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We have studied the localization of a scalar field on a 3-brane embedded in a six-dimensional warped

bulk of the form M4 � C2, where M4 is a 3-brane and C2 is a 2-cycle of a six-dimensional resolved

conifold C6 over a T1;1 space. Since the resolved conifold is singularity-free in r ¼ 0 depending on a

resolution parameter a, we have analyzed the behavior of the localization of a scalar field when we vary

the resolution parameter. On one hand, this enables us to study the effects that a singularity has on the

field. On the other hand we can use the resolution parameter as a fine-tuning between the bulk Planck mass

and 3-brane Planck mass and so it opens a new perspective to extend the hierarchy problem. Using a linear

and a nonlinear warp factor, we have found that the massive and massless modes are trapped to the brane

even in the singular cone (a � 0). We have also compared the results obtained in this geometry and those

obtained in other six-dimensional models, such as stringlike geometry and cigarlike universe geometry.
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I. INTRODUCTION

Since the original Randall-Sundrum model [1,2] many
works have intended to extend the localization of various
fields on a 3-brane embedded in the higher dimensional
bulk. Besides the localization of gravity and other fields,
many models have been suggested to explain other physi-
cal problems, for instance, the small value of the cosmo-
logical constant [3]. In order to explain the geometry used
to localize the fields in noncompact extra dimensions,
some authors have assumed that the 3-brane is generated
by a topological defect. In a six-dimensional bulk, Cohen
and Kaplan [4] have found such a geometry generated by a
global string. In this context the geometry has cylindrical
symmetry and a naked singularity at r ¼ 0, where the
3-brane is placed, and also another singularity far from
the origin. Gregory [5] has found a nonsingular stringlike
solution by adding a cosmological constant to the bulk and
splitting the metric inside and outside the core of the string
defect. For the continuity boundary condition on the core,
Gregory has found the phase space of solutions describing
the stable and unstable points. For a geometry generated by
a local stringlike defect, Gherghetta and Shaposhnikov [6]
have found a solution with negative cosmological constant
on bulk that has trapped gravity. Oda [7] has extended this
solution for a bulk built from a warped product of a
(p� 1)-brane and a Sn sphere and he has studied the
localization of many kinds of fields. All the solutions above
assume that the transverse space has spherical symmetry
and the whole bulk has cylindrical symmetry. We have
studied an extension of this approach for the localization
of a scalar field where the transverse space has a conifold
geometry whose singularity depends on a resolution
parameter.

The conifold here is a conical manifold Cn over a Xn�1

called a base space. Xn�1 is a topological equivalent to
Sn�1 defined by the coset Xn�1 ¼ SUðn� 1Þ=SUðnÞ [8].

It has a naked singularity that arises as an orbifold fixed
point of the group Zn, i.e., Cn ¼ Rn=Zn. The conifold is an
example of a Calabi-Yau space, a Ricci-flat manifold that is
a candidate to an internal space in compactification of
string theories. The conifold is a generator of all Calabi-
Yau spaces through a process that generates singularities
and is called conifold transitions [9]. In this process, some
fields become massless and then the spectrum of the fields
is changed [10]. Despite these interesting properties, the
general relativity is not well-defined on singularities and
sometimes it is necessary take off the conical singularity.
There are two main processes to smooth out the singular-
ity: the first one is called deformation because it deforms
the quadric that defines the conifold; the second is called
resolution because it introduces a resolution parameter that
controls the blowup of singularity [8]. These processes are
used to study the extensions of anti-de Sitter–conformal
field theory (AdS-CFT) correspondence [11,12].
The change of spectrum on conifold spaces and the

symmetry properties of their smoothed versions have mo-
tivated the study of those spaces in brane world scenarios.
Firouzjahi and Tye [13] have studied the behavior of the
gravitational and Kaluza-Klein (KK) modes on a deformed
conifold and they have shown that the graviton has a rather
uniform probability distribution everywhere while a KK
mode is peaked in the region near r ¼ 0. This region is
called the throat because it has a big curvature and inter-
polates between asymptotically flat regions. Furthermore,
Noguchi et al. [14] have used the Klebanov-Strassler throat
of a deformed conifold in order to obtain localized gravi-
tational KK modes. Since the supergravity solution of a
3-brane converges to AdS5 � S5 for r ! 0, Brummer,
Hebecker, and Trincherini [15] have used a throat of a
conifold to deduce and extend the original Randall-
Sundrum geometry. Further, Vázquez-Poritz [16] has
shown that the Z2 symmetry of the Randall-Sundrun model
can be deduced from a dimensional reduction from a
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six-dimensional Eguchi-Hanson resolved conifold. Since
this symmetry is natural in Eguchi-Hanson spaces,
Vázquez-Poritz has shown that the metric used for the
localization of the gravity can de obtained from a particular
conifold. Furthermore, Pontón and Poppitz [17] have
studied the relation between gravity localization on string-
like defects and an AdS-CFT correspondence on the so-
called hidden brane. Since the stringlike geometry has a
conical singularity far from the origin the authors have
found that the singularity could be resolved using the AdS-
CFT duality. On the other hand, Kehagias [18] has used a
compact conical transverse space to explain the small value
of the cosmological constant. All of these points have
motivated us to study geometries where the transverse
space is a smoothed conifold and ask whether that geome-
try could localize some kind of field in a 3-brane.

In this work we replaced the usual spherically symmet-
ric transverse space by a 2-cycle of the resolved conifold.
Since the resolved conifold has spherical symmetry for a
fixed r and the radial metric component approaches to one
asymptotically, this geometry converges to a stringlike one
if we put the 3-brane far from the tip of the cone. Another
feature of the resolved conifold that has great importance
in the Randall-Sundrum-like model is its Z2 symmetry as
pointed out in Ref. [12]. We have studied here the effects
that variations of the resolution parameter, or in other
terms the singularity, have on the localization of a scalar
field in a 3-brane placed in the origin of the resolved
conifold. The study of the effects of geometrical singular-
ities on the localization problems has already done by
Cvetic, Lu, and Pope [19], where the geometry was gen-
erated by a singular domain wall as well as by Gregory and
Santos [20] in the global vortex geometry. In the present
work, however, we have chosen a transverse space whose
singularity depends continually on a parameter.

