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In quantum chromodynamics (QCD) the eigenmodes of the Dirac operator with small absolute

eigenvalues have a close relationship to the dynamical breaking of the chiral symmetry. In a simulation

with two dynamical quarks, we study the behavior of meson propagators when removing increasingly

more of those modes in the valence sector, thus partially removing effects of chiral symmetry breaking.

We find that some of the symmetry aspects are restored (e.g., the masses of � and a1 approach each other)

while confining properties persist.
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I. MOTIVATION AND INTRODUCTION

Dynamical chiral symmetry breaking in QCD is associ-
ated with the low lying spectral modes of the Dirac opera-
tor D [1]. They affect the path integral weight of the gauge
configurations through the determinant of D. As indicated
by the Atiyah-Singer index theorem [2], the exact zero
modes are related to topological excitations, the instantons.
For Dirac operators violating chiral symmetry these are
real eigenmodes. The nearby nonreal modes are also
thought to be related to composed structure of, e.g., over-
lapping instantons [3].1

In a series of papers [4–6] it was emphasized that low
modes saturate the pseudoscalar and axial vector correla-
tors at large distances and do not affect the part where high
lying states appear. In [6,7] low mode saturation and also
effects of low mode removal for mesons were studied for
quenched configurations with the overlap Dirac operator
[8,9].

Subsequently low modes were utilized to improve the
convergence of the determination of hadron propagators
[6,7,10,11] (see also the recent study [12,13] comparing
the efficiency when using the low modes of the Dirac
operator or the Hermitian Dirac operator, where strong
dependence on the parity of the hadron states was
presented).

Associating the low mode sector with the nonperturba-
tive chiral symmetry breaking and the condensate [1], a
complementary question is how important it is for confine-
ment and mass generation of hadrons. Here we study what
happens if one removes up to 512 low lying modes from
the valence quark sector. We compute propagators of the
pion and other mesons and determine the effect of this
removal on the mass spectrum. This way we want to shed

light on the role of the condensate related to the spectral
part of the Dirac operator in confinement and chiral sym-
metry breaking. Our analysis is done for configurations
generated for two light, mass degenerate dynamical quark
flavors. The removal of the low lying modes is effective
only in the valence quarks sector. However, as will be seen,
this already has significant impact on the meson mass
spectrum.
In [14,15] it has been conjectured that chiral symmetry

is ‘‘effectively restored’’ for highly excited hadrons, in the
sense that valence quarks become less affected by the
quark condensate. This situation is similar to ours, where
we artificially suppress the condensate as seen by the
valence quarks. In the context of effective restoration
such an approach has been discussed already in [6,16].

II. REDUCED DIRAC OPERATOR

Lattice Wilson Dirac operators and approximate
Ginsparg-Wilson Dirac operators are �5-Hermitian,
�5D�5 ¼ Dy, but non-normal, thus their spectral repre-
sentation has real and complex eigenvalues and the left and
right eigenvectors are bi-orthogonal, i.e. hLijRji ¼ �ij.

The so-called Hermitian Dirac operator D5 � �5D has
real eigenvalues �i and the eigenvectors are orthogonal.
We want to construct meson correlators from valence

quark propagators that exclude the lowest part of the Dirac
spectrum. There are two alternative definitions of reduc-
tion: based on eigenmodes ofD or based on eigenmodes of
the Hermitian Dirac operator. We introduce the reduced
quark propagator via the spectral representation of D5,

Sred5ðkÞ ¼ S� Slm5ðkÞ � S�X

i�k

��1
i jviihvij�5: (1)

Another alternative works with the bi-orthogonal eigensys-
tem of D. The two types of truncation are not equivalent.
We first tested the convergence of the low mode approxi-
mation and, as has been observed in [13], find a clearly
slower convergence rate for the standard non-Hermitian as
compared to the Hermitian Dirac operator. In our study we
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1Even when studying the low lying modes in quenched gauge

ensembles one observes nonvanishing density and also the Gell-
Mann–Oakes–Renner relation works down to small values of the
valence quark mass until quenched chiral logs destroy the
leading chiral symmetry breaking behavior.
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therefore concentrate on our results from truncating the
Hermitian Dirac operator.

