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Following K. Balasubramanian and K. Narayan [J. High Energy Phys. 08 (2010) 014], we discuss

certain lightlike deformations of AdS5 � X5 in type IIB string theory sourced by a lightlike dilaton�ðxþÞ
dual to theN ¼ 4 super Yang-Mills theory with a lightlike varying gauge coupling. We argue that, in the

case where the xþ direction is noncompact, these solutions describe anisotropic 3þ 1-dim Lifshitz-like

systems with a potential in the xþ direction generated by the lightlike dilaton. We then describe solutions

of this sort with a linear dilaton. This enables a detailed calculation of two-point correlation functions of

operators dual to bulk scalars and helps illustrate the spatial structure of these theories. Following this, we

discuss a nongeometric string construction involving a compactification along the xþ direction of this

linear dilaton system. We also point out similar IIB axionic solutions. Similar bulk arguments for

xþ-noncompact can be carried out for deformations of AdS4 � X7 in M theory.
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I. INTRODUCTION

It is interesting to explore generalizations of holographic
duality to physical systems with nonrelativistic symme-
tries, with a view towards possible interfaces with con-
densed matter systems (see e.g. [1–3] for reviews). In this
paper, we discuss Lifshitz-like fixed points from a holo-
graphic point of view.

Lifshitz points arise invarious condensedmatter systems,
e.g. magnetic systems with antiferromagnetic interactions,
dimer models, liquid crystals, and so on (see e.g. [4,5] for
lucid descriptions). They exhibit the anisotropic scaling
t ! �zt, xi ! �xi, with z the dynamical exponent. A
Landau-Ginzburg description for such theories with z ¼ 2
has the effective action S ¼ R

dtd2xðð@t’Þ2 � �ðr2’Þ2Þ.
Aspects of correlation functions in these theories have been
discussed in e.g. [6,7].

Holographic dual gravitational models of such theories

were described in [8]; these spacetimes ds2 ¼ � dt2

r2z
þ

dx2iþdr2

r2
, i ¼ 1, 2, arise as solutions to 4-dimEinstein gravity

with a cosmological constant coupled to a massive Abelian
gauge field. The symmetries exhibited by this spacetime are
time translations, spatial translations/rotations, as well as
the anisotropic scaling above; these are smaller than the
Galilean symmetries explored holographically in [9–24].
Previous attempts at string or supergravity constructions of
such spacetimes Lif4 include e.g. [16,25–29].

In [30], certain lightlike deformations of AdS5 � X5

sourced by a lightlike dilaton in type IIB string theory (as
well as those ofAdS4 � X7 inM theory)were argued to give
rise, upon dimensional reduction, to z ¼ 2 Lifshitz space-
times in 3þ 1 and 2þ 1 dimensions. For the AdS5 case,
these are dual to a discrete light cone quantization (DLCQ)
of theN ¼ 4 superYang-Mills (SYM) theorywith a gauge
coupling that varies along the compact direction. Some of
the supporting evidence includes symmetry arguments
from both the bulk and dual field theory points of view, as

well as matching of certain equal-time two-point correla-
tion functions with those found in [8]. These constructions
were found to nicely generalize [31] to a large family of
similar z ¼ 2 solutions with various other fields incorpo-
rated. Lifshitz-like solutions with more general values of
the dynamical exponent z have been constructed in [32] (see
also related work in [33–38]).
In this paper, we continue to explore the apparently

simpler systems in [30], but now without any compactifi-
cation. This is a lightlike deformation of AdS5 � X5

sourced by a null dilaton, dual to the N ¼ 4 SYM with
a gauge coupling varying along one lightlike direction.
This system turns out to be interesting and exhibits spa-
tially anisotropic 3þ 1-dim Lifshitz-like symmetries with
dynamical exponents z ¼ 2 in the xi, x

� directions and
z ¼ 1 in the x� directions. The metric and dilaton respect
the scaling symmetry but break xþ-translation invariance.
In addition, the lightlike dilaton configuration gives rise to
a potential in the xþ direction.
For the particular case of a dilaton that is linear in the

lightlike xþ direction, the bulk Einstein metric becomes
independent of xþ and the spacetime simplifies. In particu-
lar, this enables a detailed calculation of the two-point
correlation function for operators dual to bulk scalar
modes. The resulting structure obtained from this AdS/
CFT calculation bears some similarity to that found in the
effective gravity Lifshitz hologram of [8]. However, there
is further structure in this case due to the linear dilaton
configuration, which is reminiscent of Liouville-like walls
in theories in c ¼ 1 string theory. The linear dilaton xþ
potential has some reflection in the two-point momentum
space correlation function for massless scalars (dual to
dimension-4 operators) which contains some structure
resembling a mass gap in the xþ direction. This suggests
that solutions of this form will, in general, exhibit
features reflecting the spatial xþ potential generated by
the dilaton.
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Much of this bulk discussion for xþ-noncompact can be
carried out for similar lightlike deformations ofAdS4 � X7

in M theory, giving insight into 2þ 1-dim Lifshitz-like
field theories possibly dual to lightlike deformations
of Chern-Simons theories arising holographically on
M2-branes [39].

We then discuss a possible dimensional reduction of a
linear dilaton system involving a nongeometric string con-
struction using the S-duality of the IIB theory. We also
point out very similar Lifshitz-like solutions sourced by the
axion in IIB string theory. We finally close with a discus-
sion including comments on some specific solutions.