The resolved conifold geometry also generalizes the so-
called cigarlike geometries. Indeed, in cigar manifolds the
curvature is great but not infinity around the origin and flat
asymptotically [21]. In resolved conifold geometry the
value of the curvature in the origin is parametrized and
asymptotically the curvature converges to zero or another
constant. Using a cigarlike geometry without cosmological
constant de Carlos and Moreno have found a supersym-
metric solution that has trapped gravity [22]. On the other
hand, the so-called Ricci flow is given by a parameter
evolution of the metric through a heat-type equation called
the Ricci equation [21,23,24]. This flow provides informa-
tion about the stability of the manifold like the formation or
blowup of singularities. Therefore, it is interesting to use
the smoothed conifold geometries to study the stability of
the bulk geometry in brane worlds using methods of geo-
metric analysis like the Ricci equation.

This work is organized as follows. In Sec. II we have
defined the metric for the resolved conifold and we have
studied its principal properties as well as its dependence on

the resolution parameter. We also have defined the conifold
2-cycle that we have worked out. In Sec. III we have
proposed a warped metric ansatz, studied its Einstein
equations, and compared it with the well-studied stringlike
solutions. Still in this section, we have studied this geome-
try for a linear and a nonlinear warp factor. In Sec. IV we
have studied the localization of a real scalar field using a
linear and a nonlinear warp factor for both massive and
massless modes. Finally we present our conclusions in
Sec. V, summarizing our results and presenting some
perspectives.

II. CONIFOLD GEOMETRY

The 6-conifold is a conical manifold C6 � C4 defined
by the quadric [8]:

z21 þ z22 þ z23 þ z24 ¼ 0: (1)

The metric of a 6-conifold over a X5 compact space is

ds26 ¼ dr2 þ r2ds2ðX5Þ: (2)

This space has a naked singularity in r ¼ 0. For
X5 ¼ T1;1 ¼ SUð2Þ � SUð2Þ=Uð1Þ the metric is [10,11]

ds26 ¼ dr2 þ r2

9
ðdc þ cos�1d�1 þ cos�2d�2Þ2

þ r2

6
ðd�21 þ sin2�1d�

2
1 þ d�22 þ sin2�2d�

2
2Þ: (3)

A smooth version of this conifold, called the resolved
conifold, has the metric [12,25]

ds26 ¼
�
r2 þ 6a2

r2 þ 9a2

�
dr2 þ r2

9

�
r2 þ 9a2

r2 þ 6a2

�
ðdc þ cos�1d�1

þ cos�2d�2Þ2 þ 1

6
r2ðd�21 þ sin2�1d�

2
1Þ

þ 1

6
ðr2 þ 6a2Þðd�22 þ sin2�2d�

2
2Þ: (4)

We have plotted the scalar curvature in Fig. 1 where we
have shifted the origin to point r ¼ 5. Note that the curva-
ture is smooth for a ¼ 1 in r ¼ 0 and the curvature di-
verges in the origin for a ¼ 0. Furthermore, the resolved
conifold has a positive curvature and is asymptotically flat.
These issues have motivated us to use this manifold as a
prototype of the extension of transverse spaces in the brane
worlds. As a matter of fact, many authors have studied the
localization of fields in spherical backgrounds whose trans-
verse space has positive, constant, and nonsingular curva-
ture [4–7]. Since the resolved conifold is parametrized
by the resolution parameter that controls the singularity
at r ¼ 0, we can study the effects the singularity has on the
localization of fields in this particular space.
Note that in the limit r ! 0 the metric converges to a

spherical one of radius a,
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lim
r!0

ds26 ¼ a2ðd�22 þ sin2�2d�
2
2Þ; (5)

that has no singularity. Topologically this can be seen as a
result of taking out a small neighborhood around r ¼ 0 and
replacing it by a S2 of radius a. Since in the limit a ! 0we
reobtain the singular conifold again, the radius a can be
used to measure how smooth the conifold is and then it is
called the resolution parameter.

Now if we take as constants our angular coordinates c ,
�1, �2, �2, the cone 2-cycle can be written as the
2-resolved cone, namely,

ds22 ¼
�
r2 þ 6a2

r2 þ 9a2

�
dr2 þ 1

6
ðr2 þ 6a2Þd�2: (6)

This cone has a radial metric component grr ¼ �ðrÞ ¼
ðr2þ6a2

r2þ9a2
Þ whose graphic is plotted in Fig. 2. Note that

limr!1grr ¼ 1 and therefore asymptotically the cone

approaches the plane R2 with cylindrical metric of an

effective radius reff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þ6a2Þ

6

q
which is the transverse

metric used in stringlike geometries. Near r ¼ 0 we have
a hyperbolic behavior with high curvature and this region is
called the throat. The angular resolved conifold metric

component �ðr; aÞ ¼ ðr2þ6a2Þ
6 has a conical singularity de-

pendent on the resolution parameter. It is worthwhile to
mention that as a ! 0 the width of the throat approaches
zero.
Since the angular metric components diverge, the effec-

tive radius of the base sphere grows without limit. The
scalar curvature of this 2-manifold is

R ¼ Rðr; aÞ ¼ � 6a2ðr2 þ 18a2Þ
ðr2 þ 6a2Þ3 : (7)

For the sake of comparison we cite here the scalar curva-
ture for the Hamilton cigar geometry [21], namely,

RH ¼ 4

ð1þ r2Þ : (8)

Thus, this 2-cycle of the resolved conifold is a space of
varying negative scalar curvature that converges asymp-
totically to zero. This behavior is similar to the Hamilton
cigar that is a Ricci soliton used in the study of the stability
of manifolds [24]. The Hamilton cigar is an example of a
solution of the Ricci flow equation:

@gab
@t

¼ �2Rab; (9)

where t 2 ½0; 1� is a parameter that describes the evolution
of the geometry of the manifold.

