
Gluon distribution functions and Higgs boson production at moderate transverse momentum

Peng Sun,1 Bo-Wen Xiao,2 and Feng Yuan3,1,4

1Center for High Energy Physics, Peking University, Beijing 100871, China
2Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

3Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 8 September 2011; published 4 November 2011)

We investigate the gluon distribution functions and their contributions to the Higgs boson production in

pp collisions in the transverse momentum-dependent factorization formalism. In addition to the usual

azimuthal symmetric transverse momentum-dependent gluon distribution, we find that the azimuthal

correlated gluon distribution also contributes to the Higgs boson production. This explains recent findings

on the additional contribution in the transverse momentum resummation for the Higgs boson production

as compared to that for electroweak boson production processes. We further examine the small-x naive

kt-factorization in the dilute region and find that the azimuthal correlated gluon distribution contribution is

consistently taken into account. The result agrees with the transverse momentum-dependent factorization

formalism. We comment on the possible breakdown of the naive kt-factorization in the dense medium

region, due to the unique behaviors for the gluon distributions.

DOI: 10.1103/PhysRevD.84.094005 PACS numbers: 12.15.Ji, 12.38.�t, 13.85.Qk

I. INTRODUCTION

Recently, several studies have found that the transverse
momentum resummation for the gluon-gluon fusion pro-
cesses differ from those for the quark-antiquark annihila-
tion (electroweak boson/the Drell-Yan lepton pair
production) processes in the Collins-Soper-Sterman
(CSS) framework [1,2], in particular, in the Higgs boson
production [3] and di-photon production [4] processes.
Similar results have been found in the context of the soft-
collinear-effective theory formalism for the Higgs boson
production [5]. These results have raised some concern on
the derivation of the CSS formalism and the associated
factorization argument for the gluon-gluon fusion
processes. In this paper, we reexamine the transverse
momentum-dependent (TMD) factorization for Higgs bo-
son production in pp collisions. We find that there is an
additional contribution in the leading power in the TMD
factorization from the azimuthal correlated transverse
momentum-dependent gluon distribution [6]. With the
complete TMD factorization results, the CSS resummation
stands for the gluon-gluon fusion process.

Meanwhile, the azimuthal correlated gluon distribution,
also referred to as the linearly polarized gluon distribution,
has been recently discussed in the context of the transverse
momentum-dependent factorization formalism in, for ex-
ample, the dijet-correlation in deep inelastic scattering
process [7], di-photon production in pp collisions [8].
This gluon distribution will lead to the azimuthal asymme-
tries in these reactions, and the experimental observation
shall provide important information on it. Moreover, in
Ref. [9] it was found that the azimuthal correlated gluon
distribution has a unique behavior at small-x from the
saturation model [10–12] calculations. This property em-
phasizes its special role in the study of the small-x gluon

saturation in the high energy scattering processes, in par-
ticular, at the planed electron-ion collider [13,14]. In this
paper, we will also examine the TMD factorization for the
Higgs boson production at small-x by taking into account
the azimuthal correlated gluon distribution contribution.
We will compare it to the result obtained from the well-
known small-x kt-factorization formalism in the dilute
region [15,16], where the two gluon distribution functions
are the same at small-x limit. The consistency between
these two frameworks shed important insights on the fac-
torization property for the hard processes at small-x.
However, in the dense medium and small transverse mo-
mentum region, the azimuthal correlated gluon distribution
is different from the usual gluon distribution function, and
we cannot write the Higgs boson production as the simple
naive kt-factorization formalism. This indicates that the
naive kt-factorization breaks down even for the color-
neutral particle production in the dense region in hadronic
scattering processes as also found in Ref. [17], similar to
the situation for the heavy quark-antiquark pair production
process [18].
The rest of the paper is organized as follows. In Sec. II,

we introduce the leading-order transverse momentum-
dependent gluon distributions, including the usual one
and the azimuthal correlated gluon distribution function.
We will also discuss the Collins-Soper evolution for
these functions, which are important for the transverse-
momentum resummation. We will show that the azimuthal
correlated gluon distribution also contributes to the Higgs
boson production in pp collisions. The CSS resummation
is provided in Sec. III, where the gluon distributions are
calculated in terms of the integrated parton distributions at
large transverse momentum (small b?). In Sec. IV, we
extend our discussions to the small-x region, where the
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TMD factorization and kt-factorization formalisms are
compared. We conclude our paper in Sec. V.