III. CHIRAL SYMMETRYAND ITS BREAKING

The nonvanishing quark masses of the two lightest quark
flavors are relatively small in comparison to the typical
QCD scale. Neglecting the masses of the u and d quarks
the QCD Lagrangian is invariant under the symmetry
group

SUð2ÞL � SUð2ÞR � Uð1ÞV � Uð1ÞA: (2)

The chiral symmetry SUð2ÞL � SUð2ÞR consists of inde-
pendent transformations in the isospin space for the left-
and right-handed quark fields and can be represented
equivalently by independent isospin and axial rotations
for the combined quark fields.

The isospin axial transformation mixes states with op-
posite parity but the same spin. Depending on quantum
numbers the chiral partners can have the same or different
isospin. The nondegenerate masses of parity partners in-
dicate the dynamical (spontaneous) breaking of this chiral
symmetry with the order parameter h �c c i, the chiral con-
densate. Spontaneous breaking of the chiral symmetry
leads to the appearance of the pseudoscalar Goldstone
bosons, the pions.

The flavor singlet axial transformation symmetry Uð1ÞA
is broken explicitly due to the noninvariance of the fermion
integration measure, the so-called axial anomaly. It is not a
symmetry of the quantized QCD. Consequently no isosing-
let Goldstone boson exists within the two-flavor QCD and
the � meson(s) are heavier then the pion, attributed to the
anomaly. In addition to the anomaly also the chiral con-
densate breaks this symmetry.

Both symmetry breaking signals are related to low lying
modes of the Dirac operator. The axial anomaly involves
the topological charge of the gauge configuration, which is
proportional to the net number of exactly chiral (zero)
modes via the Atiyah-Singer index theorem [2]. The chiral
condensate is associated with the density of the Dirac
operator’s low lying (but nonzero) modes [1]. The non-
vanishing quark condensate indicates breaking of both
symmetries.

IV. GAUGE CONFIGURATIONS

For our analysis we used 161 gauge field configurations
[17,18] of lattice size 163 � 32; with the lattice spacing
a ¼ 0:144ð1Þ fm this corresponds to a spatial size of
2.3 fm. The simulation includes two degenerate flavors of
light fermions and a corresponding pion mass of m� ¼
322ð5Þ MeV. For the dynamical quarks of the configura-
tions as well as for the valence quarks the so-called chirally
improved Dirac operator [19,20] has been used. This op-
erator is an approximate solution to the Ginsparg–Wilson
equation and therefore exhibits better chiral properties than

the simpler Wilson Dirac operator while being less expen-
sive by an order of magnitude—in terms of computation
time—in comparison to the chirally exact overlap operator.
We calculated up to the lowest 256 eigenmodes of the

Dirac operator D and up to lowest the 512 eigenmodes of
the Hermitian operator D5 using ARPACK, which is an
implementation of the Arnoldi method to calculate part of
the spectrum of arbitrary matrices [21].
The quark propagator S is determined by inverting the

Dirac operator for a given source. Instead of using point
sources we use Jacobi smeared sources [22,23] that are
approximately of Gaussian shape. Their shapewas adjusted
to awidth of about 0.27 fm [17]. The lowmode contribution
Slm5ðkÞ to the quark propagator, see (1), has to be multiplied

with the same sources as the full propagator S in order to
achieve the correct reduced propagators Sred5ðkÞ.

V. MESONS

We restrict ourselves to the study of isovectors, in par-
ticular, the chiral partners:
(i) The vector mesons � (JPC ¼ 1��) with interpolat-

ing fields �uðxÞ�idðxÞ and �uðxÞ�4�idðxÞ and a1
(JPC ¼ 1þþ) with interpolating field �uðxÞ�i�5dðxÞ;
in a chirally symmetric world the vector and the axial
vector interpolator get mixed via the isospin axial
transformations.

(ii) The pseudoscalar� (JPC ¼ 0�þ) with interpolating
fields �uðxÞ�5dðxÞ and �uðxÞ�4�5dðxÞ. We also study
the scalar a0 (JPC ¼ 0þþ), �uðxÞdðxÞ, which would
get mixed with �uðxÞ�5dðxÞ via the Uð1ÞA
transformation.

(In the interpolators �4 denotes the Dirac matrix in
Euclidean time direction.)
We compute from the quark propagators meson propa-

gators, projected to vanishing momentum and determine
the hadron masses from a range of Euclidean time values
where the correlation function exhibits exponential decay.
The final errors are statistical only and obtained by stan-
dard jackknife elimination sampling.

VI. RESULTS

A. Low mode sector

Figure 1 shows the integral over the distribution Hðj�jÞ
of the (real) eigenvalues of D5. The scale is set by the
lattice spacing. There is a transition region up to roughly
twice the size of the quark mass (for this simulation the
unrenormalized mass calculated from the axial Ward iden-
tity is 15 MeV [18]) corresponding to Oð16Þ eigenmodes,
as also observed in, e.g., [24–27]. As will be seen below,
this is in accordance with the behavior observed for the
meson propagators.
For the overlap operator the real eigenvalues correspond

to exact chiral modes, the zero modes. This is no longer
true for Wilson-type operators. There one may associate
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zero modes with real eigenvalues, although there chirality
is not unity. For the Hermitian Dirac operator there is no
simple method to identify these would-be zero modes, and
thus all we can say is that the lowest eight modes include a
significant number (if not all) of the would-be zero modes
(instantons).

Before we construct meson correlators out of reduced
quark propagators, let us first consider meson correlators
approximated by the lowest k modes only, using propaga-
tors Slm5ðkÞ, see (1).

In Fig. 2 we compare the pseudoscalar correlator using
standard full propagators to the correlators using only the
lowest modes of theHermitian Dirac operator D5. For the
two pseudoscalar operators the exponential pion decay
behavior sets it much earlier (at lower numbers of eigen-
modes) for the interpolator �u�5d than for the other inter-
polator �u�4�5d. Clearly the first one is stronger, dominated
by the low lying modes than the second. The large time
region is well described by the low modes whereas the
short time region—where excited states dominate—gets

saturated much more slowly. Comparing with the result for
an equivalent approximation for the non-Hermitian Dirac
operator (not shown here), we find that less eigenmodes of
D5 are needed to obtain a similar quality of approximation
of the correlators with full propagators. These results agree
with the observations in [6,7,13].

B. Removing the low mode sector

Figure 3 shows the meson propagators for various stages
of low mode removal, always in comparison with the full
propagator, and Fig. 5 combines the corresponding mass
fits to the regions of exponential behavior.
All mass values (except for the �) exhibit a strong

dependence on the truncation of the lowest eigenmodes;
from truncations levels of �16 modes upwards (corre-
sponding to quark masses of approximately 30 MeV) all
mass values then follow a roughly parallel, rising behavior.
The range of exponential behavior of the correlators
shrinks, as can be seen in the log plots in Fig. 3.
The effective mass plots (the local two-point approxi-

mation of the derivative of the logarithm of the correlators)
in Fig. 4 indicate the regions, where an exponential fit to
the correlators has been done. We find that the fluctuation
typically decreases with increasing reduction. This may be
related to the relative importance of the noisy low lying
modes in the quark propagators.
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FIG. 2 (color online). Low mode contribution to the correla-
tors for the JPC ¼ 0�þ sector in comparison to the correlators
from full propagators with interpolators (a) �u�5d and
(b) �u�4�5d. The number of included modes is shown in the
legend.
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FIG. 3 (color online). Correlation functions for the reduced
interpolators as compared to the correlators from full propaga-
tors. Top: JPC ¼ 0�þ with interpolators (a) �u�5d, (b) �u�4�5d.
Middle: JPC ¼ 1�� with (c) �u�id, (d) �u�4�id. Bottom:
Reduced (e) JPC ¼ 0þþ ( �ud) and (f) JPC ¼ 1þþ ( �u�i�5d).
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FIG. 1 (color online). The integrated eigenvalue density for the
lowest 512 (absolute) eigenvalues of D5. The eigenvalues are
scaled according to the lattice spacing. The number on the upper
axis indicates the values of � where there are 16, 32, 64, 128,
256, and 512 eigenvalues below that value.
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In [28] the parity-chiral group and the effect of symme-
try breaking on the meson spectrum is discussed. For
example, whereas the Uð1ÞA breaking lifts the degeneracy
between pion and a0 (and between � and f0) the breaking
of the chiral SUð2ÞL � SUð2ÞR symmetry is related to the
mass differences of pion and f0 (and a0 and �). From
Fig. 5 we find drastic sensitivity on low modes for both, the
pion interpolator masses and the a0 mass. At low trunca-
tion levels the a0 mass rapidly drops; it does not drop down

