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We formulate an effective theory for systems containing a heavy Majorana fermion, such as bound

states of a long-lived gluino. This ‘‘Majorana HQET’’ has the same degrees of freedom as the well-studied

Dirac HQET. It respects an emergent Uð1Þ symmetry despite the fundamental absence of a Uð1Þ for
Majorana fermions. Reparametrization invariance works identically in the two HQETs. Remarkably,

while a Dirac HQET may or may not be charge conjugation symmetric, a charge conjugation symmetry

emerges in all Majorana HQETs, potentially offering low energy probes to distinguish the two theories.
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While all fermions in the standard model (SM)—except
possibly for neutrinos—are Dirac fermions, massive
Majorana fermions are quite common in models beyond
the SM. A particularly well-known example is the gluino, a
heavy color-octet Majorana fermion in minimal supersym-
metric extensions of the SM [1]. If the gluino’s lifetime is
much longer than the time scale of QCD confinement
�10�24 s (as happens in split supersymmetry [2,3],
for instance), it will form a heavy QCD bound state
with gluons and quarks [4]. Such bound states, called
R-hadrons, are actively searched for by experiments at
the Large Hadron Collider [5,6]. Therefore, it is important
to develop a theoretical framework to systematically ana-
lyze the system of a heavy Majorana fermion interacting
with light particles.

Heavy quark effective theory (HQET) [7–10] is an
effective field theory originally developed for studying
the properties of mesons containing a heavy quark such
as the b quark. The standard formulation of HQET, how-
ever, presumes that the fermion is Dirac, and naively
applying it to Majorana fermions has led Ref. [11] to
propose that the celebrated spin symmetry [12–15] of
HQET is lost in the Majorana case (which fortunately is
false, as we will show).

In this paper, we will derive the HQET for a Majorana
fermion and study its basic properties. First, we will show
that Majorana HQET has the same effective degrees of
freedom and propagators as the well-known Dirac HQET.
This agrees with the intuition that, at scales below the
threshold for particle-antiparticle pair creation, we should
not be able to tell whether or not the antiparticle is distinct
from the particle.

We will further sharpen the similarities between
Majorana and Dirac HQETs by demonstrating that
Majorana HQET possesses an emergent Uð1Þ symmetry
as if it came from a Dirac fermion, even though Majorana
fermions by definition cannot have any fundamental Uð1Þ
symmetry. The emergence of the effective Uð1Þ should in
fact be viewed as a consistency check, since Majorana
HQET trivially conserves particle number as being an
effective theory for one-fermion states. We also show

that reparametrization invariance [16–19] works in the
same way in Majorana and Dirac HQETs.
Despite these common features, the two effective theo-

ries are different. We will show that any Majorana HQET
must be also equipped with an emergent charge conjuga-
tion symmetry, even if the full theory lacks a charge con-
jugation symmetry. This effective charge conjugation
symmetry is an exact, intrinsic property of Majorana
HQET that reflects the absence of particle-antiparticle
distinction in the original Majorana fermion. This contrasts
to the Dirac case, where a Dirac HQET would have a
charge conjugation symmetry only if the full theory has
one. Therefore, this potentially provides low energy probes
to distinguish between R-hadrons containing a Majorana
gluino and those containing a Dirac gluino that appears in
many nonminimal models of supersymmetry, for example.

I. DEGREES OF FREEDOM

We first derive the kinetic and mass terms of Majorana
HQET. We will see that the quadratic terms of the
Majorana HQET Lagrangian exactly agree with those of
Dirac HQET, so the degrees of freedom of the two effective
theories are identical in content and propagate in the same
manner.
To perform a blow-by-blow comparison between the

Majorana and Dirac cases, let us consider a Majorana
fermion cMðxÞ and a Dirac fermion c DðxÞ with the same
mass m and identical quantum numbers under all symme-
tries, except for Uð1ÞD, the very Uð1Þ that defines the Dirac
fermion by providing particle number conservation. Being
Majorana, cMðxÞ obeys the constraint

cMðxÞ ¼ Bc �
MðxÞ; (1)

with the Majorana conjugation matrix B satisfying

B���B�1 ¼ ���; B� ¼ B�1; BT ¼ B: (2)

In HQET, we are interested in the states of a single c
particle and arbitrary numbers of other particles with
masses � m, where interactions are transferring only
small momenta ( � m) to the c particle, hence never
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exciting another c particle. Thus, perturbation theory
should begin with a free c particle with a 4-momentum
mv, where v is a timelike 4-velocity with v0 > 0 and
v � v ¼ 1. This state is described by the following solu-
tions of the free Dirac equations ði6@�mÞc D;M ¼ 0:

c DðxÞ ¼ e�imv�xuv; (3)

cMðxÞ ¼ e�imv�xuv þ eimv�xBu�v; (4)

where uv is a constant spinor obeying the constraint 6vuv ¼
uv.