III. BULK GEOMETRY

Once described the metric and the 2-cycle of the re-
solved conifold which we will use as a transverse space,
we want to study the localization of a scalar field in a
3-brane embedded in a six-dimensional bulk of form
M6 ¼ M4 � C2, where C2 is a 2-cycle of the resolved
conifold described above.
The action for the gravitational is

Sg ¼ 1

2K2
6

Z
M6

d6x
ffiffiffiffiffiffiffi�g

p ðR� 2�Þ þ
Z
M6

dx6
ffiffiffiffiffiffiffi�g

p
Lm

(10)

where K2
6 ¼ 8�

M4
6

andM4
6 is the six-dimensional bulk Planck

mass.
Further, let us assume the following ansatz for the

energy-momentum tensor:

T
�
� ¼ t0ðrÞ��

� ; (11)

Tr
r ¼ trðrÞ; (12)

2 4 6 8 10
r

0.75

0.80

0.85

0.90

0.95

1.00

r,a

FIG. 2. Radial metric component of a resolved conifold. For
a ¼ 1 (thick line), the factor has a large variation and asymptoti-
cally converges to one. For a ¼ 0 (thin line) the radial factor is
equal to one as in the stringlike defects geometry.
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r
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R r,a

FIG. 1. The scalar curvature of the resolved conifold. The
origin was shifted to the point r ¼ 5. For a ¼ 1 (thick line),
the function is regular in r ¼ 0 while for a ¼ 0 (thin line) the
scalar curvature diverges in the origin.
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T�
� ¼ t�ðrÞ; (13)

where

Tab ¼ � 2ffiffiffiffiffiffiffi�g
p @Lm

@gab
: (14)

Now, let us choose the metric components in such a way
that we can obtain the stringlike defect geometry in some
limits. From now on, the metric ansatz will be

ds26 ¼ e�AðrÞĝ��dx
�dx� þ �ðr; aÞdr2 þ �ðr; aÞe�BðrÞd�2;

(15)

where a � 0 is the resolution parameter. This ansatz ex-
tends the solution for stringlike defects by the inclusion of
the resolved conifold metric factors �ðr; aÞ, �ðr; aÞ. Since
the radial component approaches one at infinity, if we
put the 3-brane in a point far from the origin of the
resolved conifold, this ansatz goes to the Oda ansatz one
[7]. Furthermore, the geometry of the bulk is parameter-
dependent which enables us to control the singularity.

The Einstein equations for the metric ansatz in Eq. (15)
are

3A00 þ B00 � 3

2
A0B0 � B02 � 3A02 þ 3

2

�
�0

�
� �0

�

�
A0

þ
�
�0

�
� 1

2

�0

�

�
B0 � �00

�
þ 1

2

�0

�

�0

�

þ �

�
1

2
eAR̂� 2�þ 2K2

6t0

�
¼ 0; (16)

� 3A02 � 2A0B0 þ 2
�0

�
A0 þ �ðeAR̂� 2�þ 2K2

6trÞ ¼ 0;

(17)

4A00 � 5A02 � 2
�0

�
A0 þ �ðeAR̂� 2�þ 2K2

6t�Þ ¼ 0:

(18)

The continuity equation for the energy-momentum
tensor is

raTab ¼ 0: (19)

This equation yields a constraint on the components of the
energy-momentum tensor

t0r ¼ 2A0ðtr � t0Þ þ B0

2
ðtr � t�Þ þ �0

2�
ðt� � trÞ: (20)

Equations (16)–(18) and the continuity equation (20)
differ from the solution of the stringlike defects by the
addition of the angular factor � of the resolved conifold
metric.

Let us now sum the radial and angular Einstein equa-
tions and assume that AðrÞ ¼ BðrÞ. This yields a linear
differential equation for AðrÞ in the form

2A00ðrÞ �
�
�0

�
þ �0

�

�
A0ðrÞ þ K2

6�ðt� � trÞ ¼ 0: (21)

Defining

�ðr; aÞ ¼ �
�
�0

�
þ �0

�

�
; (22)

	ðr; aÞ ¼ K2
6�ðt� � trÞ; (23)

Eq. (21) can be rewritten as

2A00ðrÞ þ �ðr; aÞA0ðrÞ þ 	ðr; aÞ ¼ 0: (24)

The solution of Eq. (24) is

AðrÞ ¼ Að0Þ �
Z r

0

�Rr0
0 
ðr00; aÞ	ðr00; aÞdr00R

r0
0 
ðr00; aÞdr00

�
dr0: (25)

Let us suppose the boundary conditions

Að0Þ ¼ q; (26)

lim
r!1AðrÞ ¼ 1; (27)

where q is a constant.
Equation (24) with boundary conditions gives the warp

factor. In the point r ¼ 0, the metric defined by Eq. (15)
becomes

ds26 ¼ ĝ��dx
�dx� þ a2

6
d�2: (28)

This is a factorizable metric of the spaceM4 � S1 where S1

has radius affiffi
6

p . Therefore, the 3-brane can be realized as a

normal fiber bundle of strings in r ¼ 0.
In this geometry, the relationship between the four-

dimensional Planck mass (M4) and the bulk Planck mass
(M6) is given by

M2
4 ¼ 2�M4

6

Z 1

0
e�AðrÞ�ðBðrÞ=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr; aÞ�ðr; aÞ

q
dr: (29)

Therefore, we can use the resolution parameter in order to
tune the ratio between the Planck masses and so explain
the hierarchy between them. This is an extension of the
stringlike tuning of the Planck masses: in the stringlike
geometry, the adjustment is made by the six-dimensional
cosmological constant � and the tension of the string �
[6,7]. Here, we have added a dependence on a geometrical
parameter a. Note that the hierarchy is well-defined
even for the singular cone (a ¼ 0). Therefore, using
parameter-dependent transverse spaces we could obtain
a parameter-dependent hierarchy. Since there are many
parameter-dependent spaces these manifolds could be
used to solve the hierarchy problem. We argue that this
dependence could be related to possible transformations in
transverse space, for instance, the conical transitions.
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A. Linear warp factor

Now let us choose a specific warp factor AðrÞ and study
its geometrical consequences. Let us choose the linear
warp factor, i.e., AðrÞ ¼ kr, where k is a real constant.
This warp factor was widely used both in Randall-
Sundrum models [1,2] and in stringlike geometries [5–7].
This warp factor was the first used to solve the hierarchy
problem. Further, in Randall-Sundrum and stringlike ge-
ometries, it provides a AdS6 geometry to the bulk, i.e., a
maximally symmetric space with negative cosmological
constant.

