ob-
tained with single scattering contribution already agreed
well with the experimental value for the K�

2ð1770Þ reso-
nance. The improvement obtained when considering the
full mechanisms is an indication of the goodness and va-
lidity of the model proposed in the present work for the
nature of the pseudotensor mesons considered. From the
width of the amplitudes squared we can estimate the width
of the dynamically generated pseudotensor states. We get
for the �2ð1670Þ, �2ð1645Þ and K�

2ð1770Þ, 160 MeV,
170 MeV and 80 MeV, respectively, to be compared with
the experimental values 260� 9, 181� 11 and 186� 14,
respectively. The underestimation of the width within our
model is not worrying. Indeed it is expected because a good
reproduction of the width would imply to account also for
other components and possible decay channels which can
contribute to the decay width even if they do not signifi-
cantly affect the mass. Therefore, in contrast with the mass
results, which are quite reliable, our results for the width
must be considered only qualitatively.

It is worth stressing the simplicity of our approach
and that there are no free parameters in the model for the
three-body scattering, once the regularization parameters
of the VV and PV amplitudes are slightly changed to agree
better with the tensor and axial-vector experimental

masses, respectively, as explained in Sec. II. Therefore
the results and conclusions of the present work are genuine
predictions with no fits to any pseudotensor meson parame-
ter or experimental data.
The results allow us to conclude that our three-body

model generates dynamically the �2ð1670Þ as a domi-
nantly �a2 molecule, the �2ð1645Þ as �f2 and the
K�

2ð1770Þ as Ka2. Certainly other Fock space components
like quark-antiquark, two meson components (different to
those considered in the present work), etc, are present in
the pseudotensor resonances. However the fact that with
the picture of a pseudoscalar-tensor molecule, with the
tensor itself being two vector mesons, we get good agree-
ment for the value of the masses reinforces the idea that
this component is the dominant one in the wave function of
these pseudotensor mesons. The extra components could
only affect the total width of the resonances, as explained
above.
In Fig. 8 we show the coupled channel effect in the

I ¼ 1=2 channel. We see, by comparing with Fig. 7 that
the effect is very small and in this particular case, since
there is one channel so strongly dominant,Ka2, the coupled
channel effects is negligible and thus there is no need to
improve upon the estimation done in the present work.

V. SUMMARY

We have performed a theoretical study of the three-body
system consisting of one pseudoscalar and two vector
mesons were the vector mesons are strongly correlated
forming a tensor resonance. The motivation was that in
previous works it was obtained that two vector mesons in
spin 2 and swave tend to bind making up the lightest tensor
mesons 2þþ and the interaction of a pseudoscalar and a
vector meson in s wave is also very attractive and generate
dynamically the lightest axial vector resonances. Thus the
PVV system could be strongly attractive and generate 2�þ
resonant states.
The three-body amplitudes are evaluated solving the

Faddeev equations in the fixed center approximation,
which can be applied since two of the three particles are
clustered. The three-body amplitudes are written in terms
of the unitarized PV interactions, which are obtained from
the application of the techniques of the chiral unitary
approach. The method used for the three-body evaluation
does not introduce any new parameter once the regulari-
zation in the VP and VV is chosen. This allows us to make
genuine predictions which can be compared with experi-
mental values for pseudotensor resonances.

TABLE II. Results for the masses of the dynamically generated pseudotensor resonances. (All units are MeV)

Assigned resonance Dominant channel Mass PDG [57] Mass, only single scatt. Mass full model

�2ð1670Þ �a2ð1320Þ 1672� 3 1800 1660

�2ð1645Þ �f2ð1270Þ 1617� 5 1795 1695

K�
2ð1770Þ Ka2ð1320Þ 1773� 8 1775 1775
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FIG. 8. Same meaning as in Fig. 7 for the I ¼ 1=2 case but
implementing coupled channels.
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In the three-body amplitudesweobtain significant resonant
signals which can be associated with the�2ð1670Þ,�2ð1645Þ
and K�

2ð1770Þ experimental pseudotensor resonances, where
the dominant channels in the making up of this resonances
are �a2ð1320Þ, �f2ð1270Þ and Ka2ð1320Þ, respectively.

In spite that other states like quark-antiquark, other
meson-meson, several mesons, etc., can contribute to the
wave functions of these pseudotensor resonances, the re-
markable agreement obtained with our picture make us to
consider the pseudoscalar-tensor mesons contribution as the
dominant component in the building up of these resonances.
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APPENDIX: SINGLE SCATTERING IN TERMS
OF TWO-BODYAMPLITUDES