II. REVIEWING z ¼ 2 LIFSHITZ SPACETIMES
FROM ADS NULL DEFORMATIONS

WITH A NULL DILATON

In [30], we studied null deformations of AdS� X
sourced by a lightlike dilaton in 10- or 11-dim supergravity
or string (or M) theory, and argued that upon dimensional
reduction (DLCQ) they represent gravity duals of z ¼ 2
Lifshitz fixed points in 2þ 1 or 1þ 1 dimensions. The
10- or 11-dim bulk system with xþ-compact is

ds2 ¼ 1

w2
½�2dxþdx� þ dx2i þ �w2ð�0Þ2ðdxþÞ2�

þ dw2

w2
þ d�2

S;

� ¼ �ðxþÞ;
(1)

with a corresponding 5- or 4-form field strength. The
constant � is � ¼ 1

4 for AdS5 and � ¼ 1
2 for AdS4 (the

d�2
S is the metric for S5 or X7, respectively, with X7 being

some Sasaki-Einstein 7-manifold).
It is natural to interpret x� as the time variable since a

constant-x� surface is spacelike (since g�� < 0), while a
constant-xþ surface is null. The spacetime (1) exhibits the
following symmetries: translations and rotations in xi,
translations in x� � t (time), and a z ¼ 2 scaling x� !
�2x�, xi ! �xi, w ! �w (xþ being a compact direction
does not scale). Possible Galilean boosts xi ! xi � vix

�,
xþ ! xþ � 1

2 ð2vixi � v2
i x

�Þ are broken by the gþþ �
ð�0Þ2 term. (If gþþ ¼ 0, this is essentially AdS in light-
cone coordinates and the system upon DLCQ has a
Schrodinger symmetry, as discussed in e.g. [11,14,15]).

In the AdS5-deformed case, the gauge theory dual to
these systems can be identified to be the DLCQ of the
N ¼ 4 super Yang-Mills theory with a gauge coupling

varying along the xþ direction as g2YM ¼ e�ðxþÞ. The
boundary metric limw!0ds

2
4 is flat, so the gauge theory

lives on flat spacetime. From the point of view of the dual
gauge theory, the symmetry structure is intuitively clear:
noting that the DLCQ of a relativistic field theory gives a
nonrelativistic (Galilean) system, we see that the gauge
coupling varying along the xþ direction then breaks the

xþ-shift symmetry, reducing the Galilean symmetry down
to a Lifshitz one.
It can be checked directly that these spacetimes (1)

along with the scalar � and appropriate 5-form (or
4-form) field strength are solutions to the 10-dim (or
11-dim) supergravity equations. For instance, there is no
S5 or X7 dependence, and the resulting 5- or 4-dim system,
with an effective cosmological constant from the flux,
solves the equation RMN ¼ �dgMN þ 1

2@M�@N�, with

d ¼ 4, 3, for AdSdþ1, being the 5- or 4-dim effective
cosmological constant. Finally, the lightlike nature ensures
that the scalar equation of motion is automatically satis-
fied. However, it is worth mentioning that the coordinate

transformation w ¼ re�f=2, x� ¼ y� � w2f0
4 recasts these

spacetimes (1) into the form (we set the AdS radius R ¼ 1)

ds2 ¼ 1

r2
½efðxþÞð�2dxþdy� þ dx2i Þ þ dr2� þ d�2

5;

� ¼ �ðxþÞ;
(2)

with the 4-dim part being conformal to flat space, and the
boundary metric becoming ef���; indeed, this is where

the AdS5-deformed systems were originally found [40–43]
(see also [44,45]).1 These are Penrose-Brown-Henneaux
transformations, a subset of bulk diffeomorphisms leaving
the metric invariant (in Fefferman-Graham form), and
acting as a Weyl transformation on the boundary. We
will refer to the coordinate system in (2) as conformal
coordinates in what follows. The only nonzero Ricci
component is Rþþ, giving Rþþ ¼ 1

2 ð@þ�Þ2, i.e. Rþþ ¼
1
2 ðf0Þ2 � f00 ¼ 2�ð�0Þ2, with �0 � d�

dxþ , f
0 ¼ df

dxþ .

The AdS5-deformed solutions were shown to preserve
half (light-cone) supersymmetry in the form (2) in [40].
Supersymmetry was also shown for various solutions in the
more general family in [31] which are generalizations of
the metric form (1).
An argument for the dimensional reduction of the space-

time (1) along the compact xþ direction was given in [30].
This suggests that the system has the right structure,
although a clear Wilsonian separation-of-scales argument
allowing for a standard Kaluza-Klein reduction of this
metric is difficult due to the xþ dependence of gþþ in
(1) for generic �ðxþÞ.
Further checks involve the equal-time two-point corre-

lation function of operators dual to bulk scalar modes; the
bulk calculation in this spacetime agrees with the spatial
power-law behavior noted by [8], as we review briefly now.
In the conformal coordinates (2), the holographic two-
point correlation function for operators dual to scalars
can be found in closed form [41]; this was used in [30]
to show agreement of the equal-time expression 1

½ð�xiÞ2��

1After this paper appeared on the arXiv, we were informed of
earlier solutions representing null deformations of AdS3 in the
context of Wess Zumino Witten models [46].
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with that in [8]. The conformally flat boundary metric is

efðxþÞ���, and the boundary coupling of the bulk mode ’

is
R
d3xdxþe2fðxþÞO’. Then the holographic boundary

action is

S ¼ C
Z

d4xd4x0e3fðxþÞ=2e3fðxþ0Þ=2’ðxþ; ~xÞ’ðxþ0; ~x0Þ

�
�
��

�xþ

�
1�� 1

½ð� ~xÞ2�� ;

ð� ~xÞ2 ¼ �2ð�xþÞð�x�Þ þ X
i¼1;2

ð�xiÞ2;

� ¼ 2þ � ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
;

(3)

where C is a constant, � ¼ R
efðxþÞdxþ is the affine

parameter along null geodesics stretched solely along xþ,
and ð� ~xÞ2 is the four-dimensional distance element. As
it stands, this is a 4-dim field theory boundary action; to
obtain an action for an effective 3-dim boundary field
theory, we need to dimensionally reduce over the xþ direc-
tion. In the compactified limit �xþ � �x�, �xi, it is

consistent to approximate ��
�xþ � d�

dxþ ¼ ef, and efðxþÞ � 1,

essentially smearing the xþ dependence relative to the
uncompactified dimensions. In this approximation, we can
read off the equal-time two-point function as
hOðxiÞOðx0iÞi � 1

½P
i
ð�xiÞ2�� . Likewise, for two points at es-

sentially the same spatial location (small �xi), we have
hOðtÞOðt0Þi � 1

ð�x�Þ� , where we have suppressed the xþ

integrals. The additional xþ dependences distinguish this
from a Galilean theory arising from a DLCQ. This power-
law spatial and temporal falloff behavior and the associated
scaling again vindicate the z ¼ 2 Lifshitz scaling; similar
power-law behavior was exhibited for some simple opera-
tors in the free Lifshitz field theory in [6].