With that choice the Einstein equations become

B00 � 3k

2
B0 � B02 � 3k2 þ 3k

2

�
�0

�
� �0

�

�

þ
�
�0

�
� 1

2

�0

�

�
B0 � �00

�
þ 1

2

�0

�

�0

�

þ �

�
1

2
eAR̂� 2�þ 2K2

6t0

�
¼ 0; (30)

� 3k2 � 2kB0 þ 2
�0

�
kþ �ðeAR̂� 2�þ 2K2

6trÞ ¼ 0;

(31)

� 5k2 � 2
�0

�
kþ �ðeAR̂� 2�þ 2K2

6t�Þ ¼ 0: (32)

Summing the radial and angular equations above, we ob-
tain the solution for the warp factor BðrÞ:

BðrÞ ¼ krþ lnð�ðr; aÞ�ðr; aÞÞ

þ K2
6

k

Z r

0
�ðr0; aÞðtrðr0Þ � t�ðr0ÞÞdr0: (33)

Therefore, we can get BðrÞ ¼ AðrÞ if

lnð�ðr;aÞ�ðr;aÞÞþK2
6

k

Z r

0
�ðr0;aÞðtrðr0Þ� t�ðr0ÞÞdr0 ¼ 0:

(34)

Equation (34) provides a constraint between the resolved
conical geometry and the content of matter. In a vacuum,
the warp factor BðrÞ is given by

BðrÞ ¼ krþ lnð�ðr; aÞ�ðr; aÞÞ: (35)

The solution for the function BðrÞ above differs from the
stringlike defect one by the conifold metric components �,
� [7]. In addition, note that in general BðrÞ depends on the
resolution parameter. Therefore, we can make �ðr; aÞ ¼ 1
and still detect the effects of the resolution on the conifold.

Let us suppose now an angular energy-momentum ten-
sor of the form

t�ðrÞ ¼ �ekr þ �ðrÞ þ ; (36)

where � ,  are constants and

�ðrÞ ¼ 1

4K2
6�ðrÞ

�
5P2 þ 2P

�0

�
� 3

�
�0

�

�
2
�
: (37)

Now let us suppose the 3-brane M4 is a maximally sym-
metric space. Therefore, we can define a 3-cosmological
constant �3, satisfying

R̂ �� � R̂

2
ĝ�� ¼ ��3ĝ��: (38)

Thus, its scalar curvature R̂ must be constant. Therefore,
from Eq. (32) we conclude that

� ¼ R̂

2K2
6

; (39)

 ¼ �

K2
6

; (40)

k ¼ P: (41)

It is worthwhile to mention that the solution above for t�
differs from the stringlike type by the terms � and �0

� and so

we obtain the stringlike defect as a special case of the
resolved conifold one.
For BðrÞ ¼ AðrÞ the components of the energy-

momentum tensor are

trðrÞ ¼ �

K2
6

� ekrR̂

K2
6

þ 1

�K2
6

�
5k2 � 2

�0

�
k

�
; (42)

t0ðrÞ ¼ �

K2
6

� ekrR̂

2K2
6

þ 1

2�K2
6

�
11

2
k2;þ2

�
�0

�
� �0

�

�
k

� �00

�
þ 1

2

�0

�

�0

�

�
: (43)

Since �0 diverges, then for R̂ � 0 the component t0 sat-
isfies the energy dominant condition, t0 � 0.
This linear warp factor satisfies the boundary conditions

(26) and (27). Since the warp factor diverges asymptoti-
cally we can impose the following condition:

A0ðrÞ> 0: (44)

Now let us analyze the asymptotic behavior of the linear
warp factor. The angular Einstein equation is

� 5k2 � 2
�0

�
kþ �ðeAR̂� 2�þ 2K2

6t�Þ ¼ 0: (45)

Asymptotically limr!1 �0
� ¼ 0 and limr!1� ¼ 1. Thus,

for t� ¼ � ekrR̂
2K2

6

, the angular equation becomes

5k2 þ 2� ¼ 0 ) �< 0: (46)

Therefore, the bulk is asymptotically AdS6 for the linear
warp factor. Further, since
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R ¼ 3�� K2
6

2
T; (47)

the energy-momentum tensor has a core around the brane
which is very similar to the stringlike geometry [6].

Another important feature in this approach is the free-
dom of the factor k since the constant P must only to be
positive. We have plotted the angular component for some
different values of k and for a ¼ 0:5 in Fig. 3. For k ¼ 3,
this component has an exponential decreasing behavior
and then approaches the configuration of stringlike defects
and cigar geometries [5–7,22]. However, for 0:5 � k � 1

the angular component increases until it reaches a maxi-
mum and then decreases exponentially. Hence, the de-
creasing of the k parameter has the feature of damping
the exponential decreasing of the angular component. The
same features appear if we fix k and vary the resolution
parameter. Indeed, as a ! 0 a peak arises making the
angular component vanish more slowly as shown in
Fig. 4. In addition, the angular metric component has the
same asymptotic behavior for any value of a but it changes
its behavior close to the brane.
For the linear warp factor the scalar curvature is given by

R ¼ � 3

2

ð1620a6k2 þ kr5ð5kr� 4Þ þ 12a4ð60k2r2 � 13krþ 6Þ þ a2r2ð105k2r2 � 50krþ 4ÞÞ
ðr2 þ 6a2Þ3 (48)

whose graphic is plotted in Fig. 5. For better viewing, let us
make the change of variable

r ! r� 5: (49)

Therefore, the bulk has a varying negative scalar curvature.