We derive in this Appendix the exact expression of the
single scattering amplitudes, ti, in terms of the unitarized
PV scattering amplitudes. The latter are calculated for a
given PV isospin. Therefore, we need to write the total
isospin state of the global system AB, jIA; IB; I;Mi, in
terms of the coupled isospin state of particle A and bi,
jIA; Ii; IAi;MAii � jIj;Mji:

jIA; IB; I;MiðiÞ ¼ X
IAi

X
MAi

X
MA

CðIA; IB; IjMA;M�MA;MÞCðIi; Ij; IBjMAi �MA;M�MAi;M�MAÞ

� CðIA; Ii; IAijMA;MAi �MA;MAiÞ½�� �i1ð�� 1Þ�jIA; Ii; IAi;MAii � jIj;M�MAii (28)

where the i label means that we are correlating the particle A with particle bi, i ¼ 1, 2, j � i, IA is the isospin of the
particle A, IB the isospin of particle B, I the total AB isospin, Ii the isospin of particle bi, IAi the global isospin of the
A-bi system, and the Mx are the third components of the corresponding isospins. In Eq. (28), � ¼ ð�1ÞI1þI2�IB , � is
the Kronecker delta and Cðj1; j2; j3jm1; m2; m3Þ represent Clebsch-Gordan coefficients. For example, for total isospin
I ¼ 0, one of the possible channels is �a2, with A ¼ �, B ¼ a2, b1 ¼ K� and b2 ¼ �K�. In this case for the Ab1
interaction we have

ð�a2Þð1ÞI¼0;M¼0 ¼ � 1ffiffiffi
2

p ð�K�Þ1=2;�1=2
�K�0 � 1ffiffiffi

2
p ð�K�Þ1=2;þ1=2K

��: (29)

Throughout the work we have used the following isospin conventions: j�þi ¼ �j1;þ1i, j�þi ¼ �j1;þ1i,
jaþ2 i ¼ �j1;þ1i, jK�i ¼ �j 12 ;� 1

2i, jK��i ¼ �j 12 ;� 1
2i, jK��

2 i ¼ �j 12 ;� 1
2i (for the other particles the sign

is positive) as is usually used in chiral perturbation theory and in the work from which our PV amplitudes is
based [13].

The scattering potential for the single scattering contribution can be written in terms of the two-body amplitudes,
tAbi;A0bj0 , for the transition Abi ! A0bj0 :

ðiÞhAb1b2jVjA0b01b02iði0Þ ¼
X
IAi

�X
MAi

X
MA

X
M0

A

CðIA; IB; IjMA;M�MA;MÞCðIA0 ; IB0 ; IjMA0 ;M�MA0 ;MÞ

� CðIi; Ij; IBjMAi �MA;M�MAi;M�MAÞCðIi0 ; Ij0 ; IB0 jMAi0 �MA;M�MAi0 ;M�MA0 Þ
� CðIA; Ii; IAijMA;MAi �MA;MAiÞCðIA0 ; Ii0 ; IAijMA0 ;MAi �MA0 ;MAiÞ

�

� ½�� �i1ð�� 1Þ�½�0 � �i01ð�0 � 1Þ�tðIAiÞ
Abi;A

0bi0

� X
IAi


i;i0t
ðIAiÞ
Abi;A

0bi0
: (30)

Note that only the diagonal tAbi;Abi is needed if not doing
coupled channels. The expression in Eq. (31) is very
convenient and easily implementable for computer evalu-
ation and is general for any three-body system made of
A, b1 and b2 and thus can be useful for other works
where the FCA is applied. In Tables III, IV, and V we

show the two-body amplitudes obtained from Eq. (30)
for the three different total PVV isospins. The different
PVV channels are labeled by the pseudoscalar meson,
the tensor resonance and in brackets the two vector
mesons dominant in the formation of the tensor meson.
For I ¼ 1 and I ¼ 0 the nondiagonal terms are zero and
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thus what we show in the table represent diagonal ele-
ments. For I ¼ 1=2 the first column represent the initial
channel and the first row the final one. The nondiagonal
terms are only needed in the estimation of the coupled
channels.

At this point let us explicit further the explanation why
the K �K�

2 and
�KK�

2 channels do not contribute to the I ¼ 1
and I ¼ 0 three-body amplitudes. We will discuss the I ¼
1 case since the I ¼ 0 reasoning is totally analogous. The
channel with I ¼ 1 that we are considering has negative G
parity. The K �K�

2 and �KK�
2 states do not have defined G

parity by themselves. However if we define KK�
2ð�Þ �

1=
ffiffiffi
2

p jK �K�
2 	 �KK�

2i, it is eigenstate of G with eigenvalue

�1. Thus in principle we should include KK�
2ð�Þ as an-

other channel in the global I ¼ 1 case. Let us consider first

the jK �K�
2i channel in I ¼ 1, M ¼ þ1. For the evaluations

needed in the present work, we take the K�
2 as a �K

� state
and for the evaluation of the FCA we need the interaction
of the K with the � and the �K�. Let us consider first the
interaction of the kaon with the �K�. Applying Eq. (28) we
have

ðK �K�
2Þ1;þ1!� 1ffiffiffi

3
p ½ðK �K�Þ0;0�þ�ðK �K�Þ1;0�þ

�ðK �K�Þ1;þ1�
0�;

ð �KK�
2Þ1;þ1!� 1ffiffiffi

3
p ½ð �KK�Þ0;0�þþð �KK�Þ1;0�þ

þð �KK�Þ1;þ1�
0� (31)