The corresponding calculation in the metric (1) appears
relatively difficult to do since the gþþ piece is xþ depen-
dent for general �ðxþÞ and ruins a simple separation of
variables approach to solve the scalar wave equation.

The 11-dim z ¼ 2 Lifshitz-like solutions in (1) involve a
dimensional reduction of null deformations of AdS4 � X7,
with X7 being some Sasaki-Einstein 7-manifold. In this
case, the scalar does not have any natural interpretation in
the 11-dim theory directly; it arises instead from the 4-form
flux after compactification on X7. We expect that these
deformations are dual to the DLCQ of appropriate lightlike
deformations of Chern-Simons theories arising holograph-
ically on M2-branes [39] (and various generalizations).

We mention in passing that there also exist time-
dependent deformations of AdS5 [40,42,43] and AdS4; in
particular, the asymmetric Kasner-like solutions exhibit
interesting (anisotropic) Lifshitz scaling symmetries.
These solutions are qualitatively different from the null
ones above.

Finally, [30] also discussed solutions of 5-dimensional
gravity with a negative cosmological constant and a

massless complex scalar, that are similar to the null solu-
tions (1) above; these, upon dimensional reduction, give
rise to 2þ 1-dim Lifshitz spacetimes. This 5-dim solution
can be uplifted to 11-dimensional supergravity.

III. xþ-NONCOMPACT AND ANISOTROPIC
LIFSHITZ SYSTEMS

Wewant to now study the IIB null-deformed system (1),

ds2¼ 1

w2

�
�2dxþdx�þdx2i þ

1

4
w2ð�0Þ2ðdxþÞ2

�
þdw2

w2
;

�¼�ðxþÞ; (4)

but with xþ treated as a noncompact direction. First, it is
worth noting that the functional dependence of the dilaton
is really � ¼ �ðQxþÞ, the constant Q being a parameter
of mass dimension 1. Lightlike boosts xþ ! �xþ, x� !
��1x� were symmetries in the original system with
Q ¼ 0: these are broken in the present case. These boosts

rescaleQ asQ ! Q
� so that theories with different values of

Q are related by these boosts.
In this case, the symmetries include time x� translations

and spatial xi translations/rotations; translations in the xþ
direction are broken by the nontrivial xþ dependence. In
addition, the metric (4) exhibits the scaling

w ! �w; xi ! �xi;

x� ! �2x�; xþ ! �0xþ:
(5)

The system of course contains the z ¼ 2 Lifshitz scaling
symmetry xi ! �xi, x

� ! �2x� in the 2þ 1 dimensions
x�, xi (induced by the associated scaling of w). However,
in addition, note that since xþ does not scale, we effec-
tively have z ¼ 1 Lifshitz scaling in the xþ, x� directions
[reading off the dynamical exponent as the ratio of the
scaling of time (x�) to the spatial one (xþ)]. Thus it
appears best to interpret this system as a spatially aniso-
tropic Lifshitz system, with z ¼ 2 scaling for the
2þ 1-dimensional xi, x

� plane and z ¼ 1 scaling for
the xþ, x� directions. This is reminiscent of the anisotropic
scaling2 observed in the D3–D7 construction of [28] and
the scalings in the dilatonic black brane solutions in [47];
however, in this case, the scaling (5) is an actual symmetry
of (4), respected by the dilaton �ðxþÞ as well. This sort of
anisotropic scaling would seem to also hold for some of the
more general solutions in [31]. The dilaton, however,
breaks xþ-translation invariance, and in fact gives rise to
a spatial potential in the xþ direction; this gives rise to
additional structure in observables in this system which
reflect this effective xþ potential. In the next subsection,

2We recall that radial Kasner-like solutions of the form ds2 ¼
1
r2
½dr2 � r2p0dt2 þP

ir
2pi ðdxiÞ2� exist, sourced by several mas-

sive vector fields [16].
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we will analyze the case of a linear dilaton potential in
some detail, illustrating some of this structure.

The system (4) also exhibits the symmetry xi !
xi � vix

þ, with xþ unchanged and a corresponding shift
in x�; this is broken if xþ is compact. This symmetry,
however, is not a Galilean boost since xþ cannot be inter-
preted as time; x� is the natural time coordinate here,
consistent with constant-x� surfaces being spacelike
[g�� ��w4ð�0Þ2 < 0]. This sign of g�� appears crucial
for this interpretation and the z ¼ 1 scaling we have men-
tioned above. Some of the more general solutions in [31]
have gþþ < 0, and are more akin to z ¼ 0 Schrodinger

systems ds2 ¼ �dt2 þ dx2iþdtd�þdr2

r2
. Indeed, transforming

t ! ixþ, � ! ix� recasts this solution into the form in (4)
with�0 ¼ const. Thus its symmetries formally exist for (4)
too. In the present case, it appears best to interpret (4) as an
anisotropic Lifshitz-like system with a spatial xþ potential
stemming from the dilaton. This is corroborated by our
discussion on linear dilatonic systems in the next subsec-
tion, where we also calculate some correlation functions
which, in part, exhibit structure similar to those in [8].
There, we will also make further comments on this point.

As we have mentioned, these can be recast in conformal
coordinates (2), with a conformally flat boundary metric

efðxþÞ���. In these variables, the holographic two-point

function for operators OðxÞ with boundary couplingR
d4xe2fðxþÞOðxÞ’ðxÞ to the bulk mode ’ðxÞ can be read

off from (3) as [41]

hOðxÞOðx0Þi ¼ e�fðxþÞ=2e�fðx0þÞ=2
�
��

�xþ

�
1�� 1

½ð� ~xÞ2�� ;

(6)

with � ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
, � ¼ R

efðxþÞdxþ. For two points

with �xþ � �x�, �xi, i.e. that are essentially on a

constant-xþ slice, we can approximate ��
�xþ � d�

dxþ ¼ ef,

and ð� ~xÞ2 � ð�xiÞ2. This gives hOðxÞOðx0Þi � e�fðxþÞ�
½P

i
ð�xiÞ2�� .