II. TRANSVERSE MOMENTUM-DEPENDENT
GLUON DISTRIBUTIONS AND HIGGS

BOSON PRODUCTION

The transverse momentum-dependent factorization is an
important step to derive the CSS resummation for the
Higgs boson production in pp collisions [1]. Following
the Drell-Yan example, in our previous calculations [19]
we have studied the factorization for the Higgs boson
production in terms of the transverse momentum-
dependent gluon distributions, where however the azimu-
thal correlated gluon distribution function was not consid-
ered. In the following, we will find that its contribution is at
the same order as the usual gluon distribution in the TMD
factorization formalism. We consider, in general case, the
Higgs boson production in pp collisions,

PA þ PB ! H0 þ X; (1)

where H0 represents the scalar-Higgs boson, and the had-
ron A is moving þẑ direction and B along the �ẑ. Let us
first introduce the spin-independent TMD gluon distribu-
tions, which can be defined through the following matrix
[19–22]:

M��ðx; k?; �; x�; �Þ

¼
Z d��d2�?

Pþð2�Þ3 e�ixPþ��þi ~k?� ~�?hPjFþ�
a ð��; �?Þ

�Ly
vabð��; �?ÞLvbcð0; 0?ÞF�þ

c ð0ÞjPi; (2)

where F��
a is the gluon field strength tensor. The light-cone

components are defined as k� ¼ ðk0 � k3Þ= ffiffiffi
2

p
. In the

above equation, Pþ ¼ Pþ
A represent the light-cone mo-

mentum of the hadron A, and x is the longitudinal-
momentum fraction carried by the gluon, whereas k? is
the transverse-momentum. For the TMD parton distribu-
tions, the gauge link Lv depends on the process [23]. In
this paper, we focus on the Higgs boson production, and
the gauge link is from the past: Lvð��; �?;�1Þ ¼
P expð�ig

R
0
�1 d�v � Að�vþ �ÞÞ in the covariant gauge,

where A� ¼ A
�
c tc is the gluon potential in the adjoint

representation, with tcab ¼ �ifabc. In a singular gauge, a

transverse gauge link at the spatial infinity has to be
included as well. Four-velocity v� is an off-light-cone
vector v� ¼ ðv�; vþ; v? ¼ 0Þ with v� � vþ to regulate
the light-cone singularity for the TMD parton distributions.
With this parametrization, the TMD parton distributions
will depend on �2 ¼ ð2v � PÞ2=v2. (In later part, we also
use �21 for the TMD gluon distribution from hadron A:
�21 ¼ ð2v � PAÞ2=v2.) An evolution equation respect to �2

is called the Collins-Soper evolution equation, and can be
used to resum the large logarithms [1,2].

In the context of the TMD factorization, we take into
account the leading power contribution in terms of P?=M
where P? and M are the transverse momentum and mass
for the Higgs particle. To obtain the full result in the TMD
factorization, we have to take into account the contribu-
tions from all the leading power gluon distribution func-
tions. The leading power expansion of the matrix M�� in
the unpolarized nucleon contains two independent TMD
gluon distributions [7,8,21,22],

M��ðx;k?Þ

¼ 1

2

�
xgðx;k?Þg��

? þ xhgðx;k?Þ
�
2k�?k

�
?

k2?
�g

��
?