B. Nonlinear warp factor

In addition to the configuration above, we have used
another warp factor slightly different from the warp factor
previously studied by Fu, Liu, and Guo [26]. Our proposed
warp factor is given by

AðrÞ ¼ BðrÞ ¼ coshðrÞ þ tanhðrÞ2: (50)

Note that, like in the Randall-Sundrum model where the
warp factor is a modulus function, this nonlinear warp
factor is symmetric with respect to reflection on the brane;

i.e., it has Z2 symmetry, as shown in Fig. 6. Furthermore, it
gives a localized angular component as seen in Fig. 7. We
have plotted the scalar curvature for this warp factor for
a ¼ 0 and a ¼ 1. Note from Fig. 8 that the behavior of the
scalar curvature is opposite of the linear case because for
the nonlinear case the scalar curvature is regular for r ¼ 0
but diverges at infinity. Moreover, the curvature is positive
around the origin and is negative for large distances.
Therefore, the geometry for the warp factor AðrÞ ¼

coshðrÞ þ tanhðrÞ2 has a well behavior in the origin but
diverges asymptotically. Furthermore, asymptotically the
warp factor satisfies

lim
r!1A

0ðrÞ ¼ 0; (51)

lim
r!1A

00ðrÞ> 0: (52)

2 4 6 8 10
r

0.05

0.10

0.15

0.20

0.25

r,0.5 e kr

FIG. 3. Angular metric factor of bulk for a ¼ 0:5. For k ¼ 3,
we have a monotonic exponential behavior characteristic of the
stringlike defects and cigar geometries (thick line). For k ¼ 0:9
(thin line) and k ¼ 0:6 (dotted line) the angular factor grows
until a maximum and then decreases exponentially. Note that the
former behavior makes the angular component vanish more
slowly.
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FIG. 4. Angular metric component for k ¼ 1. For a ¼ 3 the
component decreases exponentially like for stringlike defects
and cigar geometries (thick line). For a ’ 0:3 (thin line) there is
no conical singularity and the component reaches a maximum
before decay. For a ¼ 0 (dotted line) the component begins with
a conical singularity at the origin, increases until a maximum,
and then vanishes slowly.
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Then, for t� ¼ 0 and R̂ ¼ 0 the angular Einstein equation
satisfies

4A00ðrÞ � 2� ¼ 0 ) �> 0: (53)

However, since the scalar curvature diverges far from the
brane, we cannot conclude that the bulk converges to the
dS6 space. Indeed, since the scalar curvature diverges at
infinity and

R ¼ K2
6T þ 6� ) lim

r!1T ¼ �1; (54)

whatever produces this geometry, the scalar curvature has a
radial energy-momentum tensor component that diverges
asymptotically. This feature contrasts a lot with the string-
like geometry.

IV. SCALAR FIELD IN MINIMAL COUPLING

Now let us study the localization of a scalar field in the
geometry analyzed so far. The action for a scalar field
minimally coupled to the gravity is

Ss ¼
Z
M6

dx6
ffiffiffiffiffiffiffi�g

p
gab@a�@b�: (55)

The equation of motion for the scalar field is given by

@Að ffiffiffiffiffiffiffi�g
p

gAB@B�Þ ¼ 0: (56)

Let us assume that this scalar field is a product of a
4-component field with Poincaré symmetry and another
scalar field living only in the 2-cycle of a conifold, i.e.,

�ðx�; r; �Þ ¼ �̂ðx�Þ ~�ðr; �Þ: (57)

With Poincaré symmetry the 3-brane scalar field must
satisfy the mass condition

@�@
�ð�̂ðx�ÞÞ ¼ m2�̂ðx�Þ: (58)

3 4 5 6 7 8
r

0.1

0.2

0.3

0.4

0.5

e B r r,a

FIG. 7. Bulk angular metric factor for the nonlinear warp
factor. For a ¼ 1 (thick line) the component is similar to a
Gaussian function and is not zero on the brane—there is no
conical singularity. For a ¼ 0 the component has two maxima
and it has a conical singularity.

2 4 6 8 10 12
r

15

10

5

R r,a

FIG. 5. Bulk scalar curvature for the linear warp factor
(k ¼ 1). We have put the brane in r ¼ 5. For a ¼ 1 (thick
line) the curvature increases until an asymptotic value around
�7:5. For a ¼ 0:5 (thin line) the curvature grows until reaching
a maximum and then decreases to the same asymptotic value.
For a ¼ 0 (dashed line) the curvature diverges on the brane.
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FIG. 6. Nonlinear warp factor. This function is symmetric
around the brane and diverges asymptotically.
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FIG. 8. Bulk scalar curvature for the nonlinear warp factor.
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Since 0 � � � 2�, let us assume that ~�ðr; �Þ can be ex-
panded in the Fourier series as

~�ðr; �Þ ¼ 	ðrÞX1
l¼0

eil�: (59)

Using the ansatz (59) yields

� ffiffiffiffiffiffiffi�g
p
�ðr; aÞ	

0ðrÞ
�0 � l2

ffiffiffiffiffiffiffi�g
p

eB

�ðr; aÞ 	ðrÞ þm2 ffiffiffiffiffiffiffi�g
p

eA	ðrÞ ¼ 0:

(60)

Equation (60) is a Sturm-Liouville-like equation. Further,
let us look for solutions that satisfy the boundary
conditions

	0ð0Þ ¼ lim
r!1	

0ðrÞ ¼ 0: (61)

If we have two solutions for Eq. (60), namely, 	iðrÞ and
	jðrÞ, the orthogonality relations between them are

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr; aÞ�ðr; aÞ

q
eð�AðrÞ�ðBðrÞ=2ÞÞ	i � 	jdr ¼ �ij: (62)

We can rewrite Eq. (60) as

	00ðrÞ � 1

2

�
4A0 þ B0 þ �0

�
� �0

�

�
	0ðrÞ

þ �eA
�
m2 � l2

eB�A

�

�
	ðrÞ ¼ 0: (63)

Note that Eq. (63) is similar to that found in stringlike
geometries [6,7], regardless of the conifold terms �ðr; aÞ,
�ðr; aÞ. Further, we can see from Eq. (63) that it is possible
to add the conifold terms to the warp factors. Here we can
choose two distinct paths. On the one hand it is possible to
study the resolution behavior directly in the warp factors.
On other hand, we can study the localization in a factorized

geometry, i.e., without the exponential warp factors eAðrÞ,
eBðrÞ. In addition, we could define an effective angular

number leff ¼ l2

�ðr;aÞ which would depend on the point and

on the resolution parameter.

A. Massive modes

Let us simplify Eq. (63) making the following change of
variable

z ¼ zðrÞ ¼
Z r

0
�ðr0Þ1=2eAðr0Þ=2dr0: (64)

Since the radial metric component�ðr; aÞ is a non-negative
smooth function of r, i.e.,8 r 2 ½0;1Þ,�ðr; aÞ> 0, so for
a fixed a, �ðr1Þ � �ðr2Þ , r1 � r2. Thus,

dz

dr
> 0; (65)

and so zðrÞ is a smooth, monotonic increasing function of r.

Using the change of variable in Eq. (64), Eq. (63) turns
to be

€	ðzÞ� 1

2

�
3 _Aþ _B�

_�

�

�
_	ðzÞþ ðm2� l2��1eB�AÞ	ðzÞ ¼ 0:

(66)

In order to simplify further, let us write 	ðzÞ in the form

	ðzÞ ¼ eð3AþB�lnð�ÞÞ=4�ðzÞ: (67)

From Eq. (66), the �ðzÞ function must obey

� €�ðzÞ þ VðzÞ�ðzÞ ¼ m2�ðzÞ; (68)

where

VðzÞ ¼
�
3 _Aþ _B� ��1 _�

4

�
2

� ð3 €Aþ €Bþ ��2ð _�Þ2 � ��1 €�Þ
4

þ l2��1eB�A:

(69)

This is a time-independent Schrödinger-like equation. We
can study the localization of the scalar field by analyzing
the behavior of the potential around a potential well.
Returning to the r coordinate the potential can be written as

Vðr; a; lÞ ¼ e�A

�

�
1

16
ð15A02 þ B02 þ 8A0B0Þ

� 1

4
ð3A00 þ B00Þ þ ð3A0 þ B0Þ �

0

8�
� �0�0

8��

� �0

8�
A0 þ

�
�0

4�

�0�þ l2��1eB�A: (70)

The study of this potential provides graphic information
about the possible stable solutions around a minimum.

1. Linear warp factor

Now, let us analyze the case for the linear warp factor
keeping the condition Aðr; kÞ ¼ Bðr; kÞ. The potential is
given by

Vðu; a; l; kÞ ¼ e�ku

�

�
3

2
k2 þ k

2

�0

�
� 1

8
k
�0

�
� 1

8

�0

�

�0

�

þ 1

4

�
�0

�

�0�þ l2��1: (71)

We have plotted the potential for l ¼ 0, k ¼ 1 in Fig. 9. For
large values of a the potential well decays exponentially.
As a ! 0 two asymmetric minima arise far from the brane.
However, for a ¼ 0, the point r ¼ 5 turns out to be an
infinite potential well. Therefore, it is possible to find a
localized solution of Eq. (66). Indeed, the eigenfunction
	ðrÞ must satisfy the differential equation
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	00ðrÞ þ
� ðr� 5Þ
ðr� 5Þ2 þ 9a2

� 5

2
k

�
	0ðrÞ

þ
�ðr� 5Þ2 þ 6a2

ðr� 5Þ2 þ 9a2

�
ekðr�5Þm2	ðrÞ ¼ 0: (72)

For ð a
r�5Þ ! 0, which is valid for the singular cone (a ¼ 0)

and for distant points [ðr� 5Þ ! 1], the radial function
satisfies

	00ðrÞ þ
�

1

ðr� 5Þ �
5

2
k

�
	0ðrÞ þ ekðr�5Þm2	ðrÞ ¼ 0: (73)

Note that Eq. (73) differs from the stringlike [6] equation
for massive modes by the factor 1

r�5 . For ðr� 5Þ �
maxða; 2

2kÞ, Eq. (73) converges to a well-known equation

of stringlike defects [6]

	00ðrÞ � 5

2
k	0ðrÞ þ ekrm2	ðrÞ ¼ 0; (74)

and so asymptotically the field has the same features as in
stringlike geometry. For instance, the spectrum of mass has
the same asymptotic behavior.

In order to study the behavior of massive modes near the
brane let us take the limit ðr�5

a Þ ! 0, a � 0, and therefore

the equation for the radial component becomes

	00ðrÞ þ
�
r� 5

9a2
� 5

2
k

�
	0ðrÞ þ 2

3
ekðr�5Þ	ðrÞ ¼ 0: (75)

We can also use Eq. (75) to study the asymptotic behavior
of the eingenfunction for the singular conifold a ¼ 0,
whereas ðr�5

a Þ ! 0.

For jr� 5j 	 45a2k
2 , Eq. (75) turns to be the stringlike

equation for massive modes [6]. Hence, the resolved coni-
fold geometry resembles asymptotically and close to the
brane the stringlike geometry. Therefore, for ðr� 5Þ ! 0

or ðr� 5Þ ! 1 we have the well-known stringlike
solution

	ðrÞ ! e5=4cr
�
C1J5=2

�
2m

c
ec=2r

�
þ C2Y5=2

�
2m

c
ec=2r

��
:

(76)

However, this solution in Eq. (76) is not normalizable for
½0;1Þ. In order to normalize the field we can use a cutoff
distance rc and apply the boundary condition at the point
r ¼ rc instead of at infinity. Then we take the limit
rc ! 1 and analyze the behavior of the mass spectrum.
Since the solution of Eq. (72) behaves near and far from the
brane like the Bessel functions, for rc >maxða; 2

2kÞ, the
asymptotic mass spectrum must be of the form

mn ¼ c

�
n� 1

2

�
�

2
e�ðcrc=2Þ: (77)

On the other hand, expanding the exponential until first
order yields

	00ðrÞ þ
�
r� 5

9a2
� 5

2
k

�
	0ðrÞ þ 2

3
ð1þ kðr� 5ÞÞ	ðrÞ ¼ 0:

(78)

Therefore, this equation describes either the behavior of
the field in the neighborhood of the brane or the asymptotic
behavior of the eigenfunction for a � 0. The solution is the
product between an exponential function and the confluent
hypergeometric function of the second kind, namely,

	ðr; aÞ ¼ Eðr; aÞM
�ð1� 6a2 � 135a4 � 324a6Þ

2
;
1

2
;

� 10þ 45a2 þ 216a4 � 2r

6
ffiffiffi
2

p
a

�
; (79)

where Eðr; aÞ ¼ eð10þ45a2þ108a4�rÞ=18a2 . The graphic of this
function was plotted in Fig. 10.