Now, turning on the interactions, we would like to
parametrize the fluctuations of c D;MðxÞ around the solu-

tions (3) and (4) [20]. Away from these free-particle solu-
tions, the above constant spinor uv with only the 6v ¼ 1
component has to be replaced by an arbitrary x-dependent
spinor with both 6v ¼ �1 components. Thus, we are led to
the following changes of variables:

c DðxÞ ¼ e�imv�x½hvðxÞ þHvðxÞ�; (5)

cMðxÞ ¼ e�imv�x½hvðxÞ þHvðxÞ� þ eimv�xB½h�vðxÞ
þH�

vðxÞ�; (6)

where hvðxÞ and HvðxÞ parametrize the 6v ¼ þ1 and 6v ¼
�1 components, respectively, i.e.:

6vhvðxÞ ¼ hvðxÞ; 6vHvðxÞ ¼ �HvðxÞ: (7)

Note that the Majorana condition (1) is kept manifest in the
parametrization (6).

In terms of these new variables, the quadratic part of the
full Lagrangian for the Dirac theory can be rewritten as

L ð2Þ
D;full ¼ �c Dði6@�mÞc D

¼ i �hvv � @hv � i �Hvv � @Hv � 2m �HvHv

þ ði �hv���v�@?�Hv þ c:c:Þ; (8)

where ��� � ½��; ���=2 and @?� � @� � ðv � @Þv�.

(Needless to say, we have suppressed the kinetic and
mass terms of other fields, e.g., the gluon.) Similarly, the
quadratic part of the full Majorana Lagrangian can be
rewritten as

L ð2Þ
M;full ¼

1

2
�cMði6@�mÞcM

¼ Lð2Þ
D;full þ ðe�2imv�xPðhv;HvÞ þ c:c:Þ; (9)

where Pðhv;HvÞ is a quadratic polynomial of hvðxÞ, HvðxÞ
and their derivatives, with constant coefficients (i.e., no
explicit x-dependence like e�2imv�x inside P), which stems
from picking up the e�imv�x term of (6) twice.

We are now ready to construct effective theories that
reproduce these full theories when we specialize in the
states of a single c fermion with momentum nearmv, plus
arbitrary numbers of other light particles with masses and

momenta� m. The effective theories can be derived from
the full theories by restricting the fields hvðxÞ and HvðxÞ to
only contain ‘‘slowly varying’’ modes with wavelengths	
m�1. This does not correctly take into account loop dia-
grams, where the loop momenta go to infinity, but these
‘‘mistakes’’ can be fully corrected in the effective theory
by adding local operators with appropriate coefficients (i.e.
‘‘matching’’).
For the purpose of understanding the field content and

the form of propagators in the effective theory, tree-level
matching is sufficient. Thus, the quadratic terms of the
effective Lagrangian for the Dirac case can simply be given
by the Lagrangian (8) with the understanding that hv and
Hv only contain modes with wavelengths 	 m�1. So,

L ð2Þ
D;eff ¼ i �hvv � @hv � i �Hvv � @Hv � 2m �HvHv

þ ði �hv���v�@?�Hv þ c:c:Þ: (10)

For the Majorana case, the effective Lagrangian obtained
this way from the Lagrangian (9) appears to contain
the additional terms e�2imv�xPðhv;HvÞ þ c:c: These terms
actually vanish once integrated over spacetime to obtain
the effective action. In momentum space, they are trans-
formed into �-functions of the form �4ð2mvþ kÞ, where k
is the momentum carried by Pðhv;HvÞ. However, since
hvðxÞ and HvðxÞ in the effective theory are restricted to be
slowly varying, k is necessarily� mv and the �-functions
simply vanish. Therefore, we obtain

L ð2Þ
M;eff ¼ Lð2Þ

D;eff : (11)

We conclude that the field content and propagators of
Majorana HQET are identical to those of Dirac HQET.
This, in particular, implies that the spin symmetry of
HQET in the limit of decoupling Hv is intact in
Majorana HQET, contrary to the claim made in Ref. [11].