��
; (3)

where g��
? is defined as g��

? ¼�g��þðP�
AP

�
BþP�

AP
�
B Þ=

PA �PB. In the above parameterizations, gðx; k?Þ is the
usual azimuthal symmetric TMD gluon distribution, and
hgðx; k?Þ the azimuthal correlated TMD gluon distribution

function. hg vanishes when integrating over transverse

momentum for the matrix M��, which means there is no
integrated gluon distribution hgðxÞ. In the literature, this

function was also called ‘‘linearly polarized’’ gluon distri-
bution. However, in order to differ from the true linearly
polarized gluon distribution defined for the spin-1 hadrons
[24,25], we prefer to use the name of ‘‘azimuthal corre-
lated’’ gluon distribution for the spin-1=2 hadrons, follow-
ing the notation of Ref. [3]. Similar functional form has
been discussed in the generalized parton distribution for
the gluons as well (see, for example, Ref. [26]).
As mentioned above, the TMD parton distribution func-

tions depend on the energy of the parenting hadrons,
through the variable �2 ¼ ð2v � PÞ2=v2 � 2ðPþÞ2v�=vþ.
This equation is better presented in the impact parameter
space [20],

�
@

@�
gðx;b?;x�;�;�Þ¼ ðKgþGgÞgðx;b?;x�;�;�Þ; (4)

where the gluon distribution in the impact parameter space
gðx; bÞ is the Fourier transform of the TMD distribution:
gðx; b?Þ ¼

R
d2k?eik?�b?gðx; k?Þ, and Kg and Gg are soft

and hard evolution kernels, respectively. It is straightfor-
ward to extend the above equation to that for the azimuthal
correlated gluon distribution hg [27,28],

�
@

@�
~h��
g ðx; b; x�;�; �Þ ¼ ðKg þGgÞ~h��

g ðx; b; x�;�; �Þ;
(5)

where ~hg is defined as

~h
��
g ðx; b?Þ ¼ 1

2

Z
d2k?eik?�b?

�
2k�?k

�
?

k2?
� g

��
?

�
hgðx; k?Þ:

(6)

In particular, we find that the sum of Kg þGg are the same

for the above two equations and, at one-loop order, read
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Kg þGg ¼ ��sCA

�
ln
x2�2b2

4
e2	E�ð3=2Þ: (7)

Furthermore, the Kg and Gg obey the following renormal-

ization group equation:

�
@Kg

@�
¼ ��

@Gg

@�
¼ �	Kg ¼ �2

�sCA

�
: (8)

The above evolution equations will be used to perform the
transverse momentum resummation for the Higgs boson
production in pp collisions.

For the TMD gluon distribution from hadron B, we can
formulate similarly. We will also introduce an off-light-
cone vector �v� ¼ ð �v�; �vþ; �v? ¼ 0Þ with �vþ � �v� to
regulate the associated light-cone singularity, and energy
dependent variable �22 ¼ 4ð �v � PBÞ2= �v2. The same Collins-
Soper evolution equations can be derived as well.

The Higgs boson production in the gluon-fusion process
can be calculated from the effective Lagrangian,

L eff ¼ � 1

4
g
�Fa

��F
a��; (9)

in the heavy top quark limit where� is the scalar field and
g
 is the effective coupling. We will use this effective

Lagrangian in the following calculations. We note the finite
top quark mass effects will not change our general discus-
sions. The leading-order perturbative calculation produces
Higgs particle with zero transverse momentum. Finite
transverse momentum is generated by higher order gluon
radiation contributions. However, at low transverse mo-
mentum these high order corrections introduces large log-
arithms of ln2ðM2=P2

?Þ, which need to be resummed to

make reliable predictions. The TMD factorization is an
appropriate way to perform this resummation. In other
words, at low transverse momentum P? � M, the trans-
verse momentum dependence can be factorized into vari-
ous leading power TMD parton distributions, and the
higher order corrections can be factorized into the relevant
hard factors. The hard factors in the TMD factorization
does not depend on the transverse momentum, and the
resummation can be performed by solving the Collins-
Soper evolution equations for the associated TMD parton
distributions. The lesson from the recent studies [3] is that,
in the TMD factorization, we have to include all leading
power contributions. In particular, the azimuthal correlated
gluon distribution hg was completely ignored in the pre-

vious study [19]. It is straightforward to obtain this con-
tribution in the TMD formula, and a similar factorization
can be formulated as well. After adding this contribution,
the Higgs boson production at low transverse momentum
P? � M can be written as

d3�ðM2; P?; yÞ
d2P?dy

¼ �0

Z
d2 ~k1?d2 ~k2?d2 ~‘?�ð2Þð ~k1? þ ~k2? þ ~‘? � ~P?Þ

�
�
x1gðx1; k1?Þx2gðx2; k2?ÞSð‘?; �; �ÞHðM2; �; �Þ

þ
�
2ðk1? � k2?Þ2

k21?k
2
2?

� 1

�
x1hgðx1; k1?Þx2hgðx2; k2?Þ

� Shð‘?; �; �ÞHhðM2; �; �Þ
�
; (10)

where we follow the notations of Ref. [19], �0 is the
leading-order scalar-particle production from two gluons,
�0 ¼ �g2
=64, and y and P? are Higgs particle’s rapidity

and transverse momentum, respectively. At low-transverse
momentum, the longitudinal-momentum fractions x1 and
x2 for the two incident gluons are related to the scalar

particle’s rapidity y through x1 ¼ Mey=
ffiffiffi
S

p
and x2 ¼

Me�y=
ffiffiffi
S

p
, where S is the total center-of-mass energy

squared S ¼ ðPA þ PBÞ2. �1 and �2 are defined above as
�21 ¼ 4ðv � PAÞ=v2 and �22 ¼ 4ð �v � PBÞ= �v2 and � is a
scheme-dependent parameter to separate contributions to
the soft and hard factors [19]. The above factorization
result is accurate at leading power in P2

?=M
2 at low

transverse momentum. In particular, the interference be-
tween g and hg is power suppressed in this limit.

The factorization for the first term with the usual gluon
distribution follows the previous argument [19], and the
relevant hard and soft factors have been calculated at one-
loop order. Similar calculations can be done for the second
term in Eq. (10). In particular, at one-loop order, we can
factorize the gluon radiation contributions to the different
factors in the factorization formula depending on the kine-
matic regions of the radiated gluon. For example, if the
radiated gluon is parallel to the incoming hadron A, we
factorize its contribution to the TMD gluon distribution hg
from A. If it is parallel to the hadron B, we include that
contribution to the TMD gluon distribution hg from B.

When the gluon momentum is soft, we factorize its con-
tribution to the soft factor. The hard factor is calculated
from the hard gluon radiation in the virtual diagrams,
because the real gluon radiation is power suppressed if
all momentum components are hard in order of M. We
have done the explicit calculations to show this factoriza-
tion at one-loop order [29].
It is easy to find that the soft factors for the above two

terms are identical: Shð‘?Þ ¼ Sð‘?Þ. This is because the
soft gluon radiations do not depend on the spin/polariza-
tion, and are defined identically for these two terms. In the
one-loop calculations, the hard factors are extracted from
the virtual diagrams for the cross section and parton dis-
tribution calculations, and we find that the hard factors are
also the same, HhðM2Þ ¼ HðM2Þ [29],
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Hð1Þ
h ðM2; �2; �Þ ¼ Hð1ÞðM2; �2; �Þ

¼ �sCA

�

�
ln
M2

�2

�
20 þ 1

2
ln�2 � 3

2

�

� 3

4
ln�2 þ 1

8
ln2�2 þ �2 þ 7

2

�
; (11)

where a special coordinate system has been chosen in
which x21�

2
1 ¼ x22�

2
2 ¼ �M2. In a recent calculation for

the single-spin dependent observable, a similar conclusion
was also found [28], which may indicate that all the hard
factors in the TMD factorization are independent of the
spin/polarization.

It is convenient to write down the TMD factorization
formula in the impact parameter space,

d3�ðM2; P?; yÞ
d2P?dy

¼ �0

Z d2 ~b

ð2�Þ2 e
�iP?�b?Wðx1; x2; b;M2Þ;

(12)

where W contains contribution from the two terms in the
TMD factorization,

Wðx1; x2; b;M2Þ ¼ Wgðx1; x2; b;M2Þ þWhðx1; x2; b;M2Þ;
(13)

and Wg and Wh represent the contributions from the usual

gluon distribution gðx; bÞ and the azimuthal correlated
gluon distribution hgðx; bÞ, respectively,

Wgðx1; x2; b; Q2Þ
¼ Sðb;�; �ÞHðM2; �; �Þx1gðx1; b; �; �M2; �Þ

� x2gðx2; b; �; �M2; �Þ (14)

Whðx1; x2; b; Q2Þ
¼ 2Sðb;�; �ÞHðM2; �; �Þx1 ~h��

g ðx1; b; �; �M2; �Þ
� x2 ~h

��
g ðx2; b; �; �M2; �Þ; (15)

where the Wh comes from the specific tensor structure in
the factorization formula Eq. (10). The convolutions in the
transverse-momentum space now reduce to products in
the impact parameter b-space. In the factorization formula,
the large logarithms will show up as lnM2b2 in the various
factors in the above equations. We need to resum these
large logarithms.