to the pion mass value. This might indicate some remnant
of the anomaly breaking for the J ¼ 0 states.
The pion interpolators exhibit a puzzling behavior. The

classical pion interpolator �u�5d quickly looses its expo-
nential behavior at larger (Euclidean) distances; only a
more massive decay signal is observed at smaller distances
(Fig. 3). From truncation level 16 onwards we therefore do
not exhibit mass values in Fig. 5 for that interpolator. A fit
to the very small time slices gives a mass approaching the
mass value from the second interpolator �u�4�5d with the
pion quantum numbers, which couples due to PCAC (par-
tial conservation of the axial current, proportional to the
quark mass).
For the JPC ¼ 1�� vector meson � there are two chiral

representations, which correspond to the vector interpola-
tor �u�id and (Dirac-)tensor interpolator �u�4�id. Their
chiral partners [28] are the a1 and the h1 mesons, respec-
tively. We did not determine the h1 mass, since its inter-
polator includes disconnected graphs (it is an I ¼ 0 state).
There is no noticeable splitting between the two
�-interpolators for all stages of truncation. We do find,
however, intriguing behavior comparing the � mass with
the a1 result. Starting out quite differently for the full
quark propagator, the masses approach each other and
are compatible with each other from truncation level 8 on-
wards. This indicates restoration of the SUð2ÞL � SUð2ÞR
symmetry for J ¼ 1 states. The very fact that all three
interpolators (vector, tensor, and axial vector) give the
same mass hints to the restoration of the SUð2ÞL �
SUð2ÞR � Uð1ÞA symmetry for J ¼ 1 states. The latter
could be reliably concluded, however, only after studying
of the h1 meson.

VII. CONCLUSIONS

The low lying eigenvalues of the Dirac operator are
usually associated with chiral symmetry breaking. We
have computed hadron propagators while removing in-
creasingly more of the low lying eigenmodes of the
Dirac operator. This allows us to study their influence on
certain hadron masses. Because of the relationship of the
low eigensector with chiral symmetry breaking, this
amounts to partially restoring chiral symmetry (in the
valence quarks).
We find drastic behavior for some meson interpolators

when starting to remove low eigenmodes. At truncation
level 16 the behavior saturates and then the mass values
rise uniformly with roughly parallel slopes. The confine-
ment properties remain intact, i.e., we still observe clear
bound states for most of the studied isovector (scalar, axial
vector, and vector) mesons. An exception is the pion,
where no clear exponential decay of the correlation func-
tion is seen in the �u�5d interpolator, but a massive state is
seen in the �u�4�5d interpolator. The mass values of the
vector meson chiral partners a1 and � approach each other
rapidly when eight or more low modes are removed.
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FIG. 5 (color online). The masses of all considered mesons as
a function of the reduced spectrum, subtracting the 0–512 lowest
modes of D5.
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FIG. 4 (color online). Effective mass plots for the reduced
interpolators as compared to the full propagators. For the nota-
tion (a–f) see Fig. 3.
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We conclude that essential confinement properties re-
main intact, even when the low eigenmodes of the Dirac
operator are removed in the valence sector. Restoration of
chiral symmetry is observed in that approximation.
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