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We show that bound states moving in a finite periodic volume have an energy correction which is

topological in origin and universal in character. The topological volume corrections contain information

about the number and mass of the constituents of the bound states. These results have broad applications to

lattice calculations involving nucleons, nuclei, hadronic molecules, and cold atoms. We illustrate and

verify the analytical results with several numerical lattice calculations.
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Over two decades ago, Lüscher derived a relation con-
necting the energy levels of an interacting two-body sys-
tem in a periodic cube to physical scattering phase shifts
[1,2]. This finite-volume technique has become a standard
tool in lattice quantum chromodynamics [3–8] and in
lattice effective field theory for nucleons and cold atomic
systems [9–13]. In this letter we consider finite-volume
effects of composite particles in motion. We discuss cor-
rections to the binding energies of bound states in a moving
frame. We also show how the finite-volume scattering
method is modified if one or both particles are composite.

We find topological phase corrections associated with
the motion of bound states in a periodic box. These cor-
rections have a universal dependence on momentum de-
termined by the number and mass of the constituents. In
asymptotically large volumes the corrections are exponen-
tially small and can be neglected. However, it is often the
case in large-scale lattice simulations that calculations are
performed at volumes which are not asymptotically large.
Fortunately, we find that the corrections have a simple form
which can be subtracted out from the analysis.

We start with another result derived by Lüscher [14]. It
describes finite-volume corrections to the binding energy
of two-body dimer states for interactions with finite range.
For a dimer at rest, the shift in the energy when placed in a
periodic cube of volume L3 is

�E~0ðLÞ �
X
j ~nj¼1

Z
d3r��1ð ~rÞVð ~rÞ�1ð~rþ ~nLÞ: (1)

Here Vð ~rÞ is the interaction potential and�1 is the infinite-
volume wavefunction as a function of the relative separa-
tion ~r. The summation is over integer vectors ~n with
magnitude 1. Throughout our discussion, we assume that
the energies and momenta are nonrelativistic. For finite-
range interactions Eq. (1) gives a correction which scales
as e��L=L in the large volume limit, where � is the binding
momentum.

For general N-body bound states a straightforward gen-
eralization of Lüscher’s result yields

�E~0ðLÞ �
X

P
j

j ~njj¼1

Z �Y
i

d3ri

�
��1ð~r1; � � �ÞVð~r1; � � �Þ

��1ð~r1 þ ~n1L; � � �Þ: (2)

Here ~ri are N � 1 relative coordinates and ~ni are again
integer vectors. Although Eq. (2) clearly does not apply to
relativistic quarks held by confinement within a single
meson or baryon, these corrections are useful for analyzing
lattice calculations of hadronic molecules, nuclei, and cold
atomic bound states [15–18].
We now consider a dimer moving in the same periodic

cube with momentum 2� ~k=L for integer ~k. In the dimer
wavefunction we can factorize out the phase dependence
due to the center-of-mass motion,

c Lð~r1; ~r2Þ ¼ ei2��
~k� ~r1=Lei2�ð1��Þ ~k� ~r2=L�Lð ~r1 � ~r2Þ; (3)

where � ¼ m1=ðm1 þm2Þ. Since c Lð ~r1; ~r2Þ is periodic in
~r1 and ~r2, �L gets a nontrivial phase for each winding
around the toroidal topology of the periodic cube,

�Lð ~rþ ~nLÞ ¼ e�i2�� ~k� ~n�Lð~rÞ; (4)

for all integer ~n. We note that phase factors have been
previously discussed in connection with finite-volume
scattering in moving frames [19–21]. However, the phase
factors have a qualitatively different effect on bound-state
wavefunctions which simultaneously touch all wall
boundaries. Each phase twist induces a measurable shift
in the binding energy.
When Eq. (4) is combined with Eq. (2), we find that the

finite-volume correction is a sum of sinusoidal functions of

momentum. For S-wave dimers with momentum 2� ~k=L,
the finite-volume correction has the form
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�E~kðLÞ
�E~0ðLÞ

� 1

3

X
l¼1;2;3

cosð2��klÞ � �ð ~k; �Þ: (5)

Finite-volume corrections for higher angular momentum
bound states at rest have recently been discussed in [22].
From the results presented there, it is straightforward to

derive analogous results for �ð ~k; �Þ for dimers with angular
momentum.