III. RESUMMATION

The large logarithms in the factorization formulas in the
last section are resummed by following the Collins-Soper-
Sterman method. The two terms in Eq. (13) satisfy the
Collins-Soper evolution equation separately,

@Wg;hðxi; b;M2Þ
@ lnM2

¼ ðK þG0ÞWg;hðxi; b;M2Þ; (16)

where K and G0 are soft and hard evolution kernels. Since
the two gluon distributions obey the same Collins-Soper
evolution equation and the hard factors are the same, the
evolution kernels are the same as well. Combining the
Collins-Soper evolution equations for the TMD gluon dis-
tributions of Eqs. (5) and (7), and the hard factors at one-
loop order of Eq. (11)), we find that

K þG0 ¼ ��sCA

�
ln

�
M2b2

4
e2	E�20

�
; (17)

where the � dependence between various terms cancels
out. Solving the above evolution equations, we obtain [1]

Wg;hðxi; b;M2Þ ¼ e�Sg;h
Sud

ðM2;b;C1=C2ÞWg;hðxi; b; C2
1=C

2
2=b

2Þ;
(18)

where the large logarithms are included in the Sudakov
form factors,

SSud ¼
Z C2

2
M2

C2
1
=b2

d�2

�2

�
ln

�
C2
2M

2

�2

�
AðC1; �Þ þ BðC1; C2; �Þ

�
:

(19)

Here, C1 and C2 are two parameters of order one. The

functions A and B can be expanded perturbatively �s, A ¼P1
i¼1 A

ðiÞð�s

� Þi and B ¼ P1
i¼1 B

ðiÞð�s

� Þi. Because the A coef-

ficients come from soft factors which are the same for the
two terms Wg and Wh, we expect A will be the same as

well. On the other hand, B coefficients come from the hard
factors in the TMD factorization formulas. Therefore, they
could be different [30]. However, our one-loop calculations
lead to the same hard factors and the same B coefficients
for Wg and Wh. We expect that the effects discussed in

Ref. [30] do not affect our calculations, and we conjecture
that the B coefficients will be the same for these two terms
at higher orders too. With this, we can combine the above
two terms together as

Wðxi;b;M2Þ¼e�SSudðM2;b;C1=C2Þ½Wgðxi;b;C2
1=C

2
2=b

2Þ
þWhðxi;b;C2

1=C
2
2=b

2Þ�; (20)

where SSud represents the universal Sudakov form factor
for the Higgs boson production. Up to the one-loop order,
we have verified this result.
The last step of the complete CSS resummation is to

formulate theWg andWh of the right-hand side of Eq. (20)

at lower scale C2
1=C

2
2b

2 in terms of the integrated parton
distributions,
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Wgðxi; b; C2
1=C

2
2=b

2Þ ¼ X
ij

Z dx01
x01

dx02
x02

x01fiðx01; �Þx02fjðx02; �ÞCg=iðx1=x01; C1=C2=b=�ÞCg=jðx2=x02; C1=C2=b=�Þ; (21)

Whðxi; b; C2
1=C

2
2=b

2Þ ¼ X
ij

Z dx01
x01

dx02
x02

x01fiðx01; �Þx02fjðx02; �ÞCh=iðx1=x01; C1=C2=b=�ÞCh=jðx2=x02; C1=C2=b=�Þ; (22)

where fi;j represent the integrated quark/gluon distribution
functions. For integrated gluon distribution, there is only
the usual one, whereas the counterpart of hg does not exist.
The C ¼ P

i¼0C
ðiÞð�s

� Þi coefficient functions can be calcu-
lated perturbatively. The coefficients Cg=i have been calcu-
lated up to two-loop order [3], where Ch=i are also
calculated up to �s order. In their calculations, the cross
section WðbÞ ¼ WgðbÞ þWhðbÞ in the impact parameter
(b?) space is written as perturbative expansion of �s, from
which the relevant coefficients are extracted by comparing
with the Eqs. (21) and (22). In the following, we will show
how we can calculate Ch=i from the TMD factorization
formula Eq. (15).

