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In this article, we derive the integral equation that controls the momentum dependence of the effective

gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation of the

corresponding ‘‘one-loop dressed’’ Schwinger-Dyson equation into two distinct contributions, one

associated with the mass and one with the standard kinetic part of the gluon. The entire construction

relies on the existence of a longitudinally coupled vertex of nonperturbative origin, which enforces gauge

invariance in the presence of a dynamical mass. The specific structure of the resulting mass equation,

supplemented by the additional requirement of a positive-definite gluon mass, imposes a rather stringent

constraint on the derivative of the gluonic dressing function, which is comfortably satisfied by the large-

volume lattice data for the gluon propagator, both for SUð2Þ and SUð3Þ. The numerical treatment of the

mass equation, under some simplifying assumptions, is presented for the aforementioned gauge groups,

giving rise to a gluon mass that is a nonmonotonic function of the momentum. Various theoretical

improvements and possible future directions are briefly discussed.
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I. INTRODUCTION

A large body of recent high-quality lattice results indi-
cates that the gluon propagator and the ghost dressing
function of pure Yang-Mills theories, computed in the
conventional Landau gauge, are infrared (IR) finite, both
in SUð2Þ [1–5] and in SUð3Þ [6–9]. These important results
have sparked a renewed interest in the important issue of
dynamical mass generation in non-Abelian gauge theories,
and especially in QCD [10–15]. Specifically, as has been
suggested in a series of works, the finiteness of these
quantities may be interpreted as a direct consequence
of the generation of a nonperturbative (momentum-
dependent) gluon mass, which acts as an IR cutoff of the
theory [16,17]. In the picture put forth in these articles, the
fundamental Lagrangian of the Yang-Mills theory (or that
of QCD) is never altered; the generation of the gluon mass
takes place dynamically, without violating any of the
underlying symmetries [12,14,16].

Given the nonperturbative nature of the mass-generating
mechanism, its study in the continuum proceeds through
the Schwinger-Dyson equations (SDEs) that govern the
dynamics of the various Green’s functions of the theory
[11,13,18–20], and especially of the gluon propagator,
�ðq2Þ. The main conceptual and technical challenge in
this context is to obtain as a solution of these integral
equations an IR-finite gluon propagator [i.e., ��1ð0Þ ¼
m2ð0Þ], without interfering with the gauge invariance [or
the Becchi, Rouet, Stora, and Tyutin (BRST) symmetry]

of the theory, encoded in the Ward identities (WIs) and
Slavnov-Taylor identities (STIs) satisfied by the Green’s
functions under study [11–13]. A self-consistent frame-
work for enforcing the crucial property of gauge invariance
at the level of the truncated SDEs is provided by the
synthesis of the pinch technique (PT) [14,16,21–23] with
the background field method (BFM) [24].
In the presence of a dynamically generated mass, the

(inverse) Euclidean gluon propagator assumes the form
��1ðq2Þ ¼ q2Jðq2Þ þm2ðq2Þ, where the first term corre-
sponds to the ‘‘kinetic term,’’ or ‘‘wave function’’ contri-
bution, whereas the second is the (positive-definite)
momentum-dependent mass [15]. However, to date, practi-
cally all studies attempting to determine the IR behavior of
the gluon propagator from SDEs eventually boil down to
the solution of some integral equation involving the entire
gluon propagator �ðq2Þ [12,14,16], rather than its two
components, Jðq2Þ and m2ðq2Þ. This is to be contrasted to
what happens in the analogous studies of chiral symmetry
breaking, where one derives a system of two coupled
equations, one determining the wave function (kinetic
part) of the quark self-energy, and one determining the
dynamical (constituent) quark mass [25,26]. Of course, in
the case of the quark self-energy the above separation of
both sides of the corresponding SDE (quark gap equation)
is realized in a direct way, due to the distinct Dirac prop-
erties of the two quantities appearing in it, while in the case
of the gluon propagator no such straightforward separation
is possible. However, a well-defined procedure, first out-
lined in [15], and explained here in more detail, allows for
an analogous separation even in the case of the gluon
propagator. The purpose of the present article is to identify
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and isolate from the SDE of the (Landau gauge) gluon
propagator the dynamical equation that determines the
evolution of the gluon mass, study its main properties,
and find approximate solutions for m2ðq2Þ.

As has been emphasized in some of the literature cited
above, a crucial condition for the realization of the gluon
mass generation scenario is the existence of a longitudinally
coupled vertex, to be denoted by V, which must be added to
the conventional (fully dressed) three-gluonvertex, denoted
by ℾ [15]. Specifically, the vertex ℾ 0 ¼ ℾ þ V satisfies the
same STIs as ℾ , but now replacing the gluon propagators
appearing on their right-hand side (rhs) by massive ones
(schematically, � ! �m). The dynamical reason for the
emergence of this special vertex, aswell as its diagrammatic
realization in terms of Feynman graphs, is intimately con-
nected to the well-known Schwinger mechanism [27,28],
which enables the nonperturbative generation of a gauge-
boson mass. In particular, one assumes that the strong QCD
dynamics give rise to longitudinally coupled composite
(bound-state) massless poles [29–35]. These poles act like
Nambu-Goldstone excitations, in the sense that they pre-
serve the form of the STIs of the theory in the presence of a
mass, but they are not associated with the breaking of any
local or global symmetry.

It turns out that the way the vertex V generates the mass
at the level of the SDE is by introducing a ‘‘deviation’’
from the so-called ‘‘seagull identity.’’ The role of this
identity is to enforce the masslessness of a gauge boson
(gluon or photon) when massive propagators appear inside
its loops, assuming always that the WI and STIs are main-
tained, i.e., the transversality of the (gluon or photon) self-
energy is preserved. For example, as explained in [15], in
scalar QED it is exactly this identity that enforces the
masslessness of the photon at the level of the one-loop
dressed SDE; in this case the massive propagator entering
into the loop is that of the charged scalar field. The crucial
point is that if the ‘‘massive’’ STI were to be enforced by
only modifying ℾ (i.e., by carrying out the replacement
� ! �m in the closed expressions obtained for ℾ by solv-
ing the STIs it satisfies), then the seagull identity would
force the (would-be) gluon mass to vanish, i.e., would lead
to the invalidation of the entire mass-generating mecha-
nism. The fact that the missing part for satisfying the
massive STI is instead provided by the longitudinally
coupled V has the far-reaching consequence of finally
furnishing a nontrivial equation for the mass. Thus, the
equation for the gluon mass is determined as the amount by
which the seagull cancellation is distorted due to the
presence of the vertex V.

To be sure, one could in principle determine the closed
form ofV from theWI and STIs that it satisfies, as was done
in [36] for ℾ . It turns out, however, thatV enters into the SDE
for the Landau gauge gluon propagator in a very particular
way, which renders its closed form unnecessary; all one
needs for the derivation of the mass equation is to postulate

the existence ofV (i.e., assume that it is not identically zero)
and that it satisfies the required WI and STIs.
In principle, the mass equation obtained must be accom-

panied by the corresponding equation determining the
kinetic term Jðq2Þ; the solution of the resulting system of
two coupled integral equations will then furnish the behav-
ior of m2ðq2Þ and Jðq2Þ, and therefore that of �ðq2Þ. The
technical limitation in realizing these procedures is the
dependence of the equation for Jðq2Þ on the various form
factors comprising the ghost-gluon kernel; the latter enters
into play through the form of the vertex ℾ . The way to
circumvent this problem is to solve the mass equation
using as input for � the available lattice data, both for
SUð2Þ [1] and SUð3Þ [6].
It turns out that the specific form of the mass equation

introduces a nontrivial constraint on the precise behavior
that � must display in the region between ð1–5Þ GeV2.
Specifically, in order for the gluon mass to be positive
definite, the first derivative of the quantity q2�ðq2Þ (the
‘‘gluon dressing function’’) must furnish a sufficiently
negative contribution in the aforementioned range of mo-
menta. Interestingly enough, the � obtained from the
lattice has indeed this particular property.
The article is organized as follows. In Sec. II, we in-

troduce the necessary notation and review briefly the as-
pects of the PT-BFM formalism relevant to this work. In
Sec. III, we explain in detail the modifications that must be
introduced to the three-gluon vertex of the theory in order
to treat the generation of a gluon mass in a gauge invariant
way (i.e., preserving the STIs of the theory). In particular,
the importance of the nonperturbative vertex V and its
special properties are emphasized, and the changes intro-
duced to the corresponding SDE during the transition from
massless to massive solutions are discussed in detail. In
Sec. IV, we outline the precise criteria that will lead to the
separation of the SDE for the gluon propagator into two
equations, one for the kinetic part and one for the mass.
The central role of the seagull-identity in carrying out this
separation is stressed, and some explicit characteristic
calculations are presented. Then, in Sec. V, we combine
the ingredients introduced in the previous sections and
derive the final form of the dynamical equation for the
gluon mass in the Landau gauge. In Sec. VI, we first study
the implications of the gluon mass equation in the limit of
vanishing physical momentum. Then, we solve an approxi-
mate form of this equation, using lattice data as input for
the ‘‘unknown’’ quantity �. The solution for the gluon
mass so obtained is then appropriately ‘‘subtracted out’’
from �, giving rise to an estimate for the quantity Jðq2Þ.
These ingredients are then combined to construct the
renormalization-group (RG) invariant gluon mass, appear-
ing in the usual definition of the effective QCD charge
within the PT-BFM framework. Our conclusions and dis-
cussion of the results appear in Sec. VII. Finally, some
technical points are presented in the Appendices.
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II. GENERAL FRAMEWORK

In this section, we set up the necessary notation and
review some of the most salient features of the PT-BFM
framework, putting particular emphasis on the form of the
SDE for the gluon propagator, and the various field-
theoretic ingredients appearing in it.

The (full) gluon propagator �ab
��ðqÞ ¼ �ab���ðqÞ in the

renormalizable R� gauges is defined as

i���ðqÞ ¼ �i

�
P��ðqÞ�ðq2Þ þ �

q�q�

q4

�
;

��1
��ðqÞ ¼ i½P��ðqÞ��1ðq2Þ þ ð1=�Þq�q��;

(2.1)

with

P��ðqÞ ¼ g�� �
q�q�

q2
; (2.2)

the dimensionless transverse projector, and � the gauge-
fixing parameter. The scalar cofactor �ðq2Þ appearing
above is related to the all-order gluon self-energy
���ðqÞ ¼ P��ðqÞ�ðq2Þ through

��1ðq2Þ ¼ q2 þ i�ðq2Þ: (2.3)

In addition, it is convenient to define the dimensionless
function Jðq2Þ as [37]

��1ðq2Þ ¼ q2Jðq2Þ: (2.4)

Evidently, Jðq2Þ coincides with the inverse of the gluon
dressing function, frequently considered in the literature.

The starting point of our dynamical analysis is the SDE
governing the gluon propagator. Within the PT-BFM
framework that we employ [10–17,21–24], one may safely
truncate the SDE series down to its ‘‘one-loop dressed
version’’ containing gluonic contributions only, given by
the diagrams ða1Þ and ða2Þ shown in Fig. 1. Specifically,
due to the special Feynman rules of the PT-BFM, and, in
particular, the QED-like Ward identities satisfied by the
fully dressed vertices, gauge invariance remains exact, in
the sense that the resulting (approximate) gluon self-
energy ���ðqÞ is still transverse, i.e.,

q����ðqÞ ¼ 0: (2.5)

The PT-BFM equation for the conventional propagator
reads, in this case,

��1ðq2ÞP��ðqÞ ¼
q2P��ðqÞ þ i½ða1Þ þ ða2Þ���

½1þGðq2Þ�2 ; (2.6)

where

ða1Þ�� ¼ 1

2
g2CA

Z
k

~�ð0Þ
���ðq; k;�k� qÞ���ðkÞ���ðkþ qÞ

� ~����ðq; k;�k� qÞ
ða2Þ�� ¼ g2CA

�
g��

Z
k
��

�ðkÞ þ ð1=�� 1Þ
Z
k
���ðkÞ

�
;

(2.7)

with CA being the Casimir eigenvalue of the adjoint rep-
resentation [CA ¼ N for SUðNÞ], and the d-dimensional
integral measure (in dimensional regularization) is defined
according to

Z
k
� �	

ð2
Þd
Z

ddk: (2.8)

The vertex ~� is the fully dressed version of the trilinear
vertex involving one background and two quantum gluons
(BQQ vertex for short, see Fig. 2); at tree-level (all mo-
menta entering)

�ð0Þ
���ðq; r; pÞ ¼ ~�ð0Þ

���ðq; r; pÞ þ ð1=�Þ�P
���ðq; r; pÞ; (2.9)

with

�ð0Þ
���ðq;r;pÞ¼g��ðr�pÞ�þg��ðp�qÞ�þg��ðq�rÞ�;

~�ð0Þ
���ðq;r;pÞ¼g��ðr�pÞ�þg��ðp�qþr=�Þ�

þg��ðq�r�p=�Þ�;
�P
���ðq;r;pÞ¼g��p��g��r�: (2.10)

Finally, the function Gðq2Þ appearing in (2.6) is of
central importance in this entire formalism. It is defined
as the scalar cofactor of the g�� component of the special

two-point function ���ðqÞ, defined as (see also Fig. 3)

���ðqÞ ¼ �ig2CA

Z
k
��

�ðkÞDðq� kÞH��ð�q; q� k; kÞ

¼ g��Gðq2Þ þ
q�q�

q2
Lðq2Þ; (2.11)

FIG. 1. The one-loop dressed gluon contribution to the PT-
BFM gluon self-energy. White (respectively, black) blobs repre-
sent connected (respectively, one-particle-irreducible) Green’s
functions; a gray circle on the external legs indicates background
gluons. Notice that within the PT-BFM framework these two
diagrams alone constitute a transverse subset of the full gluon
SDE.

FIG. 2. The BQQ three-gluon vertex.
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where we have introduced the ghost propagator Dabðq2Þ ¼
�abDðq2Þ, which is related to the ghost dressing function
Fðq2Þ through

Dðq2Þ ¼ Fðq2Þ
q2

: (2.12)

Notice that in the Landau gauge, an important exact (all-
order) relation exists, linking Gðq2Þ and Lðq2Þ to the ghost
dressing function Fðq2Þ, namely [38–41]

F�1ðq2Þ ¼ 1þGðq2Þ þ Lðq2Þ: (2.13)

In addition, the function Gðq2Þ participates in a set of
BRST-driven identities, known as Background-Quantum
identities (BQIs) [42,43], obtained within the Batalin-
Vilkovisky formalism [44,45]. These powerful identities
relate among each other the three types of gluon propaga-
tors that appear naturally in the BFM formalism, namely:
(i) the conventional gluon propagator (two quantum gluons
entering,QQ), denoted by�ðq2Þ; (ii) the background gluon
propagator (two background gluons entering, BB), denoted

by �̂ðq2Þ; and (iii) the mixed background-quantum gluon
propagator (one background and one quantumgluons enter-

ing, BQ), denoted by ~�ðq2Þ. The corresponding BQIs are
�ðq2Þ ¼ ½1þGðq2Þ�2�̂ðq2Þ;
�ðq2Þ ¼ ½1þGðq2Þ�~�ðq2Þ;
~�ðq2Þ ¼ ½1þGðq2Þ��̂ðq2Þ:

(2.14)

Notice that it is the first of these identities that allows the
rewriting of the conventional SDE into the PT-BFM form
(2.6) [11–13].

For the rest of the article, we will study the gluon SDE in
the Landau gauge, � ¼ 0. The limit of Eq. (2.6) as � ! 0 is
rather subtle, and has been presented in [12]. The final
answer is

�̂ ��ðqÞ ¼ ½ða1Þ þ ða2Þ���
�¼0 ¼ g2CA

X5
i¼1

A��
i ðqÞ; (2.15)

with

A
��
1 ðqÞ ¼ 1

2

Z
k
�
ð0Þ�
�� P��ðkÞP��ðkþ qÞ~ℾ�

���ðkÞ�ðkþ qÞ;

A
��
2 ðqÞ ¼

Z
k
P��ðkÞ ðkþ qÞ��ð0Þ�

��

ðkþ qÞ2 �ðkÞ;

A
��
3 ðqÞ ¼

Z
k
P��ðkÞ ðkþ qÞ�~ℾ�

��

ðkþ qÞ2 �ðkÞ;

A
��
4 ðqÞ ¼ � ðd� 1Þ2

d
g��

Z
k
�ðkÞ;

A��
5 ðqÞ ¼

Z
k

k�ðkþ qÞ�
k2ðkþ qÞ2 :

(2.16)

The vertex ℾ appearing above is the fully dressed PT-BFM
vertex studied in detail in [36], and which is related to the

full BQQ vertex ~� appearing in the BFM through

~ℾ���ðq;r;pÞ¼ ~����ðq;r;pÞþð1=�Þ�P
���ðq;r;pÞ: (2.17)

Evidently, ~ℾ���ðq; r; pÞ and ~����ðq; r; pÞ differ only at

tree level; specifically, one sees immediately that

~ℾ ð0Þ
���ðq; r; pÞ ¼ �ð0Þ

���ðq; r; pÞ: (2.18)

In the rest of this paper, wewill refer indifferently to both ~�
and ℾ as the BQQ vertex; in addition, in order to simplify
the notation, we will drop the ‘‘tilde’’ superscript.
The vertex ℾ satisfies a (ghost-free) WI when contracted

with the momentum q� of the background gluon, whereas
it satisfies a STI when contracted with the momentum of
the quantum gluons (r� or p�). In particular,

q�ℾ���ðq; r; pÞ ¼ p2Jðp2ÞP��ðpÞ � r2Jðr2ÞP��ðrÞ;
r�ℾ���ðq; r; pÞ ¼ Fðr2Þ½q2 ~Jðq2ÞP�

� ðqÞH��ðq; r; pÞ
� p2Jðp2ÞP�

� ðpÞ ~H��ðp; r; qÞ�;
p�ℾ���ðq; r; pÞ ¼ Fðp2Þ½r2Jðr2ÞP�

�ðrÞ ~H��ðr; p; qÞ
� q2 ~Jðq2ÞP�

�ðqÞH��ðq; p; rÞ�; (2.19)

and the function ~J is related to the conventional one
defined in (2.4) precisely through the second equation in
(2.14), namely

FIG. 3. Diagrammatic representation of the functions �, H, and, for later convenience, ~H. Gray blobs represent one-particle-
irreducible kernels with respect to vertical cuts.
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~Jðq2Þ ¼ ½1þGðq2Þ�Jðq2Þ: (2.20)

In addition, as shown in Fig. 3, the auxiliary ghost function
~H is the same as H after converting the external gluon leg
into a background leg. An explicit form in terms of J, ~J, H,
and ~H of the (longitudinal) form factors characterizing this
vertex has been obtained in [36] and reported inAppendixA.

One may finally use Eq. (2.4) to reexpress the relations
(2.19) in terms of the (inverse) scalar functions �, i.e.,

q�ℾ���ðq;r;pÞ¼��1ðp2ÞP��ðpÞ���1ðr2ÞP��ðrÞ; (2.21)

with analogous expressions holding for the remaining two
STIs of (2.19). At this level, this appears as a simple rewrit-
ing, but this form ofwritingwill facilitate the clarification of
certain conceptual issues that become relevant when dy-
namical mass generation is turned on (see next section).

III. VERTICES IN THE PRESENCE OF A
DYNAMICAL MASS

In order to generate a dynamical mass without interfer-
ing with gauge invariance and the BRST symmetry, one
must resort to the Schwinger mechanism [27,28]. The
general idea is to assume that a longitudinally coupled
bound-state pole has been formed dynamically, which
will modify the structure of the full vertices of the theory
[29–35]. This modification, in turn, will be responsible for
obtaining massive type of solutions from the SDE of the
gluon where these new vertices will be inserted [12]. It is
important to be very precise regarding the nature and role
of the various ingredients that enter in the ensuing analysis.
We will therefore devote this section to the development
and elaboration of the various key concepts needed.

From the kinematic point of view, we will describe the
transition from a massless to a massive gluon propagator
by carrying out the replacement (in Minkowski space)

��1ðq2Þ¼q2Jðq2Þ!��1
m ðq2Þ¼q2Jmðq2Þ�m2ðq2Þ: (3.1)

The symbol Jm indicates that effectively one has now a
mass inside the corresponding expressions: for example,

whereas perturbatively Jðq2Þ � lnq2, after dynamical
gluon mass generation has taken place, one has Jmðq2Þ �
lnðq2 þm2Þ. As a consequence, since Jm will be the main
component in the definition of the QCD effective charge
[15], the presence of the mass term in the argument of its
logarithm will tame the perturbative Landau pole
[16,39,41]. Of course, as q2 ! 0, q2Jmðq2Þ ! 0; therefore,
if we are to ensure that this procedure will give rise to a
nonvanishing IR value for the gluon propagator, i.e.,
��1

m ð0Þ � 0, we must have that m2ð0Þ � 0.
From the dynamical point of view, it is clear that the full

three-gluon vertex must be also appropriately modified
[29–31]. Specifically, we will consider a new vertex, to
be denoted by ℾ 0, and carry out the replacement

ℾ ! ℾ 0 ¼ ℾm þ V: (3.2)

The new vertex ℾm is given by the same (fully-dressed)
graphs that make up the SDE of the BQQ vertex ℾ (Fig. 4);
however, now all internal (virtual) fully-dressed gluon
propagators are massive i.e., in the nonpole part of the
vertex SDE we have � ! �m. In addition (or as a result
thereof), ℾm satisfies exactly the set of WI and STIs given
in (2.19), but with the replacement J ! Jm throughout. So,
the WI becomes

q�ℾ
���
m ðq;r;pÞ¼p2Jmðp2ÞP��ðpÞ�r2Jmðr2ÞP��ðrÞ; (3.3)

and exactly analogous expressions for the remaining STIs
satisfied when ℾm is contracted by either r or p. Note that
all other Green’s functions, such as H and ~H, must be
replaced by the corresponding Hm and ~Hm, in the same
sense as before (but we will suppress their ‘‘m’’ subindex
throughout); thus, the diagrams defining these two ghost
functions, shown in Fig. 3, will now contain massive
internal gluon propagators.
On the other hand, the vertex V represents the pole

part of ℾ 0; it is totally longitudinally coupled, i.e., it van-
ishes identically when contracted by the three transverse
projectors

P�0�ðqÞP�0�ðrÞP�0�ðpÞV���ðq; r; pÞ ¼ 0; (3.4)

FIG. 4 (color online). The ℾ 0 three-gluon vertex. Thick (red online) internal gluon lines indicate massive propagators �m, as
explained in the text.
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and must satisfy the WI and STI of (2.19), with the replace-
ment k2JðkÞ ! �m2ðkÞ, e.g.,
q�V���ðq;r;pÞ¼�m2ðp2ÞP��ðpÞþm2ðr2ÞP��ðrÞ: (3.5)

Exactly analogous expressions will hold for the STIs sat-
isfied when contracting with the momenta r or p.

An explicit example of such a vertex (which, however,
we will not use here), has been given in [46], namely

V���ðq;r;pÞ

¼q�r�ðq�rÞ�
2q2r2

P��ðpÞm2ðp2Þ�p�

p2
½m2ðr2Þ�m2ðq2Þ�

�P�
�ðqÞP��ðrÞþr�p�ðr�pÞ�

2r2p2
P��ðqÞm2ðq2Þ

�q�

q2
½m2ðp2Þ�m2ðr2Þ�P�

� ðrÞP��ðpÞþp�q�ðp�qÞ�
2q2p2

�P��ðrÞm2ðr2Þ�r�

r2
½m2ðq2Þ�m2ðp2Þ�P�

�ðpÞP��ðqÞ:
(3.6)

The totally longitudinal nature of this vertex is manifest.1

At this point, it is clear that the full vertex ℾ 0 will satisfy
the same WI and STIs (2.19) satisfied by the ℾ vertex
before the introduction of any masses, but now with the
replacement � ! �m. Therefore, using Eqs. (3.2), (3.3),
and (3.5), one gets for ℾ 0 the WI

q�ℾ 0���ðq;r;pÞ¼q�½ℾ���
m ðq;r;pÞþV���ðq;r;pÞ�

¼½p2Jmðp2Þ�m2ðp2Þ�P��ðpÞ
�½r2Jmðr2Þ�m2ðr2Þ�P��ðrÞ

¼��1
m ðp2ÞP��ðpÞ���1

m ðr2ÞP��ðrÞ: (3.7)

Similarly,

r�ℾ 0���ðq; r; pÞ ¼ Fðr2Þ½��1
m ðq2ÞP�

� ðqÞH��ðq; r; pÞ
���1

m ðp2ÞP�
� ðpÞ ~H��ðp; r; qÞ�; (3.8)

p�ℾ 0���ðq; r; pÞ ¼ Fðp2Þ½��1
m ðr2ÞP�

�ðrÞ ~H��ðr; p; qÞ
���1

m ðq2ÞP�
�ðqÞH��ðq; p; rÞ�: (3.9)

It is very important to emphasize that, even though the
new (massive) WI is obtained from the old (massless) one
through the replacement � ! �m, the new vertex ℾ 0 is not
obtained from the old one, ℾ , by means of the same
replacement only. Indeed, turning to the explicit expression
for ℾ given in Appendix A, it would certainly be wrong
to use there the replacement � ! �m (or Jðq2Þ !
�mðq2Þ=q2). Instead, the correct procedure is that out-
lined above: the vertex ℾm is indeed obtained from the

expressions in the Appendix, by replacing J ! Jm (but
with no explicit mass terms); all explicit mass terms are
next added through the totally longitudinally coupled non-
perturbative vertex V.
Actually, it is interesting to ponder what would happen if

one were to introduce the gluon mass through the (wrong)
procedure of identifying the vertex ℾ 0 by the simple re-
placement � ! �m carried out inside ℾ . In such a case,
one would conclude (after some steps) that the self-
consistency of the theory would force m2ðq2Þ to vanish
identically. The precise way how this ‘‘self-correction’’
takes place is intimately related to the so-called seagull
identity [15], and will be discussed at the end of Sec. V.

IV. GENERAL FEATURES OF THE GLUON
MASS EQUATION

Let us now consider the gluon SDE of Eq. (2.6) under the
light of the analysis presented in the previous section. After
dynamical gluon mass generation has taken place, one
needs to consider the modified SDE, which is obtained
from (2.6) after (i) replacing the ��1 appearing on the left-
hand side (lhs) with the ��1

m of Eq. (3.1), and (ii) replacing
� ! �m and ℾ ! ℾ 0 inside the integrals of the rhs (see
also Fig. 5).
From this new SDE, one can obtain two separate equa-

tions, the first one governing the behavior of Jmðq2Þ [to be
later involved in the definition of the effective charge, see
Eq. (6.18)] and the second one describing the dynamical
mass m2ðq2Þ. The general idea is the following: the terms
appearing on the rhs of the SDE may be separated system-
atically into two contributions, one that vanishes as q ! 0
and one that does not; the latter contribution must be set
equal to the corresponding nonvanishing term on the lhs,
namely �m2ðqÞ, while the former will be set equal to the
vanishing term of the lhs, namely q2Jmðq2Þ, the so-called
kinetic term.
Specifically (taking the trace of both sides of (2.6) to

eliminate the Lorentz indices), the rhs may be schemati-
cally cast in the form

q2Jmðq2Þ �m2ðq2Þ ¼ q2½1þK1ðq2; m2;�mÞ�
þK2ðq2; m2;�mÞ; (4.1)

such that q2K1ðq2; m2;�mÞ ! 0, as q2 ! 0, whereas
K2ðq2; m2;�mÞ � 0 in the same limit. Thus, for example,
a term of the form q2

R
k �mðkÞ�mðkþ qÞ contributes to

K1, whereas a term of the formm2ðq2ÞRk�mðkÞ�mðkþqÞ
should be assigned to K2. Then, the two equations deter-
mining Jmðq2Þ and m2ðq2Þ will read (still Minkowski
space)

Jmðq2Þ ¼ 1þK1ðq2; m2;�mÞ;
m2ðq2Þ ¼ �K2ðq2; m2;�mÞ: (4.2)

Of course, there are some subtleties that must be ad-
dressed at this point. To beginwith, onemay easily envisage

1Note that this vertex is totally Bose symmetric, satisfying
(3.5) with respect to all its legs; instead, the vertex considered
here satisfies an STI with respect to the quantum legs (r and p).
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the possibility of a term that approaches zero as ðq2Þa, with
0< a< 1. In this case, given that wemust factor out a q2 in
order to obtain the equation for Jmðq2Þ, such a term would
furnish an IR divergent contribution to Jmðq2Þ. This would
be an undesirable feature, given that the Jmðq2Þ is intimately
related to the effective charge of QCD, which is believed to
be finite. The way to treat such a possibility is to state that,
should such a term appear, it ought to be directly allotted (in
its entirety, without factoring out a q2) to the equation for
m2ðq2Þ. The presence of such a term in the mass equation
will not affect the value of the mass at q2 ¼ 0, but will in
general affect the shape of the resulting curve. Keeping this
mathematical possibility in mind, let us point out that the
terms emerging in the analysis of Sec. V have a very
characteristic structure [see Eq. (4.15) and the related dis-
cussion], and, at least for them, the scenario contemplated
above [ðq2Þa, with 0< a< 1] is not realized.

Furthermore, one may consider a term which may con-
tribute to the mass equation because it does not vanish at
q2 ¼ 0, while, at the same time, for large q2 it contributes to

J. For instance, a term of the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þm4

p
lnðq2 þm2Þ

combines these two characteristics, giving m2 lnm2 and
q2 lnq2 in the two aforementioned limits. One way to deal
with such terms would be to consider their separate con-
tributions in the two distinct kinematic regimes (deep IR
and deep UV) and assign them to the mass equation or the J
equation, respectively; this, of course, would introduce a
certain ambiguity regarding the intermediate momenta.
Note, however, an important point: the leading contribution
to J, namely, that associated with the RG logarithms, stems
entirely from the term shown in Eq. (4.23) which clearly
belongs to the kernel K1 of Eq. (4.2).

There is an additional point related to the mass equation,
which is instrumental for the self-consistency of the entire
approach. Specifically, a crucial condition for the mecha-
nism of dynamical gluon mass generation, developed in a
series of articles [10–13,16], is the cancellation of all
seagull-type of divergences, i.e., divergences produced by
integrals of the type

R
k �ðk2Þ, or variations thereof [15].

The precise cancellation of such terms proceeds by means
of the identity [15]

Z
k
k2�0

mðkÞ þ d
2

Z
k
�mðkÞ ¼ 0; (4.3)

where the ‘‘prime’’ denotes differentiation with respect to
k2, i.e., �0

mðkÞ � @�mðk2Þ=@k2. Thus, all the ingredients
entering into the SDE (most importantly, the vertex) must

be such that, after taking the limit of the SDE as q2 ! 0, all
seagull-type contributions must conspire to appear exactly
in the combination given on the lhs of Eq. (4.3).
The relevance and function of the identity (4.3) becomes

evident when we consider the term IðqÞ, given by

�iIðqÞ¼
Z
k
k2�mðkÞ�mðkþqÞðkþqÞ2JmðkþqÞ�k2JmðkÞ

ðkþqÞ2�k2

þc
Z
k
�mðkÞ; (4.4)

with c (for the moment) an arbitrary real number. This term
appears naturally in the PT-BFM framework, and in fact
we will find it in the case of the Landau gauge studied in
the next section.
Using Eq. (3.1), one may then rewrite IðqÞ as

IðqÞ ¼ I1ðqÞ þ I2ðqÞ; (4.5)

with

�iI1ðqÞ ¼ �
Z
k
k2

�mðkþ qÞ � �mðkÞ
ðkþ qÞ2 � k2

þ c
Z
k
�mðkÞ

¼ �
�Z

k
k2

�mðkþ qÞ ��mðkÞ
ðkþ qÞ2 � k2

þ d

2

Z
k
�mðkÞ

�

þ
�
cþ d

2

�Z
k
�mðkÞ; (4.6)

and

�iI2ðqÞ¼
Z
k
k2�mðkÞ�mðkþqÞm

2ðkþqÞ�m2ðkÞ
ðkþqÞ2�k2

: (4.7)

In order to establish how the above terms must be assigned
among the K1 and K2 introduced above, let us now take
their limit as q2 ! 0. Carrying out the appropriate Taylor
expansions [see Eq. (4.14)], one finds

�iI1ð0Þ¼�
�Z

k
k2�0

mðkÞþd
2

Z
k
�mðkÞ

�
þ
�
cþd

2

�Z
k
�mðkÞ

¼
�
cþd

2

�Z
k
�mðkÞ; (4.8)

where in the second step we have employed Eq. (4.3), and

� iI2ð0Þ ¼
Z
k
k2�2

mðkÞ½m2ðkÞ�0: (4.9)

Thus, according to the rules introduced above, the contri-
bution of IðqÞ to the kinetic term is

FIG. 5 (color online). Diagrammatic representation of the gluon one-loop dressed diagrams before and after dynamical gluon mass
generation has taken place: the propagators and vertices on the rhs have now become massive.
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iIktðqÞ ¼
Z
k
k2

�mðkþ qÞ ��mðkÞ
ðkþ qÞ2 � k2

þ d

2

Z
k
�mðkÞ; (4.10)

given that Iktð0Þ ¼ 0, while the contribution of IðqÞ to the
mass equation is

�iIm2ðqÞ ¼
Z
k
k2�mðkÞ�mðkþ qÞm

2ðkþ qÞ �m2ðkÞ
ðkþ qÞ2 � k2

þ
�
cþ d

2

�Z
k
�mðkÞ: (4.11)

It is clear now that the second term on the rhs of (4.11) is
quadratically divergent (and of the seagull type). The only
way to avoid this divergence is if the coefficient multi-
plying

R
k�mðkÞ vanishes, i.e., if c ¼ �d=2. It turns out

that, by virtue of the PT-BFM Feynman rules, and the fact
that gauge invariance is preserved at every level of this
approximation, the coefficient c comes out precisely equal
to�d=2; we emphasize that this result can be realized only
within the PT-BFM framework. Thus, after the seagull
cancellation, one is left with the first term only, which is
perfectly convergent, provided that the mass decreases in
the deep ultraviolet. As we will see in the next section, in
the Landau gauge this term accounts for the bulk of the
gluon mass equation.

Even though the term IktðqÞ of Eq. (4.10) does not appear
in the rest of our analysis, it is important to gain some
further intuition on its structure and its behavior for small
values of q2, especially in the light of the discussion
following Eq. (4.2).

To this end, let us introduce spherical coordinates
through the definitions q2 ¼ x, k2 ¼ y, ðkþ qÞ2 ¼ z;
we then have that z ¼ yþ xþ 2

ffiffiffiffiffi
xy

p
cos�, and we

define w�ðkþqÞ2�k2 ¼ z�y¼ xþ2
ffiffiffiffiffi
xy

p
cos�. The

d-dimensional integral measure will read in this case

Z
k
¼ 1

ð2
Þd

d�1=2

�ðd�1
2 Þ

Z 


0
d�sind�2�

Z 1

0
dyyðd=2Þ�1; (4.12)

and we finally recall the elementary integral

Z 


0
d�sinm�cosn� ¼

8<
:

�ðmþ1
2 Þ�ðnþ1

2 Þ
�ðmþnþ2

2 Þ ; n even

0; n odd.
(4.13)

It turns out that the IktðqÞ of Eq. (4.10) may be expanded
systematically as a power series in q2. To see this in detail,
we consider the Taylor expansion of an arbitrary finite
function fðzÞ around w ¼ 0, given by

fðzÞ � fðyÞ
w

¼ f0ðyÞ þ w

2!
f00ðyÞ þ w2

3!
f000ðyÞ þ . . . (4.14)

where the primes denote differentiations with respect to y
(evidently we are assuming finite derivatives in the origin).
Then, under the integral sign on the rhs of Eq. (4.10) one
must collect pieces of a given order in q2 from the various
powers of w, using (4.13).

It is clear that when the term f0ðyÞ on the rhs of (4.14) is
inserted into the integral, it generates the seagull identity
(4.3); all the remaining terms will be proportional to posi-
tive powers of w, and thus, Iktð0Þ ¼ 0. For example, the q2

term in this expansion is obtained by appropriately com-
bining contributions proportional to f00ðyÞ and f000ðyÞ.
Using again (4.13), after a sequence of partial integrations,
we find

iIktðqÞ ¼ q2

6

�
d� 4

d

�Z
k
k2�00

mðkÞ þOðq4Þ: (4.15)

In order to check the validity of Eq. (4.15), let us
compute IktðqÞ for the simple case of a massive propagator
with a ‘‘hard’’ (momentum-independent) mass

�mðqÞ ¼ 1

q2 �m2
: (4.16)

The integrand in the first integral on the rhs of Eq. (4.11)
simplifies to

k2
�mðkþ qÞ ��mðkÞ

ðkþ qÞ2 � k2
¼ � k2

ðk2 �m2Þ½ðkþ qÞ2 �m2� :
(4.17)

Then, using the dimensional regularization identity

2m2
Z
k

1

ðk2 �m2Þ2 ¼ ðd� 2Þ
Z
k

1

k2 �m2
; (4.18)

it is relatively straightforward to demonstrate that

IktðqÞ ¼ m2

16
2

Z 1

0
dx ln

�
1þ q2xðx� 1Þ

m2

�
: (4.19)

Evidently, Iktð0Þ ¼ 0, as expected, while the expansion of
the logarithm furnishes immediately the result

IktðqÞ ¼ � 1

16
2

q2

6
þOðq4Þ: (4.20)

On the other hand, substitution into the general formula
(4.15) of the propagator in (4.16) yields

IktðqÞ ¼ �i
q2

6

�
d� 4

d

�
2
Z
k

k2

ðk2 �m2Þ3 þOðq4Þ: (4.21)

In dimensional regularization, around d ¼ 4, we have that
d ¼ 4� 	, and therefore, only the divergent part of the
integral contributes, i.e.,

IktðqÞ ¼ �i
q2

6

��	

d

�
2

�
1

16
2

�
id

4

��
2

	

��
þOðq4Þ

¼ � 1

16
2

q2

6
þOðq4Þ; (4.22)

which indeed coincides with (4.20).
Notice finally that the main contribution to the kinetic

term does not originate from IktðqÞ, but rather from a term
of the form
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q2
Z
k

�mðkþ qÞ ��mðkÞ
ðkþ qÞ2 � k2

; (4.23)

which, for the simple massive propagators of (4.16) may be
easily calculated, giving rise to the standard logarithmic
correction associated with the RG, with the additional
feature of being IR safe due to the presence of the mass
in the argument of the logarithm.

V. THE GLUON MASS EQUATION IN THE
LANDAU GAUGE

We now proceed to the actual derivation of the explicit
form of the mass equation in the Landau gauge.
Specifically, in this gauge the rhs of Eq. (2.6) will be given
by the terms Ai listed in Eq. (2.16), where now we must
carry out the replacements � ! �m and ℾ ! ℾ 0.

Following the rules explained in the previous section,
and defining

AiðqÞ ¼ Tr½A��
i ðqÞ�; (5.1)

the mass equation is given by

m2ðq2Þ ¼ �i
g2CA

d� 1

½P5
i¼1 AiðqÞ�m2

½1þGðq2Þ�2 ; (5.2)

and therefore, one should determine the closed form of the
quantities ½AiðqÞ�m2 .

There is a simple observation, particular to this gauge,
which simplifies the entire procedure considerably.
Specifically, in the Landau gauge, the derivation of the
gluon mass equation does not require the knowledge of the
closed form of the vertex V, which captures the effects of
the massless bound-state poles.

To see why this is so, let us first note that the vertex V
appears only in the terms A��

1 ðqÞ and A��
3 ðqÞ, the only

place where the replacement ℾ ! ℾ 0 may be carried out.
Given that the vertex ℾ 0

��� appearing in the term A
��
3 ðqÞ is

contracted by ðkþ qÞ�, the result of this operation is the
STI satisfied by ℾ 0, namely

p�ℾ 0
��� ¼ Fðp2Þ½��1

m ðr2ÞP�
�ðrÞ ~H��ðr; p; qÞ

� ~��1
m ðq2ÞP�

�ðqÞH��ðq; p; rÞ�; (5.3)

whose validity assumes the existence of V but does not
depend on the details of its closed form.

As for the term A
��
1 ðqÞ, one starts by noticing that (i) the

V is already contracted by two projection operators
P��ðkÞP��ðkþ qÞ and (ii) since in the PT-BFM formula-

tion the truncated �̂��ðqÞ (defined in terms of A1 � A5) is
transverse, one may contract both sides of Eq. (2.15) by the
projection operator P�

�0 ðqÞ for free, i.e., write

�̂��ðqÞ¼ �̂��0 ðqÞP�
�0 ðqÞ¼g2CA

X5
i¼1

A
��0
i ðqÞP�

�0 ðqÞ: (5.4)

The main effect of this operation, as far as the term A
��
1 ðqÞ

is concerned, is to trigger Eq. (3.4), and so, all explicit
reference to V vanishes.
In order to forestall any possible confusion, we hasten to

emphasize that one should not conclude from the above
argument that the existence of the vertex V is irrelevant for
the entire construction. On the contrary, the vertex V is
crucial for the implementation of this particular approach.
In particular, if the V did not exist (i.e., if it were vanishing
identically) the WI of (3.5) would be invalidated, and, as a

result, �̂��ðqÞ would fail to be transverse, in which case,
evidently, one could no longer contract both sides of
Eq. (2.15) by the projection operator P�

�0 ðqÞ for free.
We can now proceed with the actual calculation. It is

clear that the term A��
5 ðqÞ cannot possibly contribute to the

mass equation, since A
��
5 ð0Þ ¼ 0. Furthermore, with the

exception of A
��
3 ðqÞ, which will yield a direct contribution,

the remaining three terms A
��
1 ðqÞ, A��

2 ðqÞ, and A
��
4 ðqÞ

contribute to the mass equations an amount that arises as
the deviation from the seagull cancellation, i.e., they fur-
nish a term analogous to the I2 of Eq. (4.7).
To see this, let us first retain the contributions of these

three terms that survive individually the q2 ! 0 limit. The
term A1 reads

A1ðqÞ ¼ 1
2

Z
k
�ð0Þ
���P

�
�ðkÞP�

�ðkþ qÞℾ�0��
m

� P�
�0 ðqÞ�mðkÞ�mðkþ qÞ: (5.5)

Now, using for the vertex ℾm the tensor decomposition
(A2) with ð�;�;�Þ!ð�0;�;�Þ and r ! k, p ! �k� q,
it is straightforward to establish that the tensorial structures
‘2, ‘5, and ‘8 will be annihilated by the transverse projec-
tors appearing in (5.5), while, ignoring terms that will
again vanish due to the transverse projectors, ‘1, ‘3, ‘7,
and ‘9 are at least of order q. Finally, since ‘10 ¼ 0, we find
the result

ℾ�0��
m ðq;k;�k�qÞ
¼2k�

0
g��½X4ðq;k;�k�qÞþk2X6ðq;k;�k�qÞ�þOðqÞ

¼2k�
0
g��

ðkþqÞ2JmðkþqÞ�k2JmðkÞ
ðkþqÞ2�k2

þOðqÞ: (5.6)

In addition, since

�ð0Þ
���ðq;k;�k�qÞk�0

P�
�0 ðqÞ¼2g��

�
k2�ðk �qÞ2

q2

�
þOðqÞ;

(5.7)

we finally obtain

A1ðqÞ ¼ 2ðd� 1Þ
Z
k

�
k2 � ðk � qÞ2

q2

�

� ðkþ qÞ2Jmðkþ qÞ � k2JmðkÞ
ðkþ qÞ2 � k2

��mðkÞ�mðkþ qÞ þOðqÞ: (5.8)

DYNAMICAL EQUATION OF THE EFFECTIVE GLUON MASS PHYSICAL REVIEW D 84, 085026 (2011)

085026-9



Similarly, from A
��
2 ðqÞ we obtain

A2ðqÞ ¼ �
Z
k

�
d� 2þ ðk � qÞ2

k2q2

�
k2�mðkÞ
ðkþ qÞ2 ; (5.9)

while A
��
4 ðqÞ contributes simply

A4ðqÞ ¼ � ðd� 1Þ3
d

Z
k
�mðkÞ: (5.10)

The terms in Eqs. (5.8), (5.9), and (5.10) are individually
nonvanishing as q2 ! 0, but their final contribution to the
mass equation is controlled by the seagull identity, which
forces a large part of their sum to vanish, thus reassigning
them to the kinetic term. Specifically, if we use Eq. (3.1) to
substitute the terms containing Jm in the numerator of the
integral on the rhs of Eq. (5.8), [i.e., k2JðkÞ ¼ ��1

m ðkÞ þ
m2ðkÞ] the sum of these three terms gives

½A1 þ A2 þ A4�ðqÞ ¼ ½A1 þ A2 þ A4�ktðqÞ
þ ½A1 þ A2 þ A4�m2ðqÞ; (5.11)

where

½A1 þ A2 þ A4�ktðqÞ

¼ �2ðd� 1Þ
Z
k

�
k2 � ðk � qÞ2

q2

�
�mðkþ qÞ ��mðkÞ

ðkþ qÞ2 � k2

�
Z
k

�
d� 2þ ðk � qÞ2

k2q2

�
k2�mðkÞ
ðkþ qÞ2 �

ðd� 1Þ3
d

Z
k
�mðkÞ;

(5.12)

and leaves as residual contribution

½A1þA2þA4Þ�m2ðqÞ

¼2ðd�1Þ
Z
k

�
k2�ðk �qÞ2

q2

�
m2ðkþqÞ�m2ðkÞ

ðkþqÞ2�k2

��mðkÞ�mðkþqÞ: (5.13)

It is now easy to verify that, by virtue of the seagull
identity, the rhs of (5.12) vanishes as q2 ! 0. Indeed,

½A1 þ A2 þ A4�ktð0Þ
¼ �2ðd� 1Þ

Z
k
sin2�k2�0

mðkÞ

�
Z
k

�
ðd� 1Þ � sin2�þ ðd� 1Þ3

d

�
�mðkÞ; (5.14)

and using that [see also Eqs. (4.12) and (4.13) above]

Z
k
sin2�fðkÞ ¼ d� 1

d

Z
k
fðkÞ; (5.15)

it is elementary to demonstrate that the rhs is exactly
proportional to the expression on the rhs of Eq. (4.3), and
therefore vanishes.

We next consider the term A3. After taking the trace, we
find

A3ðqÞ ¼
Z
k
P��ðkÞ ðkþ qÞ�ℾ 0

�0��

ðkþ qÞ2 P�0
� ðqÞ�mðkÞ: (5.16)

When inserted into the expression for A3ðqÞ, the first term
on the rhs of (3.9) will give the result

Z
k

Fðkþ qÞ
ðkþ qÞ2 ~aðq;�k� q; kÞ þOðqÞ; (5.17)

which contributes to the kinetic term, since in the q ! 0
limit vanishes due to the second identity in (A5); specifi-
cally, in this limit [36]

~að0;�k; kÞ ¼ F�1ðkÞ: (5.18)

The second term on the rhs of (3.9) yields instead a
surprisingly simple contribution to the mass equation.
Specifically, using the definition (2.11) we obtain

½A3�m2ðqÞ ¼ ~m2ðq2Þ
Z
k

Fðkþ qÞ
ðkþ qÞ2 �

�
�ðkÞ

�H��ðq;�k� q; kÞP��ðqÞ

¼ ~m2ðq2Þ i���ðqÞ
g2CA

P��ðqÞ

¼ i
d� 1

g2CA

~m2ðq2ÞGðq2Þ: (5.19)

On the other hand, the second of the background quantum
identities (2.14) implies (see also Appendix B for an alter-
native derivation of this result)

~m 2ðq2Þ ¼ ½1þGðq2Þ�m2ðq2Þ; (5.20)

so that one finally finds the contribution

½A3�m2ðqÞ ¼ i
d� 1

g2CA

Gðq2Þ½1þGðq2Þ�m2ðq2Þ: (5.21)

The next step is to substitute the above results on the rhs
of the mass equation of Eq. (5.2). In doing so, we move to
the Euclidean space, by setting

R
k ¼ i

R
kE

and q2E ¼ �q2,

and using

�Eðq2EÞ ¼ ��ð�q2EÞ; m2
Eðq2EÞ ¼ m2ð�q2EÞ;

GEðq2EÞ ¼ Gð�q2EÞ:
(5.22)

Then, from Eq. (5.13) and (5.21), we arrive at the final form
of the mass equation, namely

m2ðq2Þ¼ 2g2CA

1þGðq2Þ
Z
k

�
k2�ðk �qÞ2

q2

�
m2ðkþqÞ�m2ðkÞ

ðkþqÞ2�k2

��mðkÞ�mðkþqÞ; (5.23)

where we have suppressed the suffix ‘‘E.’’
Finally, we are now in position to address the question

posed at the end of Sec. III, namely, what would happen
if we were to introduce the gluon mass by the simple
replacement q2Jðq2Þ ! ��1

m ðq2Þ carried out inside ℾ , i.e.,
without resorting explicitly to the vertex V (with the crucial
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properties assigned to it). The basic observation is that the
main bulk of the mass equation, namely, the rhs of
Eq. (5.13), emerges as a residual contribution that survives
the seagull cancellation. However, within this hypothetical
scenario, the term A1ðqÞ in Eq. (5.8) would be instead
given by

A1ðqÞ¼2ðd�1Þ
Z
k

�
k2�ðk �qÞ2

q2

�
��1

m ðkþqÞ���1
m ðkÞ

ðkþqÞ2�k2

��mðkÞ�mðkþqÞ

¼�2ðd�1Þ
Z
k

�
k2�ðk �qÞ2

q2

�
�mðkþqÞ��mðkÞ

ðkþqÞ2�k2
;

(5.24)

thus, participating in the cancellation of Eq. (5.14),
as before, but leaving no residual contribution, i.e.,
½A1 þ A2 þ A4�m2ðqÞ ¼ 0. Then, the only contribution to
the rhs of the mass equation would be that of ½A3�m2ðqÞ in
Eq. (5.21); this contribution would be still there, because
within this alternative scenario the full vertex ℾ 0 is still
assumed to satisfy the full STIs of Eq. (3.9) (but with no
reference to V). Therefore, the resulting mass equation [the
equivalent of Eq. (5.23)] would read

m2ðq2Þ
½1þGðq2Þ� ¼ 0; (5.25)

which would simply imply m2ðq2Þ ¼ 0, i.e., no dynamical
mass generation.

VI. NUMERICAL ANALYSIS

In this section, we will first derive an approximate
version of the mass Eq. (5.23), which will facilitate the
numerical treatment while retaining the main features of
the full equation. Then, using as input for the functions
�ðq2Þ and Fðq2Þ [appearing in (5.23)] the available lattice
data, we solve the equation numerically for the gauge
groups SUð2Þ and SUð3Þ, thus obtaining the (approximate)
form of m2ðq2Þ. Then, using Eq. (3.1), together with the
�ðq2Þ of the lattice and the m2ðq2Þ obtained from the mass
equation, we will extract the (approximate) form of Jmðq2Þ.
As a basic application, these ingredients will be subse-
quently combined to form the gluon mass entering in the
RG-invariant combination associated with the definition of
a non-Abelian effective charge.

A. Approximate version of the mass equation

We now proceed to the analysis of the mass Eq. (5.23).
The numerical treatment of this equation is rather subtle,
mainly due to the following reasons: (i) The homogeneous
nature of the equation complicates the discovery of a non-
trivial solution, at least in the context of some standard
iterative techniques, because one is often driven to the
solution m ¼ 0; (ii) the term ½m2ðzÞ �m2ðyÞ�=ðz� yÞ dis-
plays an apparent singularity of the type 0=0 every time the

condition 2 cos� ¼ � ffiffiffiffiffiffiffiffi
y=x

p
is fulfilled.2 This, in turn, re-

quires the Taylor expansion of the numerator in order to
convert it to a derivative; (iii) the unknown function m2

appearing on the rhs depends on both the angular and the
radial coordinates (� and y, respectively). To circumvent
these problems, we will employ certain standard tech-
niques based on the so-called ‘‘angular approximation,’’
in order to eliminate the angular integration. This type of
approximation is known to be reliable in some cases, but
may lead to considerable deviations in others [49].
However, before embarking into the derivation of the

approximate version of (5.23), we can extract useful infor-
mation about the global behavior of m2 from its q2 ! 0
limit.
Specifically, let us employ the notation introduced

in (4.12), and consider the limit of Eq. (5.23) as q2 ! 0.
Since it is known that Lð0Þ ¼ 0 in four dimensions [39],
Eq. (2.13) implies that 1þGð0Þ ¼ F�1ð0Þ, so that we get

m2ð0Þ ¼ 3
2g

2CAFð0Þ
Z
k
k2½m2ðkÞ�0�2ðkÞ

¼ �3g2CAFð0Þ
Z
k
m2ðkÞ�ðkÞ½k2�ðkÞ�0: (6.1)

Obviously, in the kernel of the above equation there is no
dependence on �, so that the angular integral can be done
exactly, and one is left with the final equation

m2ð0Þ ¼ � 3CA

8

�sFð0Þ

Z 1

0
dym2ðyÞ½y2�2ðyÞ�0; (6.2)

where �s ¼ g2=4
 and, as usual, y ¼ k2 (the prime in-
dicates now derivatives with respect to y).
Eqs. (6.1) and (6.2) furnish a rather interesting constraint

on the structure of the full gluon propagator. Indeed, it is
clear that due to the positive sign in front of the first line
of Eq. (6.1), solutions of (5.23) leading to a positive m2ð0Þ
cannot be monotonically decreasing; or, seeing it from the
point of view of Eq. (6.2), the kernel ½y2�2ðyÞ�0 must
reverse sign and display a ‘‘sufficiently deep’’ negative
region at intermediate momenta, in order to obtain
m2ð0Þ> 0. This is a highly nontrivial requirement because,
to the best of our knowledge, there is no a priori funda-
mental reason why the full gluon propagator should show
this particular behavior.
We now proceed to the derivation of an approximate

version of (5.23) that will reproduce in the q2 ! 0 limit
Eq. (6.1), and therefore implement the important constraint
that this equation entails.
Let us then denote by RðqÞ the integral appearing on the

rhs of (5.23); using the simple identity

2Such structures are familiar to the SDE practitioners from the
treatment of the quark gap equation and the Ansätze used for the
full quark-gluon vertex [47,48].
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ðk �qÞ2¼ 1
4f½ðkþqÞ2�k2�2�2q2½ðkþqÞ2�k2�þðq2Þ2g;

(6.3)

we see that the second term above, when inserted back into
RðqÞ, vanishes upon integration, and therefore one is left
with

RðqÞ ¼ R1ðqÞ þ R2ðqÞ; (6.4)

where

R1ðqÞ ¼
Z
k
ðk2 � q2

4
Þm

2ðkþ qÞ �m2ðkÞ
ðkþ qÞ2 � k2

��mðkÞ�mðkþ qÞ; R2ðqÞ
¼ � 1

2q2

Z
k
m2ðkÞ½ðkþ qÞ2 � k2�

��mðkÞ�mðkþ qÞ: (6.5)

To cast R1ðqÞ and R2ðqÞ into a form suitable for solving
the corresponding dynamical equation, we first introduce
the by-now-familiar spherical coordinates and then split
the radial integration into two intervals

Z 1

0
dy ¼

Z x

0
dyþ

Z 1

x
dy; (6.6)

so that in the second integral since y > x always, we can
expand the integrand according to (4.14). Proceeding in
this way, and observing that partial integration gives

Z 1

x
dyy2½m2ðyÞ�0�2ðyÞ ¼ �m2ðxÞx2�2ðxÞ

�
Z 1

x
dym2ðyÞ½y2�2ðyÞ�0 (6.7)

we obtain

16
2R1ðxÞ � �ðxÞ
Z x

0
dyy

�
y� x

4

�
m2ðxÞ �m2ðyÞ

x� y
�ðyÞ

�m2ðxÞx2�2ðxÞ �
Z 1

x
dym2ðyÞ½y2�2ðyÞ�0;

16
2R2ðxÞ � 1

2

Z x

0
dyym2ðyÞ

�
1� y

x

�
�2ðyÞ

þ 1

4

Z 1

x
dym2ðyÞ½y2�2ðyÞ�0: (6.8)

Finally, since as shown in [39,40], LðxÞ is considerably
smaller than GðxÞ in the entire range of (Euclidean) mo-
menta, we can use the approximation 1þGðxÞ � F�1ðxÞ;
thus, we obtain the approximate equation

m2ðxÞ ¼ m2ð0ÞFðxÞ
Fð0Þ þ

�sCA

2

FðxÞ �RðxÞ; (6.9)

with

�RðxÞ¼1

2

Z x

0
dyym2ðyÞ

�
1�y

x

�
�2ðyÞþ�ðxÞ

Z x

0
dyy

�
y�x

4

�

�m2ðxÞ�m2ðyÞ
x�y

�ðyÞ�m2ðxÞx2�2ðxÞ

þ3

4

Z x

0
dym2ðyÞ½y2�2ðyÞ�0; (6.10)

and m2ð0Þ given in Eq. (6.2). Evidently, �Rð0Þ ¼ 0.

B. Lattice ingredients: Gluon propagator and ghost
dressing function

The two main ingredients of the mass Eq. (6.9) are the
gluon propagator �ðq2Þ and the ghost dressing function
Fðq2Þ. Of course, �ðq2Þ is composed by Jðq2Þ and m2ðq2Þ,
as dictated by Eq. (3.1), but, as mentioned in the
Introduction, the derivation of the corresponding equation
for Jðq2Þ is beyond our powers at this point, mainly due to
lack of knowledge of certain of its ingredients. Similarly,
Fðq2Þ satisfies its own SDE (see, e.g., [39]), which would
furnish yet another equation in a complicated coupled sys-
tem. For the purposes of the present work, which is the
preliminary scrutiny of the mass Eq. (6.9) appearing for
the first time in the literature, we will instead resort to the
high-quality lattice data available, and use them as inputs
inside (6.9).
In order to do that, we start by showing on the left panel

of Fig. 6 the lattice data for �ðq2Þ obtained in [6], corre-
sponding to a SUð3Þ quenched lattice simulation, renor-
malized at � ¼ 4:3 GeV; on the right panel of the same
figure, we show the quenched SUð2Þ lattice data obtained
in [1], renormalized at � ¼ 2:2 GeV.
As has been discussed in detail in the literature

[10,12,16], both sets of lattice data can be accurately
fitted in terms of an IR-finite gluon propagator of the
form [41]

��1ðq2Þ¼M2ðq2Þþq2
�
1þ13CAg

2
1

96
2
ln

�
q2þ�1M

2ðq2Þ
�2

��
;

(6.11)

where [50]

M2ðq2Þ ¼ m4
0

q2 þ �2m
2
0

: (6.12)

The function M2ðq2Þ controls the value of ��1ðq2Þ at the
origin; evidently, ��1ð0Þ ¼ M2ð0Þ ¼ m2

0=�2. The best fits

(shown by the continuous lines in Fig. 6) correspond to the
following values of the fitting parameters:
(i) SUð3Þ case: m0 ¼ 520 MeV, g21 ¼ 5:68, �1 ¼ 8:55,

�2 ¼ 1:91;
(ii) SUð2Þ case: m0 ¼ 867 MeV, g21 ¼ 10:80, �1 ¼

1:96, �2 ¼ 2:68.
Turning next to the ghost dressing function, on the left

panel of Fig. 7, we show the SUð3Þ lattice results of [6],
renormalized as before at � ¼ 4:3 GeV; on the right
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panel, we plot instead the results for the SUð2Þ case [1],
renormalized at� ¼ 2:2 GeV. As can be clearly seen, both
functions saturate in the deep IR at the constant value
[12,51,52], and can therefore be fitted in terms of the
expression

F�1ðq2Þ ¼ 1þ 9

4

CAg
2
2

48
2
ln

�
q2 þ �3M

2ðq2Þ
�2

�
; (6.13)

withM2ðq2Þ given byEq. (6.12), but changing the parameter
�2 ! �4.

The best values for the fitting parameters are:
(i) SUð3Þ case: g22 ¼ 8:57, m ¼ 520 MeV, �3 ¼ 0:25,

�4 ¼ 0:68;
(ii) SUð2Þ case: g22 ¼ 15:03, m ¼ 523 MeV, �3¼0:21,

�4 ¼ 0:78.

C. Solutions of the mass equation and extraction
of Jmðq2Þ

After presenting the precise form of �ðq2Þ and Fðq2Þ,
the next task is to find solutions of the approximate mass
Eq. (6.9).
To begin with, we compute (for both gauge groups

considered) the derivative of the gluon dressing squared,
½y2�2ðyÞ�0, entering into the condition (6.2). As mentioned
earlier, the behavior of this quantity provides a rather direct
criterion for the existence or not of positive-definite mass
solutions, and in particular m2ð0Þ> 0. Specifically, the
absence of a negative region from this derivative immedi-
ately excludes such solutions, while a relatively shallow
‘‘well’’ makes their existence unlikely.
In the results shown in Fig. 8, we clearly see that both

derivatives change their sign in the intermediate momenta

FIG. 6 (color online). Lattice results for the SUð3Þ (left) and SUð2Þ (right) gluon propagator, renormalized at � ¼ 4:3 GeV and
� ¼ 2:2 GeV respectively. The continuous lines represent our best fits to the data obtained from Eq. (6.11).

FIG. 7 (color online). Lattice results for the SUð3Þ (left) and SUð2Þ (right) ghost dressing function, renormalized at � ¼ 4:3 GeV
and � ¼ 2:2 GeV respectively. The continuous lines represent our best fits to the data obtained from Eq. (6.13).
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region, which, as previously explained, constitutes
precisely the required behavior. This behavior is to be
contrasted with that of simple propagators, such as
1=ðq2 þm2Þ, or the Gribov-Zwanziger propagator
q2=ðq4 þm4Þ [53,54], which fail to provide the necessary
negative region (in fact the derivative is positive every-
where). It should be noted that, instead, the ‘‘refined’’
version of the Gribov-Zwanziger propagator [55] is ex-
pected to furnish a considerable negative region, given that
it is known to provide a good fit to the lattice data.

Of course, the aforementioned criterion can only serve
as a necessary but not sufficient condition: to get a positive-
definite value for m2ð0Þ, one still needs to demonstrate that
the negative region q2 > q20 (with q20 the value where the

curve is zero) furnishes more support to the integral of
Eq. (6.2) than its positive region.

To proceed with the actual determination of m2ðxÞ from
Eq. (6.9), we substitute the quantities �ðyÞ, FðyÞ, and CA

for the SUð3Þ and SUð2Þ gauge groups and solve for the
unknown function. In both cases, the value of m2ð0Þ is a
boundary condition, fixed through the value of the corre-
sponding lattice gluon propagator at the origin, i.e.,
m2ð0Þ ¼ ��1ð0Þ. Specifically, for SUð3Þ we have that
��1ð0Þ � 0:14 while for SUð2Þ ��1ð0Þ � 0:28

The solutions obtained are shown in Fig. 9; the values
for �s needed to satisfy the boundary condition are �s ¼
0:59 and �s ¼ 3:2 for SUð3Þ and SUð2Þ respectively.
Notice that the masses corresponding to both gauge groups
display the same qualitative behavior, and, as expected, are
clearly nonmonotonic functions of the momentum. In ad-
dition, the dynamical mass decreases rather slowly in the
deep IR, according to the power law

m2ðxÞ ¼ Axb; (6.14)

with A ¼ 0:25, b ¼ �0:046 in the SUð3Þ case, and
A ¼ 0:468, b ¼ �0:039 in the SUð2Þ case. The vanishing
of the mass at infinite momentum is a fundamental require-
ment of the dynamical gluon mass generation scenario,
since otherwise there would be a corresponding bare mass
which would violate the gauge invariance of the classical
action. From the viewpoint of the SDEs, there simply
would be no massive solution for the gluon propagator
unless the mass vanished at infinite momentum.
From the solutions for m2ðq2Þ obtained above, and the

lattice results for �ðq2Þ, we may now extract the approxi-
mate form of the kinetic term, Jmðq2Þ. Specifically, Jmðq2Þ
can be determined (in Euclidean space) through Eq. (3.1),
namely

Jmðq2Þ ¼ ��1ðq2Þ �m2ðq2Þ
q2

: (6.15)

Notice that special care must be taken in the q2 ! 0
limit of Eq. (6.15). In the region of small momenta,
Eq. (6.15) has a delicate cancellation between the denomi-
nator and the numerator, which also tends to zero in this
limit, since ��1ðq2Þ ! m2ð0Þ. In order to avoid spurious
distortion in the IR behavior of Jmðq2Þ, we will extract
Jmðq2Þ until certain (small) value of q2 past which we will
do an extrapolation toward q2 ! 0. The results of this
procedure are shown in Fig. 10, where, for both the
SUð3Þ (left) and the SUð2Þ (right) cases, we display the
points obtained directly from Eq. (6.15) as well as our
extrapolation curves.
Knowledge of m2ðq2Þ and Jmðq2Þ allows one to deter-

mine the approximate form of the (formally) RG-invariant
gluon mass that appears naturally in the definition of the
QCD effective charge [16,21,22,56]. Let us recall that,
due to the Abelian WIs satisfied by the PT-BFM Green’s

FIG. 8 (color online). The kernel ½q4�2ðq2Þ�0 appearing in Eq. (6.2) obtained from the SUð3Þ (left) and SUð2Þ (right) lattice data. In
both cases, one clearly sees the behavior expected for getting a positive value for m2ð0Þ. The zero crossing happens at q20 � 0:85 and

q20 � 1:1 respectively.
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functions, the propagator �̂ðq2Þ absorbs all the RG
logarithms, exactly as happens in QED with the photon
self-energy. As a result, the product

�d 0ðq2Þ � g20�̂0ðq2Þ ¼ g2�̂ðq2Þ � �dðq2Þ (6.16)

forms a RG-invariant (�-independent) quantity. As has
been explained in the recent literature [15], �dðq2Þ may be
cast in the form

�dðq2Þ ¼ �g2ðq2Þ
q2 þ �m2ðq2Þ ; (6.17)

with

�g 2ðq2Þ¼g2Ĵ�1
m ðq2Þ; �m2ðq2Þ¼ m̂2ðq2ÞĴ�1

m ðq2Þ: (6.18)

The two factors defined above are individually RG-
invariant; the dimensionful quantity corresponds to a

massive propagator with a momentum-dependent mass,
while the dimensionless factor �g2ðq2Þ=4
 defines the
effective charge.
Next, using the BQIs (2.14) to relate the components of

�̂ðq2Þ to the corresponding ones of �ðq2Þ, we get
Ĵmðq2Þ ¼ ½1þGðq2Þ�2Jmðq2Þ;
m̂2ðq2Þ ¼ ½1þGðq2Þ�2m2ðq2Þ; (6.19)

and therefore

m̂ 2ðq2ÞĴ�1
m ðq2Þ ¼ m2ðq2ÞJ�1

m ðq2Þ; (6.20)

which finally furnishes the relation

�m 2ðq2Þ ¼ m2ðq2ÞJ�1
m ðq2Þ: (6.21)

FIG. 9 (color online). The solution for m2ðq2Þ obtained through the approximate mass Eq. (6.9) for SUð3Þ (left) and SUð2Þ (right).

FIG. 10 (color online). Values of Jmðq2Þ obtained from Eq. (6.15) (white circles) using the SUð3Þ gluon propagator and the
corresponding extrapolation toward the q2 ! 0 limit (continuous line). As usual, we show both the SUð3Þ (left) and the SUð2Þ cases.
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We are now in the position to determine the mass �m2ðq2Þ
by simply forming the ratio of the plots presented in Figs. 9
and 10. The result is shown in Fig. 11; as can be seen, in
the SUð3Þ case �m2ðq2Þ corresponds roughly to a monotoni-
cally decreasing function (see also [57]), with �mð0Þ �
580 MeV. Finally, for the SUð2Þ case we obtain �mð0Þ �
480 MeV.

VII. DISCUSSION AND CONCLUSIONS

In the present work, we have derived the dynamical
equation that determines the evolution of the gluon mass
in the Landau gauge, using as our starting point the one-
loop dressed SDE for the gluon propagator in the PT-BFM
scheme. The entire construction hinges on the crucial
assumption that a special vertex, denoted by V, is dynami-
cally generated, according to the philosophy and formal-
ism associated with the Schwinger mechanism. The role of
this vertex is to maintain gauge invariance (as expressed
through the STIs satisfied by the Green’s functions of the
theory) in the presence of a dynamical mass. Interestingly
enough, the derivation of the mass equation does not
depend on the specific closed form of that vertex.

The equation for the gluon mass derived here, given in
(5.23), and, in particular, its limit in the deep IR, imposes a
rather strong constraint on the form of the full gluon
propagator in the region of intermediate momenta of about
ð1–5Þ GeV2. In this specific range of momenta, the shape
of the gluon propagator must be such that the derivative
of the square of the gluon dressing function ½q4�2ðq2Þ�0
becomes sufficiently negative, thus ensuring eventually the
positivity of the gluon mass.

We emphasize that the central result of this article,
Eq. (5.23), does not exhaust all possible contributions to
the gluon mass equation. Specifically, Eq. (5.23) captures
only the part of the equation originating from the one-loop
dressed gluon SDE. In order to determine the corresponding

contribution coming from the ‘‘two-loop dressed’’ gluon
SDE, one must identify the seagull cancellation mechanism
(and the corresponding seagull-identity) that operates at the
two-loop dressed level. The identification of the two-loop
dressed analogue of Eq. (4.3) requires (among other things)
some very specific information on the structure of the four-
gluon vertex, at least in the special kinematic limit of
vanishing external momentum. Calculations in this direc-
tion are already in progress.
It is important to warn the reader about some additional

limitations afflicting the present work, related to the renor-
malization properties of the mass equation, and the depen-
dence of the various quantities, most importantly of the
gluon mass, on the renormalization point�. When dealing
with the mass equation of Eq. (5.23), we have tacitly
assumed that the multiplicative renormalization has been
carried out, thus rendering all quantities finite (but
�-dependent). In carrying out the SDE renormalization,
one usually resorts to the momentum-subtraction scheme;
in our case, this choice is further motivated by the addi-
tional fact that this is the scheme employed for the renor-
malization of the lattice data that are used as input into
Eq. (5.23). Of course, given the gluon mass in the Landau
gauge is not a RG-invariant quantity, there is a residual
dependence on �, which, in principle, should cancel out
against analogous contributions when a RG-invariant com-
bination is formed (this type of powerful cancellation has
been presented in [39] for the QCD effective charge).
However, the approximations employed in the process of
the renormalization may distort the exact dependence
on �. Specifically, the renormalized version of Eq. (5.23)
displays a dependence on some of the renormalization
constants Z involved, as happens typically in the treatment
of SDEs. This fact in itself is normal, but makes the further
treatment ambiguous, because the correct cancellation of
the residual dependence on the UV cutoff (induced by the
presence of the Z) requires the knowledge (among other

FIG. 11 (color online). The RG-invariant mass, �m2ðq2Þ, defined in Eq. (6.21) for the SUð3Þ (left) and SUð2Þ (right) cases.
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things) of the transverse (automatically conserved) part of
the full vertex ℾ [36]. Therefore, the next step has been to
set Z ¼ 1, a fact which, in general, is known to alter the
dependence of the solution (in this case of m2) