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We present a new framework for defining fuzzy approximations to geometry in terms of a cutoff on the

spectrum of the Dirac operator, and a generalization of it that we call the Dirac-flux operator. This

framework does not require a symplectic form on the manifold, and is completely rotation invariant on an

arbitrary n-sphere. The framework is motivated by the formalism of holographic space-time, whose

fundamental variables are sections of the spinor bundle over a compact Euclidean manifold. The strong

holographic principle requires the space of these sections to be finite dimensional. We discuss applications

of fuzzy spinor geometry to holographic space-time and to matrix theory.
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I. INTRODUCTION: HOLOGRAPHIC
SPACE-TIME (HST)

HST is an attempt to supply a general formalism for a
theory of quantum gravity, which will reduce to string
theory for space-times that are asymptotically anti-
de Sitter (AdS) or Minkowski, but which has the flexibility
to discuss cosmology, including de Sitter (dS) space. The
formalism also makes more direct contact with concepts of
local physics than any extant string theoretic formalism.
The strong holographic principle, originally stated by
Bousso and much championed by TB and W. Fischler, is
the assumption that the covariant entropy bound [1–3]
implies that the Hilbert space encoding all measurements
inside a causal diamond is finite dimensional, with dimen-
sion that approaches the exponential of one quarter of the
area of the holographic screen of the diamond.1 The area is
measured in Planck units and the formula is supposed
to be only asymptotic for large area. In weakly coupled
string theory, there is a further caveat. Here, the Einstein
equations break down at a length scale parametrically
larger than the Planck scale and the identification of en-
tropy and area fails unless the area is large in string units.
The strong holographic principle combined with the
notion of commutativity at spacelike separation encodes
all of the geometrical properties of a Lorentzian space-time
into quantum mechanical statements about operator
algebras.

The basic idea is that space-time is only an emergent
phenomenon, but that its properties reflect more basic
properties of the underlying quantum theory of gravity.
The kinematics of HST is a net of finite-dimensional
operator algebras, called diamond algebras AðDÞ, with

specified intersections OðD;D0Þ, which are tensor factors
in both AðDÞ and AðD0Þ. OðD;D0Þ represents the set of all
quantum measurements, which can be performed in the
maximal area causal diamond in the intersection of the
diamonds D and D0. In quantum field theory (QFT), in a
fixed space-time, the diamond algebra AðDÞ is constructed
from fields smeared with test functions, whose support lies
within the diamond D. Algebraic quantum field theory is a
formulation of QFT in terms of the net of diamond algebras
and their intersections [4]. The causal structure of space-
time is completely encoded in the structure of the net of
operator algebras.
In QFT, as a consequence of conformal invariance at

short distances, the operator algebras are all infinite di-
mensional. HST postulates instead that the algebras for
diamonds with finite-area holographic screens are finite-
dimensional matrix algebras, operating in a Hilbert space
whose dimension is the exponential of one quarter of the
area (in Planck units) of the screen. We can turn this around
and say that it is a definition of the area of the screen in
terms of purely algebraic properties of the net of algebras.
Thus, in HST, both the conformal factor and the causal
structure may be defined in terms of properties of the
quantum operator algebra.
It is clear that specifying the data in these algebras for a

sufficiently rich set of diamonds, in the limit in which
space-time emerges, will determine both the conformal
factor and the causal structure of the Lorentzian geometry,
which are thus kinematical properties of the quantum
theory, rather than fluctuating quantum variables. The ar-
guments of Jacobson [5] suggest that Einstein’s equations
for the geometry will be an automatic consequence of the
laws of thermodynamics, in the emergent space-time limit.
Indeed, Jacobson argued that any theory, which obeyed the
laws of thermodynamics, and for areas large in Planck
units, obeyed the Bekenstein-Hawking area/entropy law
for areas transverse to each local Rindler horizon, would
satisfy Einstein’s equations.

1The boundary of a causal diamond is a null surface, which
can be foliated by spacelike surfaces. The holographic screen of
the diamond is the spacelike surface of largest area. We abuse
language and call the area of the screen the area of the diamond.
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The actual quantum variables may be thought of classi-
cally as the space-time orientations of pixels on the holo-
graphic screen [6]. Naively, a pixel is a position on the
screen, through which a null ray passes, and the orientation
of a bit of d–2 plane orthogonal to the null ray. This data is
incorporated in the Cartan-Penrose (C-P) equation

�����ð��Þ���� ¼ 0;

which forces the vector bilinear to be null, and the spinor�
to be a null plane spinor for that null ray:

� ¼ ð 0 Sa Þ:
The C-P equation is Lorentz covariant and has a scaling
symmetry. These are considered gauge equivalences.
Generically, we may expect them all to be fixed in a unitary
formulation of the quantummechanics (which is all that we
will consider). In fact, the scaling symmetry is explicitly
broken in the quantum theory. However, there is a Z2

subgroup of the scaling symmetry, which is preserved
and ends up playing the role of the ð�1ÞF gauge symmetry
familiar from quantum field theory. The connection be-
tween spin and statistics is automatic, as in matrix theory
[7]. The Lorentz gauge symmetry is fixed by insisting that
the direction of the null vector is determined by the coor-
dinate on the holographic screen. For example, for a
spherical screen, parametrized by a d� 1-dimensional
unit vector �, the null vector is ð1;�Þ. The solution of
the C-P equation on each infinitesimal pixel on the screen
is a section of the spinor bundle over the holographic
screen.

The strong holographic principle implies that a finite-
area holographic screen can have only a finite number of
pixels, and that the algebra of variables for each pixel has a
finite-dimensional unitary representation. A finite number
of pixels means a finite basis of sections of the spinor
bundle over the holographic screen. The purpose of this
paper is to propose a definition for this fuzzy spinor bundle.
The screen is a compact Riemannian manifold and the
Dirac operator of the screen has a discrete unbounded
spectrum. A sharp cutoff on the Dirac eigenvalue gives a
finite-dimensional approximation to the spinor bundle,
and, as we shall see, this provides a new definition of fuzzy
geometry.

