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It has been argued that in noncommutative field theories, the sizes of physical objects cannot be taken

smaller than an ‘‘elementary length’’ related to noncommutativity parameters. By gauge covariantly

extending field equations of noncommutative Uð1Þ? theory to cover the presence of external sources, we

find electric and magnetic fields produced by an extended static charge. We find that such a charge, apart

from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing

experimental clearance in the value of the lepton magnetic moments for the present effect, we get the

bound on noncommutativity at the level of 104 TeV.
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The noncommutative (NC) field theory suggests a very
profound revision of the idea of space and time by referring
to 4-coordinates X� as operatorial, noncommuting quanti-
ties, ½X�;X�� ¼ i���. Usually the antisymmetric NC ten-
sor ��� is taken as constant and small in its magnitude; this
will be our choice, too. Because of the uncertainty relation
intrinsic to the noncommutativity [1], various components
of the coordinate 4-vector cannot be simultaneously given
definite values. This implies that sizes of physical objects
in this theory cannot be taken smaller than an ‘‘elementary
length.’’ Throughout this paper we consider the space-
space noncommutativity. This means that a reference
frame [2] is admitted to exist, wherein �0� ¼ 0, so that
the remaining NC parameters can be combined in the
3-vector �i � ð1=2Þ"ijk�jk in that frame.

The characteristic length is defined through the absolute
value of this vector as l2NC ¼ j�j � ðℏc=�NCÞ2, where�NC

is the corresponding energy scale. Hence, all the sources
should not be pointlike, but rather have a characteristic size
of the order of lNC, see also Ref. [3].

The aim of this work is to study the field produced by a
finite-size static charge inNCelectrodynamics. To treat such
charges we need to avoid the difficulty caused by the gauge-
invariance violation by a classical external source, analo-
gous to the trouble encountered in non-Abelianfield theories
[4]. This will be achieved by extending the Seiberg-Witten
(SW) map [5] to the case when external currents are present
in the lowest nontrivial order with respect to the NCparame-
ters. With this extension in hands, we find corrections to the
electromagnetic potentials produced by a finite-size static
electric charge. Solutions, regular everywhere, neither can
nor should have a point-charge limit. By selecting such
solutions we essentially part from the standard commutative
case. We find that a static electric charge eZ distributed in a
spherically symmetric way over a sphere of a finite radius a,
apart from being an ordinary electric monopole, is also a
magnetic dipole. Its magnetic moment is directed along the

NC vector � and its value is quadratic in the charge eZ and
depends on the size a of the latter. In this way we define the
NC contribution to the magnetic moment of an elementary
particle viewed upon as a classical particle with its electric
charge distributed according to the electromagnetic form
factor. This NC contribution appears to be proportional to
l2NC=a, with a being the charge radius. Then, a comparison

with experimental results allows us to establish restriction on
lNC (or on�NC). The strongest bounds are coming from the
measurements of the anomalous magnetic moments of lep-
tons under the assumption that the charge radius is given by
the noncommutativity length, a� lNC.
Previously, an NC magnetic solution for the field of a

static electric charge was found by Stern [6], who, in
contrast to our work, assumed that the charge is truly
pointlike (of zero radius). The results then differ drastically
from ours, and we shall present a comparison between the
two approaches.
As an NC space we take the Moyal plane equipped

with the Moyal star product �fðxÞ ? �gðxÞ ¼ �fðxÞ�
exp½ði=2Þ@Q���� ~@�� �gðxÞ. We refer to the non-Abelian

action of an NC Uð1Þ? gauge theory �S ¼ �SA þ �SjA,

�S A ¼ � 1

16�c

Z
dx �F�� ? �F��;

�SjA ¼ � 1

c2

Z
dx �j� ? �A�

(1)

that consists of the standard gauge-invariant part �SA, where
�F�� ¼ @� �A� � @� �A� þ ig½ �A�

?
;
�A��, and the part �SjA re-

sponsible for the interaction of the electromagnetic field

potential �A� with an external current �j�. Here and in what

follows the designation ½?; � means the Moyal commutator,

while the gauge coupling constant g is, as usual, identified
with the elementary electric charge g ¼ e=ð"cÞ (see e.g.
Guralnik et al. [7]) in order that the interaction strength
between the electromagnetic and a complex, say, spinor field
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�c might be fixed in a gauge-invariant way as
R
dx ��c ?

��ð@� � ie=ð"cÞ �A�?Þ �c . We shall still be distinguishing

the constants e and g until their explicit mutual identification

is needed. The compatibility condition �D�� �S=� �A�¼0 of

the equations of motion � �S=� �A� ¼ 0 requires that the cur-

rent and the field be related by the equation of covariant

current-conservation �D�
�j� ¼ @� �j� þ ig½ �A�

?
;
�j�� ¼ 0.

This cannot provide the vanishing of the variation � �SjA ¼
�ð1=gc2ÞR dxfð@� �j�Þ ? ��g under a gauge transformation

with the parameter ��, because it would require the conser-

vation law @� �j� ¼ 0, incompatible with the equations of

motion, see [8]. Hence, the total action �S is not gauge
invariant. To handle this difficulty we shall in what follows

be basing on the field equation� �S=� �A� ¼ 0, which is gauge

covariant.
The Uð1Þ? gauge theory is consistent as it satisfies the

criteria of Ref. [9]. Therefore, it is not necessary to con-
sider SW map or to make the gauge transformations
twisted [10]. However, for studying phenomenological
aspects of an NC theory it is advisable [7] to perform the
SW map, since it allows one to work with commuting
electromagnetic fields A� that have standard Uð1Þ gauge
transformation properties. It is known that in the lowest
nontrivial approximation in the NC parameter �, to which
approximation we shall henceforth restrict ourselves, the

field �A� is SW-mapped as

�A� ¼ A� þ g

2
��	A�½@	A� þ f	��; (2)

where f�� ¼ @�A� � @�A�. In our case Eq. (2) should be

supplemented by the SW map for currents [8,11]

�j � ¼ j� þ g��	A�@	j
�; (3)

that is deduced from the requirement that the external cur-

rent should gauge transform covariantly � �j� ¼ i½ �� ?
;
�j��,

the same as the current of charged particles, e.g. ��c��
�c ,

does. The SWmap is not unique, but one can show [8], that
the corresponding ambiguity does not affect corrections to
the potential of a static charge to the first order in�. After the
SW map (2) and (3) is applied to the equations of motion

� �S=� �A� ¼ 0 and �D�� �S=� �A� ¼ 0 one gets the nonlinear

field equations with external current, valid to the first order
in ���,

@�f
���g��	

�
@�ðf��f	

�Þ�f��@	f
��

�A�@	

�
@�f

���4�

c
j�

��
¼4�

c
j�;

@�j
�þg��	ðf��@	j

�þA�@	@�j
�Þ¼0: (4)

The explicit presence of potentials in (4) may look disturb-
ing, but this difficulty is easily solved. To restore covariance
we consider a perturbative solution of Eqs. (4) by expanding

it in the noncommutative parameter. Explicitly, startingwith

the zeroth approximation Að0Þ, jð0Þ that satisfies the standard
Maxwell @�f

ð0Þ�� ¼ ð4�=cÞjð0Þ� and current-conservation

@�j
ð0Þ� ¼ 0 equations, we obtain for the first-order correc-

tions Að1Þ, jð1Þ

@�f
ð1Þ���g��	ð@�ðfð0Þ�� fð0Þ�	 Þ�fð0Þ��@	f

ð0Þ��Þ¼4�

c
jð1Þ�;

@�j
ð1Þ�þg��	fð0Þ��@	j

ð0Þ�¼0: (5)

In what follows we shall study solutions to (5) produced
by a static spherically symmetric charge distribution. It is
defined in two regions, I: r < a and II: r > a, r ¼ jxj,

jð0Þ� ¼ ðc
; 0Þ; 
IðxÞ ¼ 3

4�

Ze

a3
; 
IIðxÞ ¼ 0: (6)

The uniform charge distribution inside the sphere, whose
radius is a, is taken for simplicity. Extensions to arbitrary
spherical symmetric distributions, continuous ones in-
cluded, may be also considered, when necessary. The
charge density (6) tends to the delta function in the
point-charge limit: 
ðxÞ ¼ Ze�3ðxÞ, as a ! 0. We shall
argue, however, that the corresponding point-source
solution (the Green function) does not exist even as a
standard generalized function. Once no spherical physical
object should be taken with its radius smaller than the
elementary length, we will restrict our consideration to
the values a > lNC.
We use the Coulomb gauge @iA

i ¼ 0 for the stationary
solutions, to which we confine our consideration. Then
the standard Maxwell equations provide the following

spherically symmetric, Að0Þ�ðxÞ ¼ Að0Þ�ðrÞ, electromag-

netic potential Að0Þ� ¼ ðAð0Þ0; 0Þ,

Að0Þ0
I ðrÞ ¼ � Ze

2a3
r2 þ 3

2

Ze

a
; Að0Þ0

II ðrÞ ¼ Ze

r
; (7)

which satisfies the smoothness conditions A0
I ðrÞjr¼a ¼

A0
IIðrÞjr¼a, @rA

0
I ðrÞjr¼a ¼ @rA

0
IIðrÞjr¼a at the boundary of

the sphere, is regular in the origin A0ð0Þ � 1, and falls off
at infinity A0ðrÞjr!þ1 ¼ 0.
The analysis presented above is valid for arbitrary

constant ���. Henceforward we restrict ourselves to the
space-space noncommutativity (�0� ¼ 0). Because of the
spherical symmetry and to the stationarity, the second

equation in (5) is satisfied by jð1Þ� ¼ 0, no correction to
the current is required. This implies that the current re-

mains dynamically intact, j� ¼ jð0Þ�, so we may refer to it
as a fixed external current, as this is customary in an Uð1Þ
theory. The NC Maxwell equation (5) for the zeroth com-

ponent (� ¼ 0) now reduces to r2Að1Þ0 ¼ 0, so that there

are no first-order corrections Að1Þ0ðxÞ to the potential,
that would satisfy the same boundary conditions. (Such
corrections appear, if a background magnetic field is
added to the zero-order solution (7), see [8].) However,
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for the spatial components (� ¼ k ¼ 1, 2, 3) we obtain the
inhomogeneous Laplace equations

r2Að1Þk
I ðxÞ¼�g

�
Ze

a3

�
2
�ikxi; r2Að1Þk

II ðxÞ¼�g

�
Ze

r3

�
2
�ikxi:

(8)

Their only smooth solution, regular in r ¼ 0 and decreas-
ing for r ! 1 is

Að1Þk
I ðxÞ ¼ �g

4

�
Ze

a2

�
2
�
2

5

r2

a2
� 1

�
�ikxi;

Að1Þk
II ðxÞ ¼ g

4

�
Ze

r2

�
2
�
8

5

r

a
� 1

�
�ikxi:

(9)

This solution neither has nor should have the point-source
limit at a ! 0. The leading long-distance part of the

vector-potential Að1Þ
II behaves like that of a magnetic

dipole, the static charge (6) being thus a carrier of an
equivalent magnetic moment M,

A ¼ ½M� x�
r3

; M ¼ �ðZeÞ2 2g
5a

: (10)

Let us study the consequences of this relation for particle
physics. Lower bounds on the NC scale based on high-
energy experiments have been drastically improved during
recent years. The analysis of primordial nucleosynthesis
data [12] gives �NC * 3 TeV as a conservative estimate,
while with other choices of parameters the bound increases
to 103 TeV. From ultrahigh energy cosmic ray experiments
one deduces [13] that �NC * 200 TeV. The data for
photon-neutrino interaction put the bound for time-space
NC into approximately the same range [14]. A much
stronger bound, �NC * 5� 1011 TeV, was obtained [15]
by analyzing an atomic magnetometer experiment [16].
Characteristic energy scale of this experiment is below
1 eV, while the typical scale of modern particle physics
experiments reaches TeV. Between these scales the value of
effective NC parameter may change considerably. One of
mechanisms for such a change may be due to the QFT
effects which may manifest themselves through the renor-
malization group variation of couplings with characteristic
energy. Therefore, it is important to study independently the
high-energy restrictions, which we do below by using (10).

For a particle of unit charge, Z ¼ 1, and mass m the NC
correction to magnetic moment reads

�NCjMj ¼ �j�j� 4m

5a
; (11)

where � is the fine structure constant and � ¼ e=ð2mÞ is
the corresponding magneton. From now on, we put ℏ ¼
c ¼ 1 and, consequently, g ¼ e. For the proton, by taking
the charge radius of 0.9 fm for a we conclude that the
correction to the magnetic moment is below the experi-
mental error of 2:3� 10�8�N [17] already for �NC ’
0:24 TeV. An estimate of the NC proton magnetic moment

contribution into the hyperfine splitting of the energy states
in a hydrogen atom, based on a NC theory [9,18] of
electron spectrum, does not strengthen the bound on l
found in [6] with the use of the nondipole magnetic
solution given as Eq. (13) below. In the case of leptons,
we require that NC corrections to the magnetic moment
anomaly,

�NCððgl � 2Þ=2Þ ¼ 4�j�jml=ð5alÞ (12)

lie within experimental errors, which are 3� 10�13 for
electrons, and 6� 10�10 for muons [17]. With the estimate
ae, a� < 10�3 fm that corresponds to the LEP energy

scale of 200 GeV we obtain �NC * 45 TeV in the case
of electrons and �NC * 14 TeV in the case of muons.
These two bounds are of the order of currently accepted
restrictions on the NC scale, but do not improve them.
The situation changes if we accept that the charge radius

of leptons is defined solely by the NC effects. That is, ae ’
a� ’ ffiffiffiffiffiffij�jp ¼ ��1

NC. Then, from the restrictions on the muon

anomalous magnetic moment we derive �NC * 103 TeV,
while for the electron we have �NC * 104 TeV, or lNC &
2� 10�8 fm. This is the strongest bound on the NC scale
among the ones, which follow from the high-energy data.
In the argumentation above we used the experimental

errors only while completely ignoring possible theoretical
uncertainties. This can be done for the following simple
reason. Any theoretical calculation based on the usual
commutative quantum field theory predicts the magnetic
dipole moment directed along the spin vector S, which
characterizes the state of a particle. The NC correction (10)
is parallel to the NC vector �, which is a characteristic of
the background space-time. We expect that relative orien-
tation of S and � taken for various particles in various
experiments is random. The effect of noncommutativity is
in widening the range of experimental data rather than in
shifting the central value. Therefore, the experimental error
does give a bound on the NC effects even without taking
into account theoretical uncertainties.
Yet another, also smooth, solution of Eq. (8) for the

vector potential is worth discussing:

Að1Þk
I ðxÞ ¼ �g

4

�
Ze

a2

�
2
�
2

5

r2

a2
þ 8

5

a3

r3
� 1

�
�ikxi;

Að1Þk
II ðxÞ ¼ �g

4

�
Ze

r2

�
2
�ikxi;

(13)

that is not regular in the origin, but decreases at large
distance from the source faster than (9), in other words it
is more localized. Unlike Eq. (9) solution (13) is not the
field of a magnetic dipole, since it decreases away from the
source faster than that. The second line in (13) does not
depend on the size a of the charge and coincides with the
magnetic solution found in [6] for the field produced
by a pointlike static charge outside of it, i.e. for r � 0.
It is highly singular, �1=r3, in the origin r ¼ 0.
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Correspondingly, it does not make a solution in a reason-
able class of generalized functions, when continued to the
point r ¼ 0. (In this respect it deeply differs from the

standard solution Að0Þ0
II in (7), which, in the limit a ! 0,

is less singular, �1=r, and makes a generalized-function
solution to the Laplace equation with �3ðxÞ as its inhomo-
geneity (see e.g. [19]). That solution is defined in the whole
R3, the point r ¼ 0 included.) For this reason our choice is
in favor of the nonsingular solution (9).

One can consider the solution which satisfies weaker
conditions at infinity, so that an external homogeneous
magnetic field is allowed. In such a case, one can find [8]
many interesting similarities and differences with the QED
effects [20].

To summarize, our main result is the (remarkably sim-
ple) formula (10) for NC magnetic moment of a spherical
charge. Equation (10) is subject to quantum corrections
and classical corrections of higher powers in the noncom-
mutativity parameter �, which are both small. So, we are
confident that this result will remain valid in a more
complete approach, as well as the bounds it imposes on
the NC scale.
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