II. SYMMETRIES

Next, we would like to compare symmetries of the two
effective theories. First, the full Dirac and Majorana theo-
ries we started with have identical symmetries by assump-
tion, except for Uð1ÞD of the Dirac fermion. Clearly, all
these symmetries of the full theories are passed down to
their respective HQETs.
In addition, it is well known that HQET possesses an

emergent ‘‘gauge symmetry’’ called reparametrization in-
variance (RPI) [16–19], which is a redundancy in the
HQET description that choosing a different v should not
change the physics. Below, we show that RPI works in
exactly the same way in the Majorana and Dirac HQETs.
Furthermore, in Majorana HQET, the Uð1ÞD global sym-

metry emerges as an exact symmetry. Intuitively, this is
because, being an effective theory of one-particle states,
Majorana HQET trivially conserves the particle number,
even though the full Majorana theory has no particle

KAROLINE KÖPP AND TAKEMICHI OKUI PHYSICAL REVIEW D 84, 093007 (2011)

093007-2



number conservation. Below, we will demonstrate explic-
itly how this Uð1Þ arises in Majorana HQET.

Remarkably, we will see yet another symmetry emerg-
ing in Majorana HQET, so the symmetry content of
Majorana HQET is actually larger than that of Dirac
HQET. This symmetry is an effective charge conjugation
symmetry that reflects the very Majorana nature of the full
theory, namely, the absence of particle/antiparticle distinc-
tion. Thus, this is an exact symmetry of any Majorana
HQET, even without a charge conjugation symmetry in
the full theory. In contrast, charge conjugation symmetry is
optional for Dirac fermions and for Dirac HQETs. This
emergent charge conjugation symmetry forbids a class of
operators in Majorana HQET that are allowed in Dirac
HQET. Therefore, discovering the effects of those opera-
tors in experiment can tell us that the underlying fermion
must be Dirac.

A. Reparametrization invariance

The RPI redundancy in choosing v is manifest in the
relations (5) and (6), where the left-hand sides simply have
no reference to v. For the Dirac case, this readily implies
that the fields labeled by v0 � vþ �v must be related to
those labeled by v as

e�imv0�xðhv0 þHv0 Þ ¼ e�imv�xðhv þHvÞ; (12)

provided that m�v � m so that we maintain the require-
ment that hv0 ðxÞ and Hv0 ðxÞ should vary slowly in x with
wavelengths	 m�1, just like hvðxÞ andHvðxÞ themselves.
This is exactly the form of RPI proven to be valid to all
orders in Dirac HQET by Ref. [19].

For the Majorana case, the v-independence of the left-
hand side of (6) implies that

e�imv0�xðhv0 þHv0 Þ þ eimv0�xBðh�v0 þH�
v0 Þ

¼ e�imv�xðhv þHvÞ þ eimv�xBðh�v þH�
vÞ: (13)

This naively appears different from the Dirac RPI (12).
However, since the fields hv0 , Hv0 , hv and Hv only carry
momenta � mv, the first term on each side of (13) only
contains positive frequency modes, while the second term
on each side only contains negative frequency modes.
Thus, the first and second terms are linearly independent
and can be equated separately. This then gives a relation
identical to the Dirac RPI (12). We conclude that RPI
works identically in Dirac and Majorana HQETs.

B. Emergent Uð1ÞD in Majorana HQET

The equality (11) trivially implies that the quadratic part

Lð2Þ
M;eff respects the same Uð1ÞD global symmetry as the

Dirac counterpart, with both hv and Hv carrying a unit
charge, even though the full Majorana theory (9) possesses
no Uð1Þ symmetry. We will now show that Uð1ÞD is an
exact symmetry of the entire Majorana HQET Lagrangian,
not only of the quadratic part, as expected from the fact that

Majorana HQET is a theory of a fixed number of c
particles (namely, one).
The emergence of Uð1ÞD can be demonstrated elegantly

by using RPI. Since we have shown that Majorana RPI is
the same as Dirac RPI, Majorana HQET has the same ‘‘RPI
invariant’’ as the Dirac RPI. Namely, the RPI relation (12)
implies that the linear combination

�ðxÞ � e�imv�x½hvðxÞ þHvðxÞ� (14)