For bound states with more than two particles, the finite-
volume correction has the same general form. For an
N-body bound state with all equal masses and no cluster
substructure, the topological phase is

�Lð��� ; ~riþ ~niL;���Þ¼e�i2� ~k� ~ni=N�Lð��� ; ~ri;���Þ: (6)

For S-wave bound states we get

�E~kðLÞ
�E~0ðLÞ

� �

�
~k;
1

N

�
: (7)

For N-body bound states with a two-cluster substruc-
ture, one can apply the two-body result, Eq. (5), with m1

and m2 being the masses of the two clusters. For more
complicated N-body bound states with more than two
clusters and/or particles with unequal masses, the same
cosine functions as in Eq. (5) are also expected for
�E~kðLÞ=�E~0ðLÞ. In these cases, however, more informa-

tion is needed regarding which particles or clusters oc-
cupy the tail of the bound-state wavefunction. If this is
unknown, then �E~kðLÞ=�E~0ðLÞ can be extracted from

numerical calculations, and an empirical fit to cosine
functions as in Eq. (5) can yield structural information
about the tail of the bound state.

Our results presented above have already been adapted
by Davoudi and Savage into a general method for reducing
finite-volume errors for two-body bound states such as the
deuteron using boosted frames [23]. The computational
advantage of this approach is that finite-volume effects
can be directly removed from lattice data without extrap-
olating to large lattice volumes. This is especially useful
for the case with more than two constituents where the
analytic form for the finite-volume L-dependence is
a priori unknown.

To illustrate the utility of the boosted-frame method, we
consider lattice calculations of the triton at leading order in
pionless effective field theory [24]. We use the leading-
order lattice action defined in Eq. (4.6) of Ref. [10] with
spatial lattice spacing 1.97 fm and temporal lattice spacing
1:32 fm=c. The two-body contact interactions, C and CI2 ,
are set to reproduce the physical neutron-proton scattering
lengths, a1S0 ¼ �23:7 fm and a3S1 ¼ 5:4 fm. The three-

body contact interaction, D, is determined by the triton
energy at infinite volume, �8:48 MeV.

Using the Lanczos algorithm for sparse-matrix eigen-
vector iteration [25], we have computed the triton energy
as a function of periodic cube length L in spatial lattice

units and momentum 2� ~k=L. In Table I we show a com-
parison of lattice results for �E~kðLÞ=�E~0ðLÞ for the triton
versus �ð ~k; 1=3Þ for lattice sizes L ¼ 6, 7, 8. As seen in

Table I, the lattice results approach �ð ~k; 1=3Þ in the large-L
limit. We note that the leading finite-volume corrections

vanish for ~k ¼ ð1; 1; 0Þ. Therefore the calculation of the
triton binding energy in this boosted frame should con-
verge much more quickly in the limit of large L. In Table II
we show the triton finite-volume energy corrections

�E~kðLÞ in MeV versus L for ~k ¼ ð0; 0; 0Þ and ~k ¼
ð1; 1; 0Þ. We see that the finite-volume errors are reduced

dramatically for ~k ¼ ð1; 1; 0Þ.
We now turn our attention to the scattering of composite

states in a finite periodic cube. We consider the scattering
between states A and B in the center-of-mass frame. Let
�AB be the reduced mass, and let EABðp; LÞ be the total
energy of the A� B scattering system with radial momen-
tum p in a periodic cube of length L. States A and B can be
point particles or composite bound states. We assume that
the constituent particles comprising the states have finite-
range interactions. The composite structures of A and B,
however, will in general produce effective interactions with
exponential tails extending to infinity.
These tails generate exponentially small finite-volume