The factor e�f� here is a reflection of the fact that the

conformally dressed operators efðxþÞ�=2OðxÞ in this confor-
mally flat background ef��� behave like undressed opera-

tors in the flat space background, possessing a flat space
two-point function. We also see that the equal-time corre-

lator (�x� ¼ 0) is ð ��
�xþÞ1�� e�fðxþÞ�=2e�fðx0þÞ�=2

½P
i
ð�xiÞ2�� , exhibiting

spatial power-law behavior in the xi, similar to the equal-
time two-point correlator in [8], but also possessing addi-
tional xþ dependence. Note that this calculation has been
done at the boundary r ¼ �; recalling that the radial coor-

dinates are related as w ¼ re�fðxþÞ=2, this boundary differs
from the corresponding boundary w ¼ � in the metric (4),
although they are in the same conformal class.

In the next subsection, we discuss the case of a linear
dilaton, in which case the holographic correlator can be

calculated in the metric (4), giving some detailed insight
into the structure of this system.

Linear-dilaton-like deformations

As we have seen, the AdS null-deformed solutions (4)

have gþþ ¼ ð�0Þ2
4 . For�0 ¼ const, we see that the Einstein

metric is independent of xþ. This is the case of a dilaton
that is linear.
Consider �0 ¼ const; this gives � ¼ �0 þ 2Qxþ,

which is a linear dilaton profile, the constant Q being a
parameter (we have chosen the constant 2Q for conve-
nience). Then the bulk spacetime and dilaton are

ds2 ¼ 1

w2
½�2dxþdx� þ dx2i þ w2Q2ðdxþÞ2� þ dw2

w2
;

� ¼ �0 þ 2Qxþ: (7)

The symmetries in this case, besides those mentioned
above (5), also include translations in xþ in the metric
(7); however, there is a spatial xþ potential stemming from
the linear dilaton.
The action for a massless scalar S ¼

1
G5

R
d5x

ffiffiffiffiffiffiffi�g
p

g��@�’@�’ on restricting to modes propa-

gating on a constant-xþ surface, i.e. with no xþ depen-
dence (@þ’ ¼ 0),

S ¼ 1

G5

Z d4xdxþ

w5

�
�w4ð�0Þ2

4
ð@�’Þ2 � 2w2ð@�’Þ

� ð@þ’Þ þ w2ð@i’Þ2 þ w2ð@w’Þ2
�

¼ 1

G5

Z
dxþ

d4x

w5
½�Q2w4ð@�’Þ2 þ w2ð@i’Þ2

þ w2ð@w’Þ2�: (8)

Such scalar modes see an effective z ¼ 2 Lifshitz geome-
try in the 3þ 1-dim ðx�; xi; wÞ part of the bulk. Modes
propagating only in the 2þ 1-dim ðx�; wÞ part of the bulk
see z ¼ 1 Lifshitz scaling.
It is interesting to ask if a constant-xþ hypersurface has

an inducedmetric resembling that of a 4-dim z ¼ 2 Lifshitz
spacetime. Consider a static D5-brane probe stretched
along x�, xi,w and an S2 2 S5. This is effectively a domain
wall in the xþ direction of the AdS5 part of the bulk
spacetime. Since a constant-xþ hypersurface is null, it is
difficult to explicitly realize a z ¼ 2 d ¼ 4 Lifshitz space-
time as the inducedmetric on the 4-dim part of theD5-brane

probe. Consider the bulk metric ds2 ¼ 1
w2 ½�2dxþdx� þ

w2Q2ðdxþÞ2 þ dx2i � þ dw2

w2 ¼ ðQdxþ � dx�
Qw2Þ2 � ðdx�Þ2

Q2w4 þ
dx2i
w2 þ dw2

w2 . We see that on the slice dxþ ¼ dx�
Qw2 , the induced

metric is precisely Lifz¼2
4 times a compact space; however,

this is not a well-defined hypersurface.
The dual gauge theory is the 4-dimN ¼ 4 SYM theory

living on flat spacetime, the boundary metric being flat,
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with the gauge coupling lightlike-deformed as g2YMðxþÞ ¼
e�ðxþÞ � gse

2Qxþ , with gs ¼ e�0 . The linear-dilaton-like
coupling gives a strong coupling Liouville-like wall at one
xþ end, while for xþ � 0, the gauge theory becomes
weakly coupled and arbitrarily calculable perturbatively.
Correspondingly, the spacetime ceases to be reliable in this
regime, where the string coupling becomes small. The

string frame metric is ds2str ¼ e�=2ds2. This degenerates
for xþ ! �1, where the curvatures become large.

The fact that the dilaton has a non-normalizable defor-
mation turned on means that the operator TrF2 is sourced.
Since the deformation is lightlike, there exist no nonzero
contractions involving @þg2YM since there are no tensors
with multiple upperþ indices. Thus TrF2 continues to be a
marginal dim-4 operator.3

We will now calculate the two-point correlation function
in this linear dilaton case (7); possible mode functions

’ðxÞ ¼ eik�x
�þikix

i
egðxþÞRðwÞ reduce the scalar wave

equation 1ffiffiffiffiffi�g
p @�ðg�� ffiffiffiffiffiffiffi�g

p
@�’Þ �m2’ ¼ 0 to�2ik�g0 þ

w3

RðwÞ @wð 1w3 @wRðwÞÞ � k2i � m2

w2 þ w2Q2k2� ¼ 0. With g ¼
�i	2xþ
2k�

, the radial equation becomes

w3@w

�
1

w3
@wRðwÞ

�
�
�
k2i þ	2þm2

w2
�w2Q2k2�

�
RðwÞ¼0:

(9)

Before we see this in detail, note that the boundary asymp-
totics of this equation near w ¼ 0 show that the last term
w2Q2k2� in the equation is subdominant and the mode
functions approach those of AdS in light-cone coordinates.
Thus the two-point function in this leading approximation is

1
½ð� ~xÞ2�� ; in particular, for points that are essentially on the

same xþ plane, i.e. �xþ � �xi, the two-point function
exhibits spatial power-law behavior 1

½P
i
ð�xiÞ2�� .

In greater detail, the radial equation (9) is exactly solv-
able in terms of confluent hypergeometric functions [48].

Taking RðwÞ ¼ w�e
w
2
fðwÞ, and redefining

k2 ¼ 	2 þ k2i � �2kþk� þ k2i ;


 ¼ � iQk�
2

;

� ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
¼ 2þ �;

(10)

the radial equation becomes z d2f
dz2

þ ð�� 1� zÞ dfdz�
ð��1

2 � k2

8
Þf ¼ 0 (where z ¼ �2
w2), which is

the confluent hypergeometric equation. This gives the
momentum space bulk-to-boundary propagator [we have
’ðx�; wÞ ¼ R

d4k’ðkÞGðk; wÞ]

Gðki; kþ; k�; wÞ ¼ N ðkÞeikixiþik�x�þikþxþw�e
w
2

�Uða; c;�2
w2Þ;

a ¼ �� 1

2
� k2

8

¼ �þ 1

2
þ k2

4iQk�
;

c ¼ �� 1 ¼ �þ 1; (11)

where N ðkÞ is a normalization factor which we will
choose so as to set Gðk; �Þ ¼ eik�x

�
on a cutoff surface

w ¼ �. We have chosen the confluent hypergeometric
function Uða; c; zÞ in accordance with the requirement of
regularity in the interior (w ! 1) and the expectation that
for Q ¼ 0, this should reduce to the standard Bessel func-
tions w2K�ðkwÞ (radial part) for AdS5 in light-cone coor-
dinates. Now from the near-boundary (w� 0) asymptotic
form of the bulk-to-boundary propagator, we can identify
the momentum space two-point correlation function as a
ratio of the growing and decaying (non-normalizable and
normalizable) pieces. For nonintegral � (i.e. c), we have
the confluent hypergeometric function asymptotics

Uða; c; zÞ � �
sin�c ð 1

�ð1þa�cÞ�ðcÞ � z1�c

�ðaÞ�ð2�cÞ þ . . .Þ. Then the

momentum space two-point correlation function can be
read off as

hOðkÞOð�kÞi ¼ ��2�
� �ð��Þ
�ð�Þ

�ðaÞ
�ða� �Þ

¼ ��2�
� �ð��Þ
�ð�Þ

�ð1þ�
2 þ k2

4iQk�
Þ

�ð1��
2 þ k2

4iQk�
Þ : (12)

For the � integral, there are additional terms in the
asymptotics of Uða; c; zÞ; the small-w expansion of the
radial part of the bulk-to-boundary propagator, after ap-
pending an overall normalizing factor so as to make
Gðki; kþ; k�; w ¼ �Þ ¼ eik�x

�
, is

ð�2
Þ2�ðaÞw4e
w
2
Uða;�þ1;�2
w2Þ

¼
�
1þ
w2þ
2w4

2
þ . . .

��
1þw4 ð�1Þ�þ1ð�2
Þ�

�ð�ð�ÞÞ2

� �ðaÞ
�ða�2Þðlogð�2
w2Þþc ðaÞÞþ . . .

�
; (13)

where c ðaÞ is the digamma function. After removing
unimportant terms—those removable by local counter-
terms and contact terms—the momentum space two-point
correlation function (noting that G vanishes in the interior
w ! 1) can be read off from the boundary actionR
d4k’ðkÞ’ð�kÞð ffiffiffiffiffiffiffi�g

p
gwwGð�k; wÞ@wGðk; wÞÞjw¼�; it is

basically the coefficient of the w4 term in the second
bracket (higher order terms vanish as � ! 0). In particular,
for the case of massless scalars with� ¼ 4, � ¼ 2, this can
be read as

3After this paper appeared on the arXiv, we were informed of
[35], where some aspects of lightlike, or chiral, deformations of
AdS/CFT have been discussed.
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hOðkÞOð�kÞi � 4ð
a� 
Þð
a� 2
Þðlogð2
Þ
þ c ðaÞÞ � ððk2i � 2kþk�Þ2 þ 4Q2k2�Þ

�
�
logðiQk�Þ þ c

�
3

2
þ k2i � 2kþk�

4iQk�

��
:

(14)

In the limit Q ! 0, we have 
 ! 0, a ! 1, so that using
the asymptotics c ðaÞ � loga and (10), we recover the
familiar AdS5 correlator k4 logk2 as a check. For other
integral � values, we obtain a correlator of the form
2�ð
a� 
Þ . . . ð
a� �
Þðlogð�2
Þ þ c ðaÞÞ which
asymptotes to k2� logk2 in the Q ! 0 (AdS) limit.

This calculation, beginning with (9), and the resulting
momentum space expressions (12) and (14) are structurally
similar to those in [8]. In fact, for kþ � 0, we see that the
radial scalar equation (9), using (10) reduces precisely to
the equation for a scalar in the 4-dim z ¼ 2 Lifshitz

background ds2 ¼ � dt2

r4
þ dx2iþdr2

r2
. Thus the corresponding

momentum space correlation functions (12) and (14) (con-
tinued to Euclidean signature) are in fact identical to those
discussed (in the Euclidean calculation) in [8], as expected
for the dimensional reduction of the 5-dim AdS lightlike
deformation to the 4-dim Lifshitz one argued in [30,31]
(which we expect to correspond to the kþ � 0 sector here).

For the case with the xþ direction treated as noncom-
pact, there are more features here, due to the linear dilaton
configuration which acts like a potential in the xþ direc-
tion. [We note as an aside that this calculation also holds if
we change Q2 ! �Q2, changing the sign of g��: In this
case xþ becomes the natural time variable appropriate for
this z ¼ 0 Schrodinger system, and k� (coupling to x�) is
then a spatial momentum.] Some insight into the structure
here is obtained by noting that

ðk2i � 2kþk�Þ2 þ 4Q2k2�
¼ ðk2i � 2ðkþ � iQÞk�Þðk2i � 2ðkþ þ iQÞk�Þ: (15)

Thus the effective xþ momentum is shifted as kþ ! kþ �
iQ, and eikþx

þ ! eikþx
þ
e�Qxþ . This is reminiscent of the

Liouville-like wall in c ¼ 1 string theory [49,50]. Also
note that for ki ¼ 0, we have ðk2i � 2kþk�Þ2 þ 4Q2k2� !
ðk2þ þQ2Þk2�, which gives an effective mass gap in the xþ
direction. Another corroboration of this interpretation
comes from looking at solutions to the wave equation in
the SYM theory. The gauge field sector has the free action
S ¼ R

d4x 1
g2YMðQxþÞ TrF

2, which, for the transverse compo-

nents Ai that are physical degrees of freedom in e.g. light-

cone gauge, becomes SAi
¼ R

d4xe��ðxþÞ½ð@jAiÞ2 �
2ð@þAiÞð@�AiÞ�, which is essentially two copies of a scalar
moving in an xþ-dependent background. Then the wave

equation e�ðxþÞ@þðe��ðxþÞ@�AiÞ þ @�@þAi þ @2jAi ¼ 0

for modes of the form eikþx
þþik�x�þikix

i
gives k2i þ 2ðkþ þ

iQÞk� ¼ 0, i.e. kþ ¼ � k2i
2k�

� iQ. The wave modes then

become eikix
iþik�x�þiðk2i =2k�ÞxþeQxþ , which are damped as

xþ ! �1. Furthermore, for generic ki, k�, we see that the
xþ momentum kþ is nonzero; i.e. generic waves will be
forced to move along the xþ direction due to the dilaton xþ
potential. Admittedly, this is in the free gauge theory, while
our calculation in the weakly coupled bulk geometry ap-
plies to a strongly coupled gauge theory; however, the
basic structure of the wave modes seems suggestive.
The scaling of the coefficient ðk2i � 2kþk�Þ2 þ 4Q2k2�

in (14) is consistent with that of the xi, x
� in (5). To gain

some insight into the z ¼ 1 scaling of the x� directions,
note that the dispersion relation!� kz with z ! 1 can be

rewritten as k�!1=z �!0. In the x� directions (ki ¼ 0),
we see from the coefficient in (14) that kþ has a damping
piece independent of k�, reflecting the xþ potential given
by the dilaton.
The momentum space correlator can now be used to

evaluate position space two-point functions in certain
limiting cases. For instance, as in [8], in the limit where
the digamma function c ðaÞ has a dominant contribution
and can be approximated by its leading constant term
[for the argument of c ðaÞ being small], we can Fourier
transform the coefficient ðk2i � 2kþk�Þ2 þ 4Q2k2�
using Schwinger parameters and find e�Q�xþ

½�x2i�2�xþ�x��4 �
1

�ð�1��Þ
R
1
0 dx

e�2Q�xþx

x2ð1�xÞ2 , after regulating it (the pole near

x ¼ 0 cancels with corresponding terms in the � prefac-
tor). ForQ ¼ 0, this is in fact just the correlator forAdS5 in
light-cone coordinates. For Q � 0, the last integral can be
expressed in terms of incomplete � functions.
Finally, we note that we have calculated this two-point

correlation function by imposing certain boundary condi-
tions on the solution to the bulk scalar wave equation,
which are natural generalizations of those in AdS5.
Presumably one can find interesting real-time structure
by studying various other boundary conditions on this
system as discussed in e.g. [1–3].
The bulk arguments here for xþ-noncompact can also be

made for linear scalar deformations of AdS4 � X7 in
M theory, the scalar arising from the flux components.
The correlator then gives some insight into the spatial
structure of 2þ 1-dim Lifshitz-like field theories. It would
be interesting to explore this further.

IV. ON (NONGEOMETRIC) DLCQ OFA
LINEAR DILATON LIFSHITZ SYSTEM

We will now revert to compactifying the xþ direction as
in [30]. The basic point there from the dual gauge theory
point of view is that a DLCQ of the N ¼ 4 SYM theory
gives a nonrelativistic theory with Galilean symmetries
with dynamical exponent z ¼ 2; then a varying coupling

g2YM ¼ e�ðxþÞ along the compact xþ direction breaks the
shift symmetry, giving Lifshitz symmetries. While a
similar symmetries-level argument holds in the bulk ge-
ometry too, a more detailed dimensional reduction appears
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difficult, especially in terms of understanding if a
Wilsonian separation-of-scales argument holds. For in-
stance, since gþþ � ð�0Þ2 contains xþ dependence in gen-
eral, the bulk 5-dim geometry does not admit a standard
Kaluza-Klein reduction. We note, however, the exception
�0 ¼ const; this is a linear dilaton system that we have
discussed in the previous section with the xþ direction
noncompact.

In this section, we would like to investigate whether we
can compactify the xþ direction with such a linear dilaton
configuration, with a view to finding AdS null deforma-
tions (1) with �0 ¼ const, admitting conventional Kaluza-
Klein reduction along the xþ circle.

With �0 ¼ const, we have � ¼ �0 þ 2Qxþ; i.e. we
have a linear dilaton profile. A priori, this is in contra-
diction with the proposed compactification of the xþ di-
rection; a dilaton linear for all xþ does not respect this.
However, let us consider a piecewise linear dilaton con-
figuration

� ¼ �0 þ 2Qxþ; xþ 2 ½0; L�;
¼ �ðLÞ � 2Qðxþ � LÞ; xþ 2 ½L; 2L�; . . . : (16)

This is a ‘‘sawtooth’’-like (piecewise) linear dilaton con-
figuration �ðxþÞ, plotted in Fig. 1. �ðxþÞ is a continuous
but not smooth function on the xþ line; at the locations
xþ ¼ L; 2L; . . . , we see that �0 has a jump discontinuity
from þ2Q to �2Q (to be precise, define �0 ¼ þ2Q,
0< xþ � L, and �0 ¼ �2Q L< xþ � 2L, and so on).
However, we see that the Einstein metric is smooth since
the dilaton � appears in the metric as gþþ � ð�0Þ2. Thus
all metric properties (curvature, geodesics, and so on) are
smooth also. The bulk Einstein metric is

ds2 ¼ 1

w2
½�2dxþdx� þ dx2i þ w2Q2ðdxþÞ2 þ dw2�:

(17)

It is desirable to demand that �ðxþÞ be a continuous
function on the unwrapped xþ circle, i.e. on the xþ line;
this is true for the dilaton configuration (16) above.
However, the dilaton �ðxþÞ is not periodic and does not

therefore respect the compactification along the xþ direc-
tion. We would like to understand if this dilaton configura-
tion can somehow be made to respect the compactification,
i.e.�ðxþ þ kLÞ ¼ �ðxþÞ, for any k 2 Z.
This does not appear to be possible in conventional

supergravity per se. However, note that we have, at our
disposal, the exact S-duality symmetry of the IIB string
theory. It is therefore interesting to ask if we can use this to
construct a solution with the dilaton�ðxþÞ periodic on the
xþ circle, possibly along the lines of nongeometric string
constructions. Supergravity solutions involving nongeo-
metric constructions with nontrivial winding around
U-duality orbits have been studied previously in e.g.
[51–55]. The S-duality in question here makes our con-
struction nonperturbative, in contrast to some of these
constructions that involve T-duality. However, the back-
grounds in question here are considerably simpler in some
ways: the absence of a nontrivial axion means that there are
no nontrivial 7-brane sources of the sort that arise in
F-theory constructions, nor are there singularities from
degenerations of the fiber.
S-duality is the symmetry  ! � 1

 , with  ¼ c0 þ ie��

the complexified axion-dilaton coupling. Since the axion is
trivial in this background, the S-duality symmetry reduces
to strong ! weak coupling duality, i.e. � ! ��.
Using this, we see that it suffices to require e.g.

�ðxþ þ LÞ ¼ ��ðxþÞ. From (16), at the end of the inter-
val xþ 2 ½0; L�, we have �ðLÞ ¼ �0 þ 2QL, which can-
not equal �ð0Þ ¼ �0. However, since �ð0Þ � ��ð0Þ up
to S-duality, consider requiring �ðLÞ ¼ ��ð0Þ; this is
consistent since

�ðLÞ ¼ ��ð0Þ ) 2�0 ¼ �2QL;

i:e: gs ¼ e�0 ¼ e�QL:
(18)

This gives �ðxþÞ ¼ 2Qðxþ � L
2Þ for xþ 2 ½0; L�. We note

that � ¼ 0 at xþ ¼ L
2 , with �ðxþÞ being antisymmetric

about this midpoint.
Now consider the interval xþ 2 ½L; 2L�: from (16),

we have �ðxþÞ ¼ �ðLÞ � 2Qðxþ � LÞ ¼ ��0 �
2Qðxþ � LÞ. We see that on this interval, �ðxþÞ �
��ðxþÞ ¼ �0 þ 2Qðxþ � LÞ. Thus the S-duality sym-
metry � ! �� amounts to flipping a local linear piece
about the xþ axis, i.e. flipping a downward sloping linear
piece to an upward sloping one. Thus comparing the
dilaton values at xþ ¼ a 2 ½0; L� and xþ ¼ Lþ a 2
½L; 2L� using (16), we see

�ðLÞ ¼ ��0 ) ð�0 þ 2QxþÞja
¼ �ð�ðLÞ � 2Qðxþ � LÞÞjLþa: (19)

In other words, up to S-duality, the piecewise linear dilaton
configuration is xþ periodic if the linear pieces are anti-
symmetric about the xþ axis, i.e. if �0 ¼ loggs ¼ �QL.
This is easy to see pictorially (Fig. 1).

+2QL

I−
0

+x

I

S−duality

x = L
+ +

x = 2L

0I

FIG. 1. A linear dilaton configuration and compactification up
to S-duality.
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Since the dilaton is periodic up to S-duality in this
manner, the string frame metric appears to be well defined.
It is unclear to us at this point if there is a geometric way to
interpret this resulting nongeometric construction along
the lines of e.g. [52,53].

Since the asymptotic value of the string coupling is not
arbitrary but fixed by this nongeometric construction as
gs ¼ e�0 ¼ e�QL, one could potentially worry if our so-
lution is reliable and whether stringy corrections to this
geometry are becoming important. In this regard, note first
that the dilaton is always bounded so that there are no
apparent singularities that wreck the solution anywhere (in
contrast, the points on moduli space where the elliptic fiber
degenerates correspond to the locations of the 7-brane
singularities in F theory). Furthermore, note that the solu-
tion preserves half supersymmetry, suggesting the absence
of various corrections. The supersymmetry of these solu-
tions is closely related to the lightlike nature of these
solutions, which suggests that higher derivative corrections
to the solution in fact vanish, i.e. that these are exact string
backgrounds (perhaps similar toAdS5 � S5 [56]). We have
seen that a way to uplift the Lifshitz-like symmetries of the
4-dim Lifshitz system to the 5-dim system is to turn on
lightlike deformations of the form (17) which reflect these
Lifshitz-like symmetries. Thus the requirement of Lifshitz-
like symmetries is effectively captured by the lightlike
nature of these solutions, which would seem to preclude
corrections to the higher dimensional solution. These argu-
ments suggest that this nongeometric solution is reliable,
insofar as standard dimensional reduction is concerned; the
low energy or Einstein metric is now xþ independent and
admits a conventional Kaluza-Klein reduction, giving rise
to the z ¼ 2 Lifshitz 4-dim spacetime. It would be inter-
esting to investigate these arguments further with a view to
understanding how robust they are.

The gauge theory dual in this case has the gauge cou-

pling varying as g2YM ¼ gse
2Qxþ : the coupling is always

bounded on the xþ circle. The gauge theory also has an
exact S-duality symmetry, and our bulk construction effec-
tively implies a nongeometric construction of the gauge
theory too. The gauge coupling is then periodic up to
S-duality, as we have argued for the dilaton. It would be
interesting to explore this further.

Solutions with a lightlike axion

It is worth mentioning that there are very similar solu-
tions sourced purely by a lightlike type IIB axion c0 ¼
c0ðxþÞ too; these are of the form

ds2 ¼ 1

w2
½�2dxþdx� þ dx2i þ w2ð@þc0Þ2ðdxþÞ2 þ dw2�

þ ds25;

c0 ¼ c0ðxþÞ: (20)

Specializing to a linear axion configuration, we have

ds2 ¼ 1

w2
½�2dxþdx� þ dx2i þ w2Q2ðdxþÞ2 þ dw2�

þ ds25;

c0 ¼ c00 þ 2Qxþ; (21)

which is akin to (7) except with a constant dilaton �. The
existence of these solutions can be directly seen from the
IIB supergravity equations of motion or, alternatively, by
restricting to a nontrivial axion alone in the solutions in
[31]. The axion equation of motion is automatically sat-
isfied due to the lightlike nature.
With the xþ direction treated as compact, we expect then

that similar nongeometric constructions can be performed
on these linear axionic solutions too, with perhaps more
similarity to F-theory constructions. In this case, c0ðxþÞ ¼
c00 þ 2Qxþ would shift as c0 ! c0 þ 2QL under xþ !
xþ þ L. This is then equivalent to the  ! þ 1 shift if
QL ¼ 1

2 . The dilaton in this case is constant. Presumably

there exist solutions of this sort with both the axion and
dilaton nontrivial.
These axionic solutions are reminiscent of the D3–D7

solutions in [28]. The axion gives rise to a �-angle term in
the dual gauge theory. It would be interesting to explore the
interpretation of these solutions further.

V. DISCUSSION

We have discussed certain lightlike deformations of
AdS5 � X5 sourced by a lightlike dilaton �ðxþÞ dual to
the N ¼ 4 SYM theory with a lightlike varying gauge
coupling, building on [30], and argued that in the case with
xþ noncompact, these solutions describe anisotropic
Lifshitz-like systems with z ¼ 2 and z ¼ 1 scaling in
the x�, xi� , and x� directions, respectively, along with a
spatial xþ potential stemming from the dilaton. We have
then focused on linear dilatonic systems and studied two-
point correlation functions of operators dual to bulk scalar
modes in these cases. We then discussed a certain non-
geometric string construction to compactify the xþ direc-
tion. We have also pointed out similar axionic solutions.
Our bulk discussion with xþ noncompact readily gen-

eralizes to AdS4 � X7 solutions in 11-dim supergravity,
building on the corresponding z ¼ 2 solutions in [30]. The
dual field theory is not entirely clear to us; it would be
interesting to explore this further with a view to identifying
possible lightlike deformations of Chern-Simons theories
arising on M2-brane stacks.
The linear dilaton system we have discussed is reminis-

cent of c ¼ 1 string theory and also NS5-branes where a
linear dilaton arises; perhaps there are interesting nonrela-
tivistic systems involving these.
The linear dilaton example illustrates the spatial struc-

ture of these sorts of theories as we have seen, with the
dilaton acting as a potential in a sense. We expect that more
general solutions (4) will exhibit similar features too,
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although studying observables such as correlation func-
tions might be more intricate. However, it is interesting to
note some aspects of certain specific solutions; since the
spacetimes (4) are essentially a family of solutions for any
�, distinct solutions exhibit various interesting features.
An interesting solution is obtained by taking �0 ¼
2Q tanhðQxþÞ, giving

ds2 ¼ 1

w2
½�2dxþdx� þ dx2i þ w2Q2tanh2ðQxþÞ

� ðdxþÞ2 þ dw2�;
� ¼ �0 þ 2 logcoshðQxþÞ: (22)

Note that �0 ! �Q as xþ ! �1. Also, as xþ ! 0, we
have �0 ! 0. Thus the bulk spacetime is Lifshitz-like
away from xþ ¼ 0, a 1

Q -sized region near which the space-

time is approximately AdS-Schrodinger with gþþ ! 0.
This suggests that this solution constitutes a ‘‘junction’’
of two z ¼ 2 Lifshitz-like systems joined together with an
AdS-Schrodinger-like core about xþ ¼ 0. For Q large, the
size of this core shrinks and the junction becomes sharper.
The gauge coupling for the dual N ¼ 4 SYM theory in
this case is g2YM ¼ e� ¼ gscosh

2ðQxþÞ. The fact that the
string (or gauge) coupling runs along xþ implies a varying
D-probe tension along that direction; i.e. there is a poten-
tial for D-brane probes (i.e. charged dyonic states in the
gauge theory) along the xþ direction, with a maximum for
a D-brane probe tension 1

gs
at xþ ¼ 0.

Another interesting system arises for � ¼ �0 þ
tanhQxþ. Then the metric becomes

ds2 ¼ 1

w2

�
�2dxþdx� þ dx2i þ w2 Q2ðdxþÞ2

cosh4ðQxþÞ þ dw2

�
;

� ¼ �0 þ tanhðQxþÞ: (23)

Now for large xþ, we see that gþþ ! 0 and we have a
Schrodinger system there, while in the vicinity of xþ ¼ 0,
this resembles the linear dilatonic system discussed pre-
viously, with Lifshitz-like behavior. The dual field theory
reflects this, with an interpolation between Galilean and
Lifshitz-like regimes.
In a sense, these spacetimes exhibit holographic inter-

polations in the xþ direction between asymptotic z ¼ 2
Lifshitz-like and Schrodinger-like regions. It would be
interesting to find solutions generalizing these, where there
is additional radial dependence, perhaps along the lines of
[36], and obtain a more detailed understanding of holo-
graphic renormalization group flows between these non-
relativistic systems.
It is tempting to speculate that solutions with

xþ-noncompact, where the coupling g2YM ¼ e�ðxþÞ is peri-
odic in xþ, would appear effectively latticelike with a
periodic potential for charged dyon states. Likewise, solu-

tions with e�ðxþÞ possessing some randomness might simu-
late disorder along the xþ direction. It might be interesting
to explore these solutions further.
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