(not to be conceptually confused with the full-theory Dirac
field c D) are invariant under v ! vþ �v. Therefore, RPI
can be made manifest by writing the Lagrangian solely in
terms of �.
Now, since HQET is an effective theory for

single-c -particle states, we only need to look at operators
that are bilinear in �. Thus, all operators in Majorana
HQET are in either one of the following forms:

��O�; �TCO�; (15)

where O contains � matrices, derivatives and other light
fields in the theory, while the charge conjugation matrix C
satisfies

C��TC�1¼���; C� ¼�C�1; CT¼�C: (16)

The operators of the first type in (15) are invariant under
Uð1ÞD, while those of the second type are not. Notice,
however, that the latter do not exist in the effective action,
because they contain rapid oscillations e�2imv�x and thus
vanish under the integration over spacetime, just like what
happened to Pðhv;HvÞ previously. Therefore, Uð1ÞD is
indeed respected by all operators in Majorana HQET.

C. Emergent Z2 symmetry in Majorana HQET

Notice that the right-hand side of (6) is unchanged by the
simultaneous operations of

v $ �v; hv $ Bh�v; Hv $ BH�
v: (17)

Majorana HQET must be invariant under this charge con-
jugation operation, because, like RPI, this is a redundant
operation, doing nothing to the full-theory variable cM.
This redundancy makes sense intuitively, because the
original Majorana fermion does not distinguish particle
and antiparticle so it should not ‘‘care’’ whether we have
chosen v or �v to write the effective theory.
In contrast, Dirac HQET does not in general respect the

charge conjugation symmetry (17), unless the full theory
happens to be invariant under the charge conjugation
c D $ Bc �

D. It should be stressed, however, that such
charge conjugation symmetry may or may not be there in
a given Dirac theory, while anyMajorana HQETmust have
the symmetry (17), regardless of the presence or absence of
charge conjugation symmetry in the full theory, as it is
merely a redundancy of the formulation, similarly to RPI.
The emergent charge conjugation symmetry (17) im-

poses nontrivial constraints on the structure of Majorana
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HQET Lagrangian. As a theoretical illustration, consider a
toy model consisting of a heavy, color-octet Majorana
fermion cM ¼ c a

MT
a (a ¼ 1; � � � ; 8), where Ta � �a=2

with the Gell-Mann matrices �a. Suppose that there is also
a color-octet real scalar� ¼ �aTa with mass much lighter
than c . Then, in the full theory, symmetry permits the
Yukawa interaction of the form

dabc�aðc b
MÞTCc c

M; (18)

with the totally symmetric dabc / tr½TafTb; Tcg�. The
analogous term fabc�aðc b

MÞTCc c
M with the totally anti-

symmetric fabc / tr½Ta½Tb; Tc�� vanishes simply due to
the algebraic identity reflecting the Fermi-Dirac statistics,
ðc b

MÞTCc c
M ¼ ðc c

MÞTCc b
M, without owing to any symme-

try. This interaction matches at tree level onto the HQET
operator

dabc�a �hbvh
c
v þ � � � ; (19)

where the ellipses indicate similar terms containing Hv.
In stark contrast, if the fermion were a color-octet Dirac

fermion c D ¼ c a
DT

a, both types of the interactions would
be allowed:

dabc�a �c b
Dc

c
D þ fabc�a �c b

Dc
c
D; (20)

since this time �c b
Dc

c
D � �c c

Dc
b
D. These interactions match

at tree level onto the HQET operators

dabc�a �hbvh
c
v þ fabc�a �hbvh

c
v þ � � � ; (21)

where the ellipses indicate similar terms containing Hv.

Now, without the emergent charge conjugation symme-
try (17), one would think that the fijk operator like in (21)
should be also generated in Majorana HQET at loop level,
since Majorana HQET would have exactly the same sym-
metries and same degrees of freedom as Dirac HQET [21].
However, under the symmetry (17), the dabc operator is
allowed but the fabc operator is not, because the operation
(17) gives

�h b
vh

c
v ! ðhbvÞTB�1�0Bhc�v ¼ �hcvh

b
v; (22)

so the fabc operator would change the sign. Therefore, the
emergent charge conjugation of Majorana HQET guaran-
tees that the fijk operator is never generated at any order in
loop expansion.
We conclude that emergent charge conjugation symme-

try of Majorana HQEToffers the interesting opportunity to
tell apart Dirac and Majorana fermions from only low
energy measurements performed at scales much below
the fermion mass threshold. Namely, probing the presence
of the HQET operators forbidden by (17) can rule out the
possibility that the fermion is Majorana.
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