corrections to EABðp; LÞ associated with the binding ener-
gies of A and B separately as well as the scattering of A and
B together. In this analysis, we focus only on the exponen-
tial corrections to the binding energies. This will be useful
in lattice simulations where the volume is not very large
and the binding energy shifts may be comparable to that of
the scattering process being measured. We will not be
concerned with exponentially small corrections to the scat-
tering of A and B. If the interactions between A and B are
very strong, then it is theoretically possible that the finite-
volume scattering corrections we neglect are comparable
to the binding energy shifts. However, in such cases the
part of the energy shift due to scattering which is not

TABLE I. Comparison of triton lattice results for

�E~kðLÞ=�E~0ðLÞ and �ð ~k; 1=3Þ versus L.
~k L ¼ 6 L ¼ 7 L ¼ 8 �ð ~k; 1=3Þ
(1, 0, 0) 0.395 0.432 0.458 0.500

(1, 1, 0) �0:035 �0:025 �0:016 0.000

(1, 1, 1) �0:376 �0:413 �0:442 �0:500

TABLE II. Triton finite-volume energy corrections �E~kðLÞ in
MeV for ~k ¼ ð0; 0; 0Þ and ~k ¼ ð1; 1; 0Þ versus L.
~k L ¼ 5 L ¼ 6 L ¼ 7 L ¼ 8

(0, 0, 0) �0:603 �0:169 �0:049 �0:015
(1, 1, 0) 0.029 0.006 0.001 0.0002
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exponentially suppressed will be much larger still, and so
the loss of accuracy in the scattering analysis will be small.

In order to calculate finite-volume corrections due to the
binding energy, it suffices to consider singular solutions of
the free Helmholtz equation. Let ~r be the separation be-
tween the center of masses of the two states. In the follow-
ing we assume that p is sufficiently small so that angular
momentum mixing with higher-order singular solutions
can be neglected. For S-wave scattering between states A
and B with radial momentum p, the position-space scat-
tering wavefunction is

h~rj�pi ¼ c
X
~k

eið2� ~k=LÞ�~r

ð2� ~k=LÞ2 � p2
(8)

with some normalization constant c.
We let EA

~k
ðLÞ and EB

� ~k
ðLÞ be the finite-volume energies

due to binding for bound states A and B with momenta

2� ~k=L and �2� ~k=L, respectively. For point particles
without internal structure, these energies are by definition
zero for all momenta. The total energy EABðp; LÞ is then

EABðp; LÞ ¼
h�pjHj�pi
h�pj�pi

¼ 1

N

X
~k

p2

2�AB
þ EA

~k
ðLÞ þ EB

� ~k
ðLÞ

ð ~k2 � �Þ2 ; (9)

where N ¼ P
~kð ~k2 � �Þ�2 and � ¼ p2L2=ð2�Þ2. The

finite-volume correction can be written as

EABðp; LÞ � EABðp;1Þ ¼ �Að�Þ�EA
~0
ðLÞ

þ �Bð�Þ�EB
~0
ðLÞ; (10)

where �EA
~0
ðLÞ and �EB

~0
ðLÞ are the finite-volume correc-

tions for states A and B at rest, and we have defined the
topological volume factor

�ð�Þ ¼ 1

N

X
~k

P
l¼1;2;3

cosð2��klÞ

3ð ~k2 � �Þ2 : (11)

The analysis can be generalized to higher angular momen-
tum scattering states using an extension of Lüscher’s scat-
tering relation to higher orbital angular momentum
[26,27].

The finite-volume correction in Eq. (10) has nothing to
do with the interaction between states A and B and should
therefore be subtracted from the total energy before using
Lüscher’s scattering relation. This subtraction should re-
duce systematic errors in lattice calculations.

As an example to test the method, we consider fermion-
dimer scattering for two-component fermions. The physi-
cal process which we study corresponds with spin-quartet
scattering between a neutron and deuteron. In that case the
two fermion components should be regarded as protons
and neutrons with the same spin.