Therefore we have to do

KK�
2ð�Þ¼ 1ffiffiffi

2
p ðK �K�

2þ �KK�
2Þ1;þ1

!� 1ffiffiffi
3

p
�
1ffiffiffi
2

p ðK �K�þ �KK�Þ0;0�þ

� 1ffiffiffi
2

p ðK �K�þ �KK�Þ1;0�þ

� 1ffiffiffi
2

p ðK �K�þ �KK�Þ1;þ1�
0

�
: (32)

But 1ffiffi
2

p ðK �K� þ �KK�Þ is eigenstate of G with eigenvalue

þ1 and, on the other hand, � has G parity ðþÞ. Therefore
under a G parity transformation the right member of
Eq. (32) has G parity ðþÞ which is of opposite sign to
what is required by the left term of Eq. (32). Therefore this
channels is not permitted in the evaluation of the FCA of
the Faddeev equations. An analogous reasoning leads to
the same conclusion for the interaction of the kaon with the
� and also for the interaction needed in the global I ¼ 0
channel.

TABLE III. Three-body single scattering amplitudes in terms
of the unitarized two-body (PV) amplitudes for total isospin
I ¼ 1

�f2ð��Þ �a2ðK� �K�Þ
t1 2

9 t
ðI¼0Þ
��;�� þ 2

3 t
ðI¼1Þ
��;�� þ 10

9 t
ðI¼2Þ
��;�� tðI¼1=2Þ

�K� ;�K�

t2 2
9 t

ðI¼0Þ
��;�� þ 2

3 t
ðI¼1Þ
��;�� þ 10

9 t
ðI¼2Þ
��;�� tðI¼1=2Þ

�K� ;�K�

TABLE IV. Three-body single scattering amplitudes in terms
of the unitarized two-body (PV) amplitudes for total isospin
I ¼ 0

�a2ðK� �K�Þ �f2ð��Þ
t1 tðI¼1=2Þ

�K�;�K� 2tðI¼1Þ
��;��

t2 tðI¼1=2Þ
�K�;�K� 2tðI¼1Þ

��;��

TABLE V. Three-body single scattering amplitudes in terms of the unitarized two-body (PV) amplitudes for total isospin I ¼ 1=2

�K�
2ð�K�Þ Ka2ðK� �K�Þ Kf2ð��Þ �K�

2ð�K�Þ

�K�
2ð�K�Þ

t1 ¼ 1
3 t

ðI¼0Þ
��;�� þ 2

3 t
ðI¼1Þ
��;�� t1 ¼ � 1

2 t
ðI¼0Þ
��;K �K� þ 1ffiffi

6
p tðI¼1Þ

��;K �K� t1 ¼ 0 t1 ¼
ffiffi
2
3

q
tðI¼1Þ
��;��

t2 ¼ 1
9 t

ðI¼1=2Þ
�K�;�K� þ 8

9 t
ðI¼3=2Þ
�K�;�K� t2 ¼ 0 t2 ¼ � 2

3
ffiffi
3

p tðI¼1=2Þ
�K�;K� � 8

3
ffiffi
3

p tðI¼3=2Þ
�K�;K� t2 ¼ � 1

3 t
ðI¼1=2Þ
�K�;�K�

Ka2ðK� �K�Þ t1 ¼ 0 t1 ¼ 0 t1 ¼ 0 t1 ¼ 0

t2 ¼ � 1
2 t

ðI¼0Þ
K �K�;�� þ 1ffiffi

6
p tðI¼1Þ

K �K�;�� t2 ¼ 3
4 t

ðI¼0Þ
K �K� ;K �K� þ 1

4 t
ðI¼1Þ
K �K� ;K �K� t2 ¼ 0 t2 ¼ 1

2 t
ðI¼1Þ
K �K�;��

Kf2ð��Þ
t1 ¼ � 1

3
ffiffi
3

p tðI¼1=2Þ
K�;�K� � 4

3
ffiffi
3

p tðI¼3=2Þ
K�;�K� t1 ¼ 0 t1 ¼ 2

3 t
ðI¼1=2Þ
K�;K� þ 4

3 t
ðI¼3=2Þ
K�;K� t1 ¼ 1ffiffi

3
p tðI¼1=2Þ

K�;�K�

t2 ¼ � 1
3
ffiffi
3

p tðI¼1=2Þ
K�;�K� � 4

3
ffiffi
3

p tðI¼3=2Þ
K�;�K� t2 ¼ 0 t2 ¼ 2

3 t
ðI¼1=2Þ
K�;K� þ 4

3 t
ðI¼3=2Þ
K�;K� t2 ¼ 1ffiffi

3
p tðI¼1=2Þ

K�;�K�

�K�
2ð�K�Þ t1 ¼

ffiffi
2
3

q
tðI¼1Þ
��;��

t1 ¼ 1
2 t

ðI¼1Þ
K��;K �K� t1 ¼ 0 t1 ¼ tðI¼1Þ

��;��

t2 ¼ � 1
3 t

ðI¼1=2Þ
�K�;�K� t2 ¼ 0 t2 ¼ 2ffiffi

3
p tðI¼1=2Þ

�K�;K� t2 ¼ tðI¼1=2Þ
�K�;�K�
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