For compactifications to four-dimensional space-time,
the quantum commutation relations take the form

½ðc PÞAi ; ðc yQÞjB�þ ¼ �j
i�

A
BZ

PQ:

The indices i, j run from 1 to N, A, B run from 1 to N þ 1,
and P, Q run over a basis of a finite-dimensional approxi-
mation to the spinor bundle over a compact internal mani-
fold, obtained by cutting off the Dirac spectrum on that
manifold. We call this the pixel algebra of the HST model.
It must be supplemented by commutation relations be-
tween the ZPQ and the fermionic variables, forming a
finite-dimensional superalgebra. The holographic principle

implies this algebra must have a finite-dimensional unitary
representation. We assume further that the action of the
fermionic operators sweeps out the entire space of states of
this representation. In writing this equation, we have an-
ticipated a property of the Dirac equation on the two-
sphere, namely, that an eigenvalue cutoff is equivalent to
an angular momentum cutoff. The space of N � N þ 1
matrices contains all spinor spherical harmonics up to spin
N � 1

2 , and as N ! 1 it approximates the chiral spinor

bundle over the two-sphere, while the space of Hermitian
conjugate matrices converges to the antichiral spinor
bundle. This elegant choice for the finite-dimensional ap-
proximation is based on A. Connes ideas [8] about non-
commutative geometry [9]. As noted, c and c y are the
two chiral spinor bundles over the fuzzy two-sphere. ZPQ

lives in the bundle of forms over the compact internal
manifold, fuzzified as the product of two cutoff spinor
bundles. The ZPQ are the analogs of wrapped brane charges
in string theory. We will call the finite-dimensional irre-
ducible representation of this superalgebra P , and refer to
it as the pixel Hilbert space.
For the two-sphere, our fuzzification is the same as that

defined by Berezin quantization [10], which is a special
case of the geometric quantization of symplectic mani-
folds. Berezin noted that the spaces of sections of holo-
morphic vector bundles on a Kahler manifold are finite
dimensional. Holomorphic vector bundles are carry a Uð1Þ
gauge connection, and the associated fluxes through two
cycles are integers characterizing the bundle. As we take
the fluxes to infinity, the dimension of the space of sections
goes to infinity as well, and if the bundle is ample, the set of
functions

FðMÞ ¼ X
�sið�zÞMi

js
jðzÞ;

becomes a basis in the algebra of functions on the mani-
folds. Here, M is a general complex matrix acting on the
space of sections, and the question of how smooth the
functions are depends on the behavior of the matrix ele-
ments in the limit. For the two-sphere, there is an SOð3Þ
symmetric Kahler form, the volume form in the round
metric, and the quantum number which characterizes vec-
tor bundles is essentially the angular momentum. The
Dirac equation is spherically symmetric and an eigenvalue
cutoff is the same as an angular momentum cutoff, so the
two procedures are equivalent. On higher-dimensional
spheres, there is no spherically symmetric Kahler form
nor even a Poisson structure that is spherically symmetric.
By contrast, the Dirac eigenvalue cutoff is spherically
symmetric on all spheres, so it is inequivalent to any
fuzzification based on the ideas of geometric quantization.
Many alternative fuzzifications of higher-dimensional
spheres have been proposed (see for instance [11–13]),
but they are all much more complicated than the simple
Dirac cutoff.
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There are two important points to made about our choice
of Dirac fuzzification:

(i) Our intent is to provide a general tool for HST,
which is a particular approach to quantum gravity.
The fundamental variables in HST are a finite-
dimensional approximation to the space of sections
of the spinor bundle over the holographic screen. No
other definition of fuzzy geometry gives a simple
description of spinor bundles for general geometries.

(ii) Our approach does not exactly fall into the conven-
tional spectral triple classification [8], since, as we
will see below, the natural algebra which arises in
the geometric limit is the algebra of bounded opera-
tors on the space of square integrable sections of the
spinor bundle. The usual algebra of functions, the
focus of most approaches to fuzzy geometry, is a
proper subalgebra of this, as is the algebra of forms
(with Clifford, rather than Grassmann multiplica-
tion), but the natural limit of the noncommutative
fuzzy algebra is the full noncommutative operator
algebra.

The approach to geometry via the cutoff Dirac operator
contains all of the geometrical information about a com-
pact Riemannian manifold (in the appropriate limit) so it
seems to us that it is an interesting definition even if it does
not fit exactly into the framework of previously proposed
axioms.

Cosmological, asymptotically flat, and asymptotically
AdS space-times

This subsection has little to do with the rest of the paper
and can safely be skipped. We include it at the behest of the
referee, who felt that the general framework of HST was
sufficiently unknown that a bit of explanation would be
helpful to most readers. The operator algebras of HST and
QFT differ only in the finiteness of causal diamond alge-
bras for finite-area diamonds. However, the Hamiltonian
formulation of the two frameworks is completely different.
In HST, the entire Hilbert space of the theory is associated
with a single timelike trajectory, and operators in that
Hilbert space refer to actual observations made by an
observer following that trajectory. For example, the de-
scription of the planet Saturn, for an observer that spends
all of history on Earth, is in terms of photons that have
made the journey to Saturn and been reflected back to
earth. HST becomes a theory of space-time because it
has an infinite number of other descriptions in terms of
other timelike trajectories, and a consistency requirement
that physics accessible to two different observers has two
unitarily equivalent descriptions. We will label the differ-
ent timelike trajectories by a discrete parameter x, which
lies in a lattice whose topology is that of flat space in some
number of dimensions.

A timelike trajectory at x is encoded into QM, using the
strong holographic principle, by specifying a sequence of

Hilbert spaces H ðn;xÞ ¼ �P nðnþ1Þ, where we are re-
stricting attention to 4 noncompact dimensions.2 The ge-
ometry of the compact dimensions is encoded in P , and
this fact is the primary burden of the present paper. These
spaces correspond, via the holographic principle, to larger
and larger segments of the timelike trajectory. For small
causal diamonds, n is proportional to the proper time, in
Planck units. Among maximally symmetric spaces, differ-
ent values of the cosmological constant imply different
behaviors of the maximal value of n as the proper time
goes to infinity. In AdS space, n becomes infinite in a finite
proper time of order the AdS radius. In asymptotically flat
space, the two go to infinity at fixed ratio, while in dS space
the maximal value of n is finite and proportional to the dS
radius in Planck units. The evolution operator Uðt; 0Þ or
Uðt;�tÞ (for a big bang, or TCP symmetric space-time,
respectively, t is proportional to n) operates in the full
Hilbert space H ðnmax;xÞ, but for any t, it factorizes into
a product Uin �Uout, where Uin operates only in H n for
the causal diamond whose tips are labeled by ðt; 0Þ (in the
big bang case), andUout operates in the tensor complement
ofH n inH nmax

. If nmax is infinite, the tensor complement

must be defined by a careful limiting procedure. This rule
incorporates causality into the formalism. The dynamics of
the variables inside some causal diamond does not depend
on those outside it. The reader should be aware that the
definitions are all purely quantum mechanics. The geomet-
rical picture is emergent, via the holographic principle, in
the large diamond limit.
The quantum system defined by these rules is a complete

description of the universe as viewed by a given observer.
The rest of space-time is, in HST, a gauge redundancy, but
gauge invariance puts very strong constraints on the single
observer dynamics. To define an HST, we assign evolution
operators Uðt; 0;xÞ to each trajectory in our infinite con-
gruence. We then specify overlap Hilbert spacesOðn;x; yÞ,
which, for each n, are tensor factors in both H nðxÞ and
H nðyÞ. For nearest neighbors on the lattice Oðn;x; yÞ ¼
H ðn;xÞ ¼ �P nðn�1Þ, and more generally, its dimension is
a decreasing function of dðx; yÞ, the minimal number of
lattice steps between the two points. Starting from some
initial state, for each observer, time evolution will produce
two sequences of density matrices �ðn;xÞ and �ðn; yÞ. For
every n and ever pair of points, these two density matrices
must be unitarily equivalent to each other. In words, we say
thatOðn;x; yÞ contains the information that is accessible to
both observers at time n. Geometrically, we can view it as
the Hilbert space in the maximal causal diamond, which
fits into the intersection between the diamonds of the two
trajectories at the time n. The consistency condition says

2We include dS space in our definition of noncompact geome-
tries, despite the fact that in global coordinates it has compact
spatial sections. The full dS space is really the thermo-field
double of a single horizon volume [14], and the latter is a
noncompact manifold because it has a boundary.
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that up to a unitary change of basis, the two observers
predict the same density matrix for all of this common
information, at all times. It constrains both the mutual time
evolutions and the mutual choices of initial state. This
infinite set of conditions is rather hard to satisfy, and so
far only a few consistent models have been found. They
seem to describe both the very beginning and the very end
of cosmological history (assumed to be a dS space), at
which times all of the degrees of freedom are in thermal
equilibrium. These are regimes in which conventional QFT
descriptions of physics are most at odds with the true
behavior of the models because QFT gets the thermody-
namics of gravitational systems wrong.

There is also a partial understanding of how to use the
HST formalism to recover conventional string/M-theory
descriptions of space-times which are asymptotically flat
or AdS. The basic idea is that in those space-times, one
should restrict attention to the largest causal diamonds,
which is to say the conformal boundary. This means that
N ! 1 in the quantum superalgebra, while the number of
basis sections of the spinor bundle over the internal mani-
fold is kept fixed if its dimensions are fixed in Planck units.
The resulting smooth two-sphere has infinite radius and the
theory must become conformally invariant in order for
observables to have finite limits. In asymptotically AdS
space, the conformal boundary is R� S2, and the relevant
conformal group is SOð2; 3Þ. Well-known arguments,
which go under the rubric AdS/CFT correspondence, im-
ply that the limiting theory must be a conformally invariant
QFT on R� S2. We have a lot of experience constructing
QFTs as limits of systems with a large number of variables,
each of which has a finite-dimensional representation
space, so the mapping of the HST formalism into AdS/
CFT in the large N limit seems plausible, though none of
the details has been worked out.

For asymptotically flat space, the conformal boundary is
null and the only relevant conformal group is SOð1; 3Þ,
which is interpreted as the Lorentz group. If the internal
manifold has a covariantly constant spinor, then it has a
Dirac zero mode, which is preserved by our definition of
fuzzy geometry. The corresponding scalar fermion bilinear
is just a constant function on the internal manifold, so a
subset of the anticommutation rules read

½ðc 0ÞAi ; ðc y0ÞjB�þ ¼ �j
i�

A
B:

In the limit when N ! 1, a singular basis of spinor
spherical harmonics are delta function measures on the
sphere, multiplied by constant spinors. The conformal
Killing spinor equation on the sphere has a solution space
which transforms as the ð2; 1Þ � ð1; 2Þ representation of
SOð1; 3Þ. When these are integrated against the delta func-
tions, we obtain operators satisfying [15]

½Q�ð�Þ; Qy
_�
ð�Þ�þ ¼ Kð1;�Þ�ð��Þ� _�;

where we have used the usual Weyl four vector of two by
two matrices and K is a positive normalization constant,
which arises when taking the limit. Indeed [7,15], we can
take a more general limit, with block diagonal matrices of
sizesNi, all of which go to infinity at fixed ratio, and obtain
a Fock space of massless superparticles with all possible
momenta. Thus, kinematically, we can obtain a limit of
the HST system corresponding to a massless supersym-
metric field theory, whenever the internal manifold has a
covariantly constant spinor. Notice that the momenta in
the Poincaré algebra arises as an auxiliary bilinear in the
underlying fermionic variables, and we only obtain a
Poincaré invariant limit as a consequence of SUSY.
This has been only a sketch of the HST formalism. More

details can be found in [16–18]. The purpose of the present
paper is to present the definition of fuzzy geometry which
underlies this theory.

II. THE DIRAC EQUATION AND GEOMETRY

Alain Connes [8] has made the Dirac operator the central
focus of his metrical noncommutative geometry [9].
Connes’ emphasis is on noncommutative geometries
with infinite-dimensional function algebras, while we are
concerned with finite-dimensional noncommutative ap-
proximations to ordinary commutative geometries. For
physicists, an easy way to understand the relation between
the Dirac equation and geometry is to think about the short
time expansion of the heat kernel for the square of the
Dirac operator

hxje�tD2 jyi ! Kt�d=2e�ðl2ðx;yÞÞ=4t;

where d is the dimension of the manifold and lðx; yÞ the
geodesic distance between the points. The factor K is the
number of geodesics of equal minimal length connecting
the two points. This expression is most easily derived from
the Feynman path integral representation of the heat ker-
nel. The short time limit is a semiclassical limit for that
functional integral. The heat kernel thus contains all of the
geometrical information about the manifold.
Note that for this expression we need to know not only

the spectrum of the Dirac operator, but also the form of its
eigensections in the position representation. Geometers
have long known how to describe the points of a manifold
in terms of the algebraic structure of its algebra of func-
tions. A point is equivalent to the maximal ideal of func-
tions which vanish at that point. Alternatively, a point
defines an algebra homomorphism between the algebra
of functions and the complex numbers (a multiplicative
linear functional). Connes shows that everything that is to
be known about a manifold can be encoded in the relation
between the Dirac operator and the algebra of smooth
functions realized as multiplication operators on the
Hilbert space of square integrable sections of the spinor
bundle. He then proposes an abstract definition of the
Dirac operator for a general noncommutative algebra of
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operators on a Hilbert space as the definition of a non-
commutative Riemannian manifold.

Our aim is more modest. We simply want to recover the
normal commutative geometry of manifolds as a limit of
finite-dimensional matrix algebras. This is relatively
straightforward. For most3 compact Riemannian manifolds

of dimension d and volume V, the operator V1=dD has a
spectrum that runs from �� 1 to �1. We will define a
fuzzy spinor bundle over this manifold by cutting off the

spectrum of this operator via the inequality k V1=dD k <N,
where N is a positive integer. That is, we restrict to the
space of eigensections whose eigenvalues satisfy this in-
equality. The dimension of this subspace of eigensections
is another positive integer KðNÞ.

The algebra ofKðNÞ � KðNÞmatrices is realized as a set
of integral kernels

M��ðx; yÞ ¼
X

Mijc
�
�
iðxÞc j

�ðyÞ;

on the full spinor bundle. In the limit N ! 1, we can
restrict attention to matrices which produce kernels of
the form X

Mijc
�
�
iðxÞc j

�ðyÞ ! f��ðxÞ�ðx; yÞ;

where �ðx; yÞ is the Dirac distribution on the manifold. f��
belongs to the algebra of differential forms with Clifford
multiplication, rather than the standard Grassmann prod-
uct. The Clifford multiplication of course depends on the
metric. With appropriate restrictions on the limiting form
of Mij, we can get measurable, continuous, or smooth dif-

ferential forms. However, there is no particular reason to
do this in the spinor formalism. The general theory of
approximating bounded operators on a Hilbert space by
operators of finite rank leads us to consider the full non-
commutative algebra of bounded operators on the space of
square integrable sections of the spinor bundle as the
natural algebra of the continuous geometry. This contains
the algebras of functions and differential forms as subalge-
bras, and is no less of a characterization of the geometry of
the manifold than those more familiar ones.

A. Moduli

If we have a moduli space of manifolds, then the eigen-
values and eigensections of the Dirac operator depend
smoothly on the moduli. However, the spirit of noncom-
mutative geometry [9] and fuzzy geometry, in particular, is

that the algebra determines the geometry. In the standard
geometric quantization of the two-torus, we can see that
this leads to a discretization of moduli space. A square
fuzzy torus is defined by the algebra of all N � N matrices,
written in terms of generators U, V satisfying

UN ¼ VN ¼ 1; UV ¼ e2�i=NVU:

The area of this torus in Planck units is �N2. If N has a
factor k, we can get a rectangular torus by restricting
attention to the subalgebra generated by Uk and V, and a
similar restriction produces tilted tori as well. But, we only
get a rational set of moduli in this manner. Continuous
moduli arise, like longitudinal momenta in matrix theory
[7] and HST, as ratios of integers, both of which are taken
to infinity.
For spinor fuzzification, we consider the Dirac operator

with periodic boundary conditions.4 A general 2-torus is
determined by a parallelogram, parameterized in terms of
three real numbers ða; b; cÞ with 0< c < a. a is the length
of the horizontal segments, and b the vertical separation
between them. c determines the tilt of the parallelogram.
The eigenvalues and eigensections of the Dirac operator
with periodic boundary conditions are determined by a two
vector p ¼ ðp1; p2Þ with

p1 ¼ 2�n

a
p2 ¼ 2�m

b
� 2�nmc

ab
:

The eigenvalues are �jpj and the eigensections are

c�eip	x;

where c� are the two eigenspinors of �1p1 þ �2p2.
Fuzzification consists of choosing integer valued moduli

a ¼ N, b ¼ M, c ¼ k 
 N and cutting off the values of m
and n. Two natural cutoffs are n 
 N, m 
 N, and ðnNÞ2 þ
ðmM � knm

MNÞ2 <K2, for some integer K. The first is similar to

the kind of cutoff one gets from Kahler quantization, while
the latter conforms to our general idea of just bounding the
spectrum of the Dirac operator. For K of order 1, both
methods give a number of sections of the spinor bundle
that scales likeMN, which is proportional to the area of the
torus. If we make the independent sections into indepen-
dent generators of a quantum superalgebra, then the en-
tropy of the torus will be proportional to its area.
More generally, the large eigenvalues of the Dirac equa-

tion on any smooth compact manifold are approximately
like plane waves and their degeneracy grows like PD,
where P is the eigenvalue cutoff and D the dimension.
Thus, the number of independent sections grows like the
volume of the manifold in Planck units. Since this compact
manifold is the holographic screen of a Lorentzian mani-
fold in the HST formalism, this is precisely the right
Bekenstein-Hawking entropy in the general case. That is

3To quantify the notion of most, we have to think about a
moduli space of Riemannian manifolds satisfying some equa-
tions. Such moduli spaces have a natural metric on them, and
although noncompact, the moduli space has finite volume. This
means that extreme values of the moduli are ‘‘nongeneric.’’ Our
statement will be valid in a region of moduli space that contains
a large fraction of the total volume.

4The implications of different spin structures for our program
seem interesting, but we have not understood them.
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to say, the entropy per four-dimensional pixel (fixed value
of i and A) will, for compact dimensions large in higher-
dimensional Planck units, be proportional to the volume of
the internal dimensions. This is the conventional Kaluza-
Klein relation between the four-dimensional and higher-
dimensional Planck scales.

It is easy to work out the spinor fuzzification of a general
torus, and we will do a general sphere in the next section.
The procedure is straightforward for any manifold for
which one can work out the eigenvalues and eigensections
of the Dirac equation. For a general torus, the eigenvalues
are determined by a D-dimensional lattice of momenta,
with metric Gij, and the eigenvalue cutoff is

PiGijP
j < N2;

which is satisfied by only a finite set of momenta on the
lattice. The eigensections are exponentials multiplied by
constant spinors. For large N, the eigenvalue degeneracy
scales like ND. Again, it is clear that as we make continu-
ous changes in the moduli of the torus, the number of
eigenvalues satisfying the bound jumps discretely. Thus,
we can consider a discrete set of moduli, e.g. at the
boundary of these jumps. The HST formalism writes anti-
commutation relations for a finite set of eigensections,
and the fact that the resulting superalgebra has a finite-
dimensional unitary representation means that the physics
for a fixed number of eigensections has no continuous
parameters. Of course, as N gets large the discrete set of
moduli become dense in moduli space, and we recover the
familiar properties of continuous geometry.

From the point of view of approximating geometry, we
may view the restriction to rational moduli as a conve-
nience only. That is, we could look at finite-dimensional
approximations to the spinor bundle for general, continu-
ous values of the moduli. The eigenvalues and eigensec-
tions of the Dirac equation depend continuously on the
moduli. However, in the context of HST, the spinor eigen-
sections become quantum operators, and generate a super-
algebra with a finite-dimensional unitary representation.
All of the physics of the HST models depends only on this
representation, and there are no continuous parameters.
One comes to the conclusion that the continuous moduli
of conventional string theory are the result of approxima-
tions in which some length scale is infinitely larger than the
Planck scale at zeroth order.

The tensor product relation between spinor bundles and
the bundles of differential forms implies that some of the
topological features of the manifold are encoded in zero
modes of the Dirac equation. This is familiar from the
Atiyah-Singer index theorem and its generalizations. In
particular, if we have a covariantly constant spinor,
D�c 0 ¼ 0, then it is also a zero mode of the Dirac

equation. The nonvanishing differential forms

�c 0��1...�k
c 0;

where the matrices are the k-fold antisymmetrized prod-
ucts of tangent space Dirac matrices, contracted into the
vielbein, are all elements of the cohomology of the mani-
fold. This part of the topological information about the
manifold is preserved by spinor fuzzification. Note that this
is a bit different from Kahler fuzzification, where the
information that is kept is a cutoff version of the Picard
group and the dimensions of spaces of sections of holo-
morphic line bundles, as well as information about the
complex structure. It is peculiar though that not all of
this information is invariant information about the finite-
dimensional matrix algebra. For example, the fuzzy square
torus and the fuzzy sphere have the same algebra, and in
some sense are distinguished only by the choice of a basis
in this algebra (spherical harmonics vs powers of clock and
shift operators) and the way in which expansion coeffi-
cients in these bases behave in the large N limit.
We believe that the lack of some explicit topological

information about the manifold in fuzzy quantization is at
the root of string dualities. Highly supersymmetric com-
pactifications of string/M theory to asymptotically flat
space-times are often characterized by moduli spaces of
classical background geometries. The use of classical
backgrounds that are solutions of some low-energy effec-
tive field theory always implies that we are working in a
limit where some length scale is much larger than the
Planck scale.5 We have seen that in such limits, the discrete
moduli spaces of fuzzy compactification give rise to con-
tinuous ratios of large integers.6 The notion of continuous
moduli spaces is conceptually wrong, but valid to all orders

in expansions in LP

LLarge
. String duality relations are derived

in terms of constraints on low-energy Lagrangians in two
different limits, which have the same SUSY algebra.
In HST, the SUSY algebra arises in the limit of large

causal diamonds in the noncompact space, with the dis-
crete internal moduli fixed. In that limit, the pixel algebra
generators become distributions, ðc PÞAi ! c K�ð�;�0Þ
and the anticommutation relations become (for four-
dimensional asymptotically flat space)

5This can be a geometric length scale in the compactification
manifold or the Compton wavelength of some quantum
excitation.

6For example, in Kahler quantization, the Kahler moduli have
to do with the direction in the Picard group in which we take
fluxes to infinity at fixed ratio. Complex structure moduli have to
do with choices of subalgebras of the algebra of all N � N
matrices in the space of sections of the holomorphic line bundle
corresponding to the chosen Picard group element. We have seen
in the example of the two-torus, that such subalgebras are
characterized by rational fractions k

N , where k is a divisor of
N. These parameters become continuous as N ! 1. The ex-
ample of tori shows how a similar phenomenon arises for spinor
fuzzification. The number of Dirac eigenvalues below some
bound is an integer, and jumps at discreet points in torus moduli
space. We can cover all possibilities in the N ! 1 limit, by
choosing rational values for the moduli with a maximum de-
nominator of order the bound N.
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½c K; c yL�þ ¼ PZKL:

Recall that K and L label a finite-dimensional basis of the
space of Dirac eigensections on the internal manifold, with
eigenvalue less than some bound. P is a positive real
number. It arises as follows. We take the N characterizing
the maximal spherical harmonic in the pixel algebra to
infinity, obtaining wave functions localizable on the
sphere, which deserve to be called particles penetrating
the holographic screen. Now, we can do this in block

diagonal matrices of size Ni ! 1, with Ni

Nj
fixed, obtaining

continuous longitudinal fractions. We now view these
fractions as ratios of dimensionfull momenta, and P is
that momentum. If the internal manifold has a covariantly
constant spinor, then we smear the distributional pixel
algebra generators with conformal Killing spinors on the
two-sphere and pick K, L to both be the zero mode, we
get the N ¼ 1 SUSY algebra with 4-momentum
P� ¼ Pð1;��0Þ.7

The pixel SUSY algebra will have scalar charges corre-
sponding to BPS states if the theory has larger supersym-
metry or more noncompact dimensions. However, if the
internal manifold has finite volume in Planck units8 then
the eigenvalues of the charge operators are bounded. It is
easy to see that the bound corresponds to the point at which
a state of that charge has a mass larger than the 4D Planck
mass, so that it is really a black hole. Such black holes can
be made in particle collisions. It is only in extreme limits of
the discrete moduli, where the dimension of the pixel
algebra goes to infinity, that we can describe ‘‘all’’ of these
black hole states as elementary objects like D-branes or
Kaluza-Klein modes of compactified particles. Indeed,
such limits are always characterized by a small dimension-
less parameter g2. The nongravitational nature of the states
is only valid for values of charge less than some inverse
power of g2.

The upshot of this discussion is that we know how to
describe SUSYalgebras and BPS states in the HST formal-
ism. A dual string pair corresponds to taking two different
limits of the discrete parameters that characterize an HST
compactification, namely, the pixel algebra. We can follow
states between the two limits by following their conserved
charges. In the two limits, the moduli become continuous
parameters and we can use the usual arguments to compare
the dual formulations of the theory. One of us (T. B.) has
been guilty on many occasions of saying that dualities
proved that there were lengths smaller than the Planck
scale in string theory (since e.g. the weak coupling IIA
string limit is a zero radius circle in M theory). This argu-
ment is specious. Every calculable limit of string moduli

space, as well as limits like F theory, which are only
partially calculable, depends on having a length scale
much larger than the Planck scale of the noncompact
dimensions, defined by the Einstein frame Lagrangian.
The expansion parameter is always a power of this ratio
of scales. This is the reason that the constraints of the
holographic principle and the fundamentally discrete na-
ture of moduli are not apparent in these expansions.
The discreteness of moduli has profound implications

for cosmology. Much of the literature on string-inspired
cosmology, including many papers written by one of the
authors (T. B.), uses moduli fields as ingredients in an
inflationary cosmology. Coherent fields are, from the
HST point of view, an approximate way of describing
states with many particles. However, the particle horizon
at early times is small, and the HST formalism only admits
a finite number of particles in such a region. The entropy of
the particle horizon in a preinflationary era is roughly

S ¼ K

�
� N2VI;

where K is a geometrical factor that depends on the details
of the early history of the universe, and � is the energy
density in Planck units. VI is the number of independent
sections in the fuzzy spinor bundle over the internal space,
and N2 is the number of spinor harmonics on the fuzzy
two-sphere. When we make multiparticle states using the

HST variables, the number of particles scales like N1=2 if
we require the particles to be roughly localizable.9 For
unification scale inflation, we have S� 1012 at most.
Thus, the number of particles is of order

10 3V�1=4
I :

Thus, the VI ! 1 limit in which the internal geometry has
approximately continuous moduli conflicts with the re-
quirement that four-dimensional field theory be a good
approximation to the dynamics of the inflaton. The term
cosmological moduli is, within the HST formalism, an
oxymoron.

B. Flux compactifications

There has been a lot of interest over the past decade in
compactifications of string theory characterized by fluxes
of p-form gauge fields through nontrivial p-cycles of the
compactification manifold. We would like to conjecture
that the corresponding HST compactification is obtained
by replacing the Dirac operator by the flux Dirac operator

DF ¼ DþX
FðpÞ
i �p;

7The � ambiguity arises from a reflection ambiguity in the
conformal Killing spinor equation. It has to do with incoming
and outgoing particles, and we will not discuss it further.

8Translation: the representation space of the pixel algebra has
finite dimension for fixed N.

9In order to use the conventional field theory calculation of
inflationary fluctuations, we have to consider particles that are
localizable on a scale much smaller than the horizon.
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where FðpÞ
i are the fluxes and �p the antisymmetrized

product of Dirac matrices, contracted into the vielbein.
Spinors that are covariantly constant with respect to a
generalized connection, depending on the fluxes, will
give zero modes of DF, which can be used to construct
SUSY generators as above. The qualitative features of the
above discussion of spinor fuzzification are unchanged by
the addition of fluxes. More quantitative details of this
conjecture will be addressed in future work.

III. FUZZY SPHERES IN ANY DIMENSION

The eigenvalues and eigensections of the Dirac operator
on the n-sphere have been worked out, for example, in
[19]. For n even, the eigenvalues are10

�
�
Mþ n

2

�
;

where M is a non-negative integer. The degeneracy of this
eigenspace is

DnðMÞ ¼ 2n=2ðnþM� 1Þ!
M!ðn� 1Þ! :

The eigensections are given in terms of Jacobi polyno-
mials. For n odd, we have eigenvalues

�
�
Mþ n

2

�
;

with degeneracy

2ðn�1Þ=2ðnþM� 1Þ!
M!ðn� 1Þ! :

In both cases, the largeM behavior of �M � P
m
MDnðmÞ

scales like Mn, so an eigenvalues cutoff on M, combined
with a finite-dimensional representation of the quantum
algebra of variables in the spinor bundle, will have an
entropy with this scaling. This suggests that M be inter-
preted as proportional to the radius of the sphere in Planck
units.

The maximal entropy of massless particles in a region of
size R in d� 1-dimensional space, subject to the constraint
that they do not collapse to form a black hole with radius

�R, scales like R½ðd�1Þðd�2Þ�=d. Now, imagine that our
spinor bundle variables are arranged in a K � L matrix,

with K � L�Mðd�2Þ=2. We again try to associate particles
with blocks that are roughly P� P in size. The entropy of
the factor Hilbert space generated by just those block

variables is of order PMðd�2Þ=2. Thus, if P�Mðd�2Þ2=2d
and M� R in Planck units, we reproduce the particle
entropy formula coming from black hole physics. The

formula for P shows that P2 can be interpreted as the
dimension of the fuzzy spinor bundle on the d�
2-sphere, with eigenvalue cutoffM� �Mðd�2Þ=d. This gen-
eralizes the M1=2 cutoff found in [15]. Following that
reference, we interpret this as the cutoff on the size of
the longitudinal momentum pð1;�Þ in units of the inverse
radius 1

MMP
of the causal diamond.

In the four dimensions, the individual K-, L-, or
P-dimensional factor spaces carry irreducible representa-
tions of the rotation group. We have not found an analog of
that factorization for general d. However, the formalism is
completely rotation invariant because the spaces of K � L
and (roughly) P� P matrices are all spinor bundles with
an eigenvalue cutoff for the Dirac operator. Thus, the vari-
ables of our quantum theory, both the full causal diamond
algebra, and the subalgebra that describes particlelike ex-
citations, transform as representations of the rotation group
Spinðd� 1Þ.
For dimension greater than two, our construction is

completely different from alternative approaches to the
construction of fuzzy spheres (e.g. [11–13]). In particular,
it is rotation invariant in any dimension. We think that the
origin of this discrepancy has to do with the philosophy,
which has hitherto guided studies of fuzzy geometry.
This philosophy is driven by the functorial equivalence
between ordinary spaces and their commutative algebra
of functions. The idea is then to take a sequence of finite-
dimensional noncommutative or perhaps nonassociative,
algebras, which, as the dimension grows large, approaches
the commutative algebra of functions on some space. One
is then left with a Poisson structure, or some other tensor
related to nonassociativity, which encodes the leading
deviation from commutative associative algebra in the
large dimension limit. This tensor is not rotation invariant
on a general n-sphere. In our approach, the relevant algebra
is the algebra of matrices in the finite-dimensional spinor
bundle, with Dirac eigenvalue cutoff. This algebra ap-
proaches (with appropriate asymptotic conditions on the
matrices) the algebra of bounded operators on the Hilbert
space of square integrable sections of the spinor bundle,
as the eigenvalue cutoff goes to infinity. The algebra of
functions is a proper, commutative subalgebra of this. It is
clear that there is more than enough information in this
algebra to completely determine the geometry of the mani-
fold, but our picture does not fit into the general framework
of deformation quantization. It is clear that for the purposes
of HST, our definition of fuzzy geometry is more suitable
than others. It remains to be seen whether it will have more
general applicability.

IV. APPLICATIONS TO MATRIX THEORY

Matrix theory is an approach to a nonperturbative con-
struction of certain super-Poincaré invariant models of
string/M theory. It should be thought of as a discrete
light-cone quantization (DLCQ) of the underlying theory,

10We have multiplied the Dirac operator of [19] by i, to make it
Hermitian.
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in which only particle states with discrete, positive longi-
tudinal momenta are kept and the total longitudinal
momentum is restricted to be a positive integer N. An
elegant derivation of the matrix theory prescription from
perturbative string theory has been given in [20], following
work of [21,22]. One realizes the compact null direction
as an infinite boost of a small spacelike circle and uses
the duality between M theory and IIA string theory to
claim that the positive momentum states are all D0-branes.
The light front theory needs the non-relativistic D0-brane
action, and with enough SUSY, this is completely deter-
mined. For four or fewer compact dimensions, pre-
serving at least 16 supercharges, the resulting theory is a
well-defined quantum field theory. From the string theory
point of view, the dimensions of the compact space are
small in string units, if they are Oð1Þ in 11-dimensional
Planck units, so we must do T-duality transformations
(Fourier-Mukhai transformations in the case of K3 mani-
folds), to get to a frame where the physics is well
understood.

For five dimensions, one has to deal with the poorly
understood little string theories [23] and for six or more
compact dimensions that dual theory appears to require
quantum gravity and does not achieve the objective of
reducing quantum gravity to a nongravitational problem.
One of the present authors (T. B.) has emphasized before
[24] that, although the Seiberg prescription is elegant and
allows us to use results of perturbative string theory, there
is no such thing as a unique DLCQ of M theory. DLCQ is
an approximation method, and any approximation that gets
the right results in the N ! 1 limit is acceptable. Fuzzy
geometry [9] will enable us to define M theory for all
supersymmetric compactifications in terms of the large N
limit of a finite matrix quantum mechanics.

The matrix Lagrangian for matrix theory in 11 non-
compact dimensions is

L ¼ Tr

�
1

2R
_X2 � 	T _	� R

4
½Xi; Xj�2 � R	T�i½	; Xi�

�
:

Xi is a 9 ¼ 11� 2-dimensional real transverse vector of
N � N matrices and 	 is an N � N matrix of 16 compo-
nent real Spin(9) spinors, on which the Dirac matrices �i

act in the usual fashion. The UðNÞ symmetry of the
Lagrangian is a gauge symmetry, and the super-Galilean
group of the light front frame acts on the gauge in-
variant subspace of the Hilbert space of this theory. The
Lagrangian is written in 11-dimensional Planck units
and the dimensionless parameter R is the radius in
Planck units of the null longitudinal circle, which deter-
mines the quantization of longitudinal momentum. The
Hamiltonian is simply proportional to R. In these units,
the total momentum is N. The claim is that as N and R go
to infinity at fixed ratio, the states which remain at finite
energy are simply supergravitons in flat 11-dimensional
space-time, and the scattering matrix of those excitations

along the flat directions of the quantum potential
approaches the S-matrix of 11-dimensional quantum su-
pergravity, for all momenta.
When we compactify matrix theory on a torus, following

Seiberg’s prescription, the XI for the compact directions
become covariant derivatives in a UðNÞ gauge theory on
the T-dual torus. 	, for each value of the noncompact
spinor index, becomes a section of the tensor product of
the spinor bundle over the T-dual torus, with the principal
UðNÞ bundle. Similarly, when we compactify matrix
theory on a K3 manifold, four of the XI are replaced

by covariant derivatives on the Fourier-Mukhai dual fK3.
The result is the UðNÞð2; 0Þ six-dimensional conformal
field theory (CFT), which is the unique maximally super-
symmetric UV completion of five-dimensional super

Yang-Mills (SYM), compactified on S1 times fK3 [25].
Our proposal for matrix theory compactification is to

take the original Seiberg proposal, which naively takes the
theory to a SYM theory on the dual of the compactification
manifold, and replace that manifold by its spinor fuzzi-
fication. Thus, the XI become covariant derivative opera-
tors in a bundle of N2 spinor fields over the manifold,11

with a cutoff on the Dirac eigenvalue that is related to the
size of the dual compactification manifold in Planck units.
Each noncompact component of 	a is a section of this
bundle. Each noncompact XI is a function on this mani-
fold. That is to say, it is in the tensor product of the algebra
of N � N matrices, with the 0-form subalgebra of the
Clifford algebra of forms on the fuzzy manifold.
According to this proposal, matrix theory compactifica-

tion in any dimension is a supersymmetric quantum me-
chanics of finite-dimensional matrices. The only issue one
has to deal with is whether the large N limit (with the size
of the compact spinor bundle fixed) defines a finite, super-
Poincaré invariant S-matrix. This prescription is even ap-
plicable to G2 compactification, or compactification on a
7-torus. Indeed, it even allows us to define a finite N
version of compactification on eight- or nine-dimensional
manifolds. Presumably, in those cases, the large N limit of
the scattering matrix fails to exist. We hope to come back
to some examples of finite matrix theory compactifications
in a future publication.
One question left open by this proposal is what we mean

by ‘‘dual’’ in the general case. For tori and K3, mani-
folds this is clear. The authors of [26] suggested that for
CY3-folds the relevant duality is mirror symmetry. Indeed,
the problem Seiberg solved with T-duality was that the
description in terms of D0-branes on the original manifold
had a manifold whose size shrank to zero in string units.
The string perturbation expansion breaks down, and

11In the matrix theory Lagrangian, we recognize that the
compact XI are the tangent space components of covariant
derivatives, e

�
a D�, so that the flat scalar product is all that is

necessary.
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sometimes the duality tells us how to describe the resulting
limit in an exact way. The mirror dual of a zero-volume
CY3-fold is a CY3-fold at its conifold singularity. In fact,
our discussion of fuzzy compactification and the holo-
graphic principle suggests that when the size of the mani-
fold is of order 1 in Planck units, the approximation of
continuous moduli breaks down. The manifold and its
mirror dual are just two different Oð1Þ values of the dis-
crete moduli.

Greg Moore has suggested to us a strategy which
would obviate the need for formulating a precise notion
of dual to every compactification manifold. In all known
examples, the Dirac-Ramond operator, with supersym-
metric boundary conditions, has a spectrum invariant
under dualities of string theory that preserve gS ¼ 0. An
eigenvalue cutoff on the Dirac-Ramond operator again
leads to a finite-dimensional spinor bundle, so perhaps
this could be used as a definition of fuzzy compactifica-
tions of matrix theory.

V. CONCLUSIONS

The strong holographic principle implies that a finite-
area holographic screen corresponds to a finite-dimensional
approximation to the spinor bundle over the screen. De-
fining this approximation by a sharp cutoff on the spectrum
of the Dirac operator preserves all isometries of the mani-
fold, as well as SUSY. It gives a rather precise definition of
compactifications of the holographic space-time formalism,
as well as compactifications of matrix theory. The latter
always correspond to a quantum system with a finite num-
ber of variables. The only question that arises is whether the
large N limit of the matrix theory scattering matrix con-
verges to a super-Poincaré invariant answer.
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