We use the same lattice Hamiltonians as in Ref. [28],
except in that case the scattering length was tuned to
infinity. As in Ref. [28], we consider two different lattice
Hamiltonians, each of which produces a shallow dimer in
the continuum limit. The first Hamiltonian, H1, contains
only a local contact interaction between fermions. The
second Hamiltonian, H2, contains a contact interaction as
well as nearest-neighbor interactions. These are used to
tune the binding energy of the dimer while also setting
the effective range parameter to zero. Both lattice
Hamiltonians reproduce the same continuum limit of
fermions with attractive zero-range interactions.
We now focus on the fermion-dimer system. This cor-

responds with a neutron together with a deuteron in the
spin-quartet channel in pionless effective field theory at
leading order. Experimental measurements find a quartet
scattering length 4and ¼ 6:35ð2Þ fm [29]. This can be ex-

pressed as a fraction of the spin-triplet neutron-proton
scattering length, 4and=

3anp ¼ 1:17ð1Þ. A more detailed

calculation including interaction range effects obtains
4and ¼ 6:33ð10Þ fm [30,31], in full agreement with experi-

mental values.
We calculate fermion-dimer scattering on the lattice us-

ing Lüscher’s finite-volume formula. Using the Lanczos
algorithm we have computed the ground state energy for

FIG. 1 (color online). Lattice results and continuum extrapo-
lation with error estimates for the fermion-dimer scattering
length (top) and effective range parameter (bottom). For com-
parison we show the continuum results obtained via the
Skorniakov-Ter-Martirosian equation.
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the fermion-dimer system on periodic cubes for six differ-
ent lattice spacings alatt. For each lattice spacing we con-
sider periodic volumes L3 ranging from L ¼ 6 to L ¼ 17
lattice units. From these energies we determine the low-
energy parameters for fermion-dimer scattering and ex-
trapolate to the continuum limit. The full details of this
calculation will be described in a forthcoming publication,
and we just summarize the results here.

Results for the fermion-dimer scattering length, aFD, and
the effective range parameter, rFD, are shown in Fig. 1. In
each case, we extrapolate to the continuum limit and write
final results as dimensionless combinations multiplied
by powers of the dimer binding momentum, �D. In the
shallow binding limit �D equals the reciprocal of the
fermion-fermion scattering length. To see the effect of the
topological volume correction we have done the full calcu-
lation using the correct topological factor �ð�Þ, as well as a
faulty calculation which replaces �ð�Þ by 1. For compari-
son, we show the continuum results, aFD�D ¼ 1:17907ð1Þ
and rFD�D ¼ �0:0383ð3Þ, obtained via the Skorniakov-
Ter-Martirosian (STM) integral equation [32,33]. We find
that the small size of the effective range parameter requires
a fit to low-energy scattering that includes the shape pa-
rameter, which was not done in earlier calculations of the
effective range parameter [34]. We note also the agreement
with the experimental value 4and=

3anp ¼ 1:17ð1Þ.
The results in Fig. 1 show that the inclusion of the

topological volume factor �ð�Þ is essential for obtaining
the correct continuum limit. In all cases the continuum

extrapolations for H1 and H2 agree within error bars.

However, the correct �ð�Þ factor is needed to reproduce

the STM equation result. The correction is small for the

scattering length, but quite large for the effective range

parameter.
We expect the topological volume factor to have impor-

tant effects in other lattice calculations of scattering for

composite bound states. The analysis presented here

should provide a simple but general method for improving

the accuracy of bound-state scattering calculations. The list

of possible applications is quite extensive and include

lattice calculations involving the scattering of nucleons

upon nuclei, the scattering of nuclei, Compton scattering

and electroweak probes upon nuclei, mesonic and baryonic

scattering upon hadronic molecules, and few-body scatter-

ing in cold atomic systems. An application of this method

to dimer-dimer scattering is in progress.
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