2. Nonlinear warp factor

Now let us study the solutions for the nonlinear warp
factor. First, we have plotted the potential using several
values of the resolution parameter a and l ¼ 0 in Fig. 11.
For a � 0:5 there is a potential well on the brane (r ¼ 5)
and then there are massive modes trapped to the brane.
Nevertheless, for 0:5> a> 0, there is a potential barrier
on the brane and there is only a potential well beside the
brane. However, for a ¼ 0 a potential well appears again
on the brane and thus there are localized states on the brane
in the singular conifold.
The eigenfunction must satisfy

	00ðrÞ þ
� ðr� 5Þ
ðr� 5Þ2 þ 9a2

� 5

2
A0ðrÞ

�
	0ðrÞ

þ
�ðr� 5Þ2 þ 6a2

ðr� 5Þ2 þ 9a2

�
eAðrÞm2	ðrÞ ¼ 0: (80)

4.5 5.0 5.5 6.0
r

10

5

5

10

V r,a

FIG. 9. Potential for linear warp factor and l ¼ 0. For a ¼ 1
(thick line) the potential decays exponentially. For 0:1> a> 0
(thin line) it appears as two asymmetric potential wells beyond
the point r ¼ 5 but at this point the potential is a maximum. For
a ¼ 0 a potential well arises on the brane (dotted line).
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For ððr�5Þ
a Þ ! 0 we can expand the warp factor and its

exponential around r ¼ 5. This yields the equation

	00ðrÞþ
�ðr� 5Þ

9a2
� 5

2
ðr� 5Þ

�
	0ðrÞþ 2

3
ðr� 5Þ2m2	ðrÞ ¼ 0:

(81)

The solution for this equation is again a product between a
exponential function and the hypergeometric confluent
function. Its plot is shown in Fig. 12.

For ð a
r�5Þ ! 0 the eigenfunction satisfies

	00ðrÞ þ
�
5ðr� 5Þ

2

�
	0ðrÞ þ ðr� 5Þ2	ðrÞ ¼ 0 (82)

whose solution is

	ðrÞ ¼ e10r�r2
�
H

�
� 4

3
;

ffiffiffi
3

p
2

ðr� 5Þ
�

þM

�
2

3
;
1

2
;

ffiffiffi
3

p
2

ðr� 5Þ
��
: (83)

We have plotted the solution above in Fig. 13. Note that the
function is well-defined on the brane but asymmetric in
relation to the brane. Therefore, the eigenfunction for the
singular conifold (a ¼ 0) is localized on the brane. In
addition, since the eigenfunction vanishes at infinity, the
eigenfunction for a � 0 is also localized.

B. Massless modes

Now let us turn our attention to the massless modes (or
Kaluza-Klein modes). Considering m ¼ 0 and l ¼ 0
(which is called s-wave) [7], the radial equation (63)
becomes

	00
k ðrÞ �

1

2

�
4A0 þ B0 þ �0

�
� �0

�

�
	0
kðrÞ ¼ 0: (84)

The constant function 	ðrÞ ¼ 	0 satisfies the equation
above. Thus, this solution is said to be localized if its

4.8 5.0 5.2 5.4
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5.78 10246

5.80 10246

5.82 10246

5.84 10246

r

FIG. 10. Eigenfunction for linear warp factor and a ¼ 1,
k ¼ 1. The solution is defined for points close to the brane.
The field has compact support and is well-defined on the brane
(r ¼ 5).
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V r,a

FIG. 11. Potential for the nonlinear warp factor. For a ¼ 0:24
(thick line) there is only one potential well around the brane (the
usual volcano potential); for a ¼ 0:16, there is a maximum in the
brane and the formation of two minima besides the brane (thin
line); as a ! 0 the width of the maximum decreases and for
a ¼ 0 the potential has a infinite minimum on the brane (dashed
line).
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FIG. 12. Eigenfunction for the nonlinear warp factor close to
the brane.
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FIG. 13. Eigenfunction for the nonlinear warp factor far from
the brane and/or for a ¼ 0.
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action is localized around the 3-brane, i.e., if its action has
compact support. Since Eq. (84) is a Sturm-Liouville equa-
tion and we are seeking localized functions that satisfy the
asymptotic condition

lim
jr�5j!1

	0ðrÞ ¼ 0; (85)

we can find a spectra of eigenfunctions ð�ðrÞÞn satisfying
the orthonormal condition

Z 1

0
e�ð3AðrÞ=2Þ ffiffiffiffiffiffiffiffi

��
p ��nðrÞ�mðrÞdr ¼ �nm: (86)

Therefore, we can define the eigenfunction in flat space as

	nðr; aÞ ¼ e�ð3AðrÞ=4Þð�ðr; aÞ�ðr; aÞÞ1=4�nðrÞ: (87)

On the other hand, since

	2
0

Z 1

0
e�ð3AðrÞ=2Þ ffiffiffiffiffiffiffiffi

��
p

dr ¼ 1; (88)

the zero-mode eigenfunction is

	0ðr; aÞ ¼ le�ð3AðrÞ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr; aÞ�ðr; aÞ

q
; (89)

where

l ¼ 1R1
0 e�ð3AðrÞ=2Þ ffiffiffiffiffiffiffiffi

��
p

dr
: (90)

Again, the eigenfunction is quite similar to that found in

Refs. [6,7] regardless of the factor ð�ðr; aÞ�ðr; aÞÞ1=2. We
have plotted the zero-mode c 0ðr; aÞ for some values of a
using the linear warp factor in Fig. 14 and for the nonlinear
warp factor in Fig. 15. Since for every a the function is
integrable we can say that the massless field is localized on
the brane even for the singular conifold case.

V. CONCLUSION AND PERSPECTIVES

We have studied the localization of a scalar field on a
3-brane in a resolved conifold background of six dimen-
sions, built from a warped product between a 2-cycle of a
resolved conifold and a 3-brane placed in the tip of
the cone. We have chosen a geometry such that when the
resolution parameter goes to zero or when we put the
3-brane far from the origin, we reobtain the well-studied
stringlike geometries.
The use of the resolved conifold as a transverse space

brought a very nice feature: an extension to the solution
of the hierarchy problem using the resolution parameter a.
Indeed, in the Randall-Sundrum and stringlike models, the
ratio between the six-dimensional Planck massM6 and the
four-dimensional Planck mass M4 depends only on
the cosmological constant � and on the tension of the
brane �. Since this parameter has a purely geometric
origin, it has opened the way to use other parameter-
dependent manifolds like Eguchi-Hanson spaces, Taub-
Nut, etc., as transverse spaces. Furthermore, using
parameter-dependent transverse spaces we could study
the evolution and stability of the hierarchy between M6

and M4 through some mechanisms, for example, the coni-
cal transitions or the geometrical flux.
For a linear warp factor, the bulk geometry asymptoti-

cally approaches the AdS6 space (�< 0) which is similar
to the stringlike geometry. Further, the massive modes have
a family of potentials parametrized by the resolution pa-
rameter. For a � 1, the potential decreases exponentially
and then it is not possible to have stable trapped states in
the brane. As a ! 0, two asymmetric minima appear
around the 3-brane put at the point r ¼ 5, but the potential
reaches its maximum value on the brane. The respective
eigenfunction is localized around the deepest minimum
close to the brane. In the limit a ¼ 0, the potential well
turns out to be an infinite potential well in the brane and

1 2 3 4 5 6
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0.8

1.0
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1.4

0 r,a

FIG. 14. Plot of the zero-mode eigenfunction for the linear
warp factor. For any a it has an exponential decreasing behavior
and thus it is localized (but not symmetric) around the brane.

3 4 5 6 7 8
r

0.1

0.2

0.3

0.4

0 r,a

FIG. 15. Plot of the zero-mode eigenfunction for the nonlinear
warp factor. The function has compact support even for the
singular conifold a ¼ 0 (dotted line). Note that this solution is
localized and symmetric around the brane.
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thus the eigenfunction is localized in the brane. Indeed,

both for a
ðr�5Þ ! 0 and for ðr�5Þ

a ! 0 we obtain the well-

known solution for stringlike geometry [6]. In addition, the
massless modes were localized even for the singular case.
Indeed, the action for a constant solution in this geometry
has compact support and therefore is normalizable. The
main difference between this conifold geometry and the
standard stringlike one lies in the parametrization of
the potentials by a geometric factor. This parametrization
provides the asymmetric minima potentials far from the
brane. Therefore, the resolution parameter could be used as
a filter of fields that can or cannot be localized on the brane.

Using the nonlinear warp factor AðrÞ ¼ coshðrÞ þ
tanhðrÞ2 the scalar curvature diverges asymptotically and
so the energy-momentum tensor is not restricted to points
close to the brane, which is in contrast to the stringlike
geometry. For the scalar field, the massive modes are
trapped on the 3-brane even for the singular conifold. For
a � 1 the potential behaves like the standard volcano
potential with a minimum on the brane. As a ! 0 two
more local minima appear inside the global minimum and
the minimum on the brane turns out to be a maximum.
Therefore, in the range 0< a � 1 it is not possible to
localize the scalar field on the brane. In the same way as
for the linear warp factor, for a ¼ 0 the potential on the
brane returns to be a potential well but now infinite. At last,
the massless modes are localized for all values of a. A
difference between this geometry and the stringlike one
lies in the radial field solutions. Indeed, for stringlike
geometries the usual field solutions are Bessel functions
and in this work we have found confluent hypergeometric
functions that depend on two parameters and which are
very sensible to variations on these parameters. This was
expected since the field equation depends on the mass m
and angular number l. Also, the field equation, through the
geometry, depends on the resolution parameter a. We argue
that by using other parameter-dependent geometries we
could find more general solutions and study their stability.

We also argue that the successful localization of mass-
less modes in the singular conifold for both the linear and

nonlinear warp factor might be related to the fact that in the
conifold transitions, where we make singularities in the
manifold, some fields become massless. Thus, this close
relationship between conical singularity and the spectrum
of massless fields provides the localization of the massless
modes in the singular geometry.
This work suggests many perspectives. Using the same

geometry studied so far, we could study the localization of
other fields in this scenario, like the vector, gravitational,
and spinor fields. Since these fields have more degrees of
freedom than the scalar field, the effects of asymmetry of
the potential could be more relevant, for example, for the
resonance of fermionic modes. Another way it could be
used is in parameter-dependent geometries like the de-
formed conifold or even orbifold instead of the resolved
conifold. Since these smooth conifolds are related to su-
pergravity solutions that near the horizon behave like
AdS5 � S5, we could study the localization of fields where
the transverse spaces are well-known solutions like the
Eguchi-Hanson spaces or the Klebanov-Strassler throat.
Furthermore, since we have parametrized the geometry,
we could study the stability of this geometry using some
analytical method like the Ricci equation, where the vari-
able of the flux would be the resolution parameter. Since
there is a relation between the resolved conifold geometry
and the cigarlike geometry, we could study the flux through
a parametrized cigar geometry. On the other hand, we
could use the geometry bulk used here to study other
problems such as the small value of the cosmological
constant in the 3-brane and the supersymmetry breakdown.
It is worthwhile to mention that even though we have

studied the behavior of the field in that geometry we have
not said how this geometry was generated. Hence, a next
step could be deduce this geometry from some field and so
give a physical meaning to the resolution parameter.
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