To calculate the Wh in Eq. (22), we compute the azimu-

thal correlated gluon distribution ~h��
g in terms of the

integrated quark/gluon distribution functions and substi-
tute into the factorization formula Eq. (15). First, we write

down a similar factorization form for ~h��
g ðb?Þ,

~h��
g ðx; b?Þ ¼ 1

2

�
g��
? � 2b

�
?b

�
?

b2?

�

�
Z dx0

x0
~Ch=iðx=x0; b?; �Þx0fiðx0; �Þ; (23)

where the prefactor of 1
2 ðg��

? � 2b�?b
�
?

b2?
Þ comes from the

basic Lorentz structure for this function.1We know that
there is no integrated hg gluon distribution, which imme-

diately leads to the zeroth order of �s expansion of the
above equation vanishes. As a consequence, the zeroth
order of Ch=i in Eq. (22) vanish as well,

Cð0Þ
h=q ¼ Cð0Þ

h=g ¼ 0: (24)

At order of �s, we can generate the azimuthal correlated
gluon distribution from the integrated quark/gluon distri-
bution functions. For example, the contribution from the
integrated gluon distribution is

hgðx; k?Þ ¼ �s

�2
CA

1

k2?

Z dx0

x0
1� �

�
gðx0Þ; (25)

where � ¼ x=x0. The Fourier transform into the impact
parameter space leads to

~h
��
g ðx; bÞ ¼ 1

2

�
g
��
? � 2b�?b

�
?

b2?

�
�s

�
CA

Z dx0

x0
1� �

�
gðx0Þ:
(26)

This Fourier transform does not generate any divergence,
which is consistent with the factorization formula of
Eq. (23). Because the nonzero leading-order expansion of
Eq. (23) is at order �s, the right-hand side is associated
with the leading-order gluon distribution, and there is no
collinear divergence. An interesting consequence is that
the nonzero leading-order coefficients do not depend on
the factorization scale [3]. However, from the factorization
formula Eq. (23), at order of �2

s , we will find out the
Fourier transform will lead to a collinear divergence which
shall be absorbed into �s order splitting of the integrated
gluon distribution function. This indicates that order �2

s

coefficients ~Cð2Þ
h=i (and consequently the following Cð2Þ

h=i)

will depend on the factorization scale.
Similar results are obtained for the azimuthal correlated

gluon distribution in terms of the integrated quark distri-
bution with the color-factor CF instead of CA,

~h
��
g ðx; bÞ ¼ 1

2

�
g
��
? � 2b�?b

�
?

b2?

�
�s

�
CF

Z dx0

x0
1� �

�
qðx0Þ:
(27)

Combining Eqs. (26) and (27) with Eq. (15), we obtain,

Cð1Þ
h=q ¼ CFð1� �Þ; Cð1Þ

h=g ¼ CAð1� �Þ; (28)

which reproduces the relevant resummation formula in
Ref. [3].
From the above derivation, we find that the different

resummation formalism for the gluon-gluon fusion pro-
cesses as compared to that for the Drell-Yan lepton pair
production process comes from the fact that there are two
independent TMD gluon distribution functions at the lead-
ing order which contribute to the Higgs boson production
at the same order in the limit of P? � M. Although there
are perturbative at different order in terms of the integrated
quark/gluon distribution functions, we have to take into
account the contributions from both functions in order to
completely describe the Higgs boson production at low
transverse-momentum P? � M. In particular, in certain

1In order to keep this factor traceless in the dimensional
regulation calculations, the factor 2 in the bracket should be
replaced by d� 2 where d ¼ 4� � denotes the dimension. In
our following calculations of Eqs. (26) and (27), since there are
no divergence in the Fourier transform, we use d ¼ 4.
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kinematic region such as small-x region discussed in next
section, the azimuthal correlated gluon distribution is as
important as the usual one, where we have to include its
contribution.

IV. SMALL-x kt-FACTORIZATION

The two TMD gluon distribution functions at small-x
have unique properties as recently discussed in Ref. [9].
Applying these results into the factorization formula of
Eq. (10), we will be able to study the factorization of
Higgs boson production in small-x region, where the
well-known kt-factorization formalism [10] has been ap-
plied too. In this section, we discuss the Higgs boson
production in the small-x region, and examine the so-called
naive kt-factorization approach in this kinematic region.

From Eqs. (26), we notice that the gluon splitting con-
tribution to the azimuthal correlated gluon distribution has
the same small-x enhancement as the usual gluon distribu-
tion. Therefore, we expect the similar BFKL evolution for
hgðx; k?Þ at small-x in the dilute regime [14,31–33], since

the operator definition of hgðx; k?Þ at low-x is also related

to the quadrupole. As a consequence, the azimuthal corre-
lated gluon distribution will be as important as the azimu-
thal symmetric one in this kinematic limit. In particular,
from the saturation model calculations of Ref. [9], we
know that the azimuthal correlated gluon distribution func-
tion is the same as the usual gluon distribution function at
small-x in the dilute region with k? � Qs, whereQs is the
characteristic scale in the saturation model. This is also
consistent with the expectation from the BFKL evolution
for these two functions [14]. Therefore, in this region, we
can combine the two contributions in the factorization
formula Eq. (10) into one,

d3�

dyd2P?
¼�0

Z
d2k1?d2k2?�ð2ÞðP?�k1?�k2?Þ

�x1gðx1;k1?Þx2gðx2;k2?Þ2ðk1? �k2?Þ2
k21?k

2
2?

; (29)

where we have used gðx; k?Þ to represent both g and hg
distribution functions, and neglected higher order correc-
tions from the hard and soft factors in Eq. (10). The above
result is exactly the same as that obtained in the naive-kt
factorization [15,16] by taking the small transverse mo-
mentum limit P? � M.2By using the proper physical
gluon polarization [10], one automatically takes into ac-
count the contribution from the azimuthal correlated gluon
distribution in the naive kt-factorization approach.

However, in the dense medium (large nucleus or ex-
tremely small-x), and in particular when k? 	Qs, the
azimuthal correlated gluon distribution is different from

the usual gluon distribution [9] if they follow the defini-
tions in Eq. (2) and (3). They are appropriate definitions for
the gluon distribution in the Higgs boson production pro-
cess [23]. Therefore, we cannot combine these two terms
into one universal structure as suggested in the naive
kt-factorization at small-x. This indicates that the
naive-kt factorization breaks down even for the color-
neutral particle production in the dense medium in the
hadronic scattering processes. A similar conclusion has
also been drawn for the �0 particle production in pA
collisions in the saturation model calculations [17].
However, because of the large Higgs mass, we should be
able to modify the naive-kt factorization to establish an
effective kt-factorization for its production at low
transverse-momentum P? � M, following the similar
study in Ref. [23]. This will lead to consistent results as
the TMD factorization of Eq. (10) with the small-x gluon
distributions calculated in the dense region. An explicit
calculation, including high order corrections, will be very
important to investigate the QCD factorization property for
the hard processes at small-x.

V. CONCLUSIONS

In summary, in this paper, we have investigated the
transverse-momentum dependent gluon distribution func-
tions and the Higgs boson production in pp collisions in
the transverse momentum-dependent factorization ap-
proach. We found that the azimuthal correlated gluon
distribution contributes to the Higgs boson production in
the leading power of PT=M. After taking into account this
contribution, we will be able to explain recent findings on
the resummation for the Higgs boson production at mod-
erate transverse momentum. It will be interesting to extend
this study to the diphoton production process and the
associated resummation formalism [4,8].
We further extended our discussion to the small-x re-

gion, where we compared the TMD factorization result
with the well-known naive kt-factorization result, and
found that they are consistent in the dilute region. We
expect they will differ in the dense region, which may
indicate the naive kt-factorization is violated even for the
neutral particle production at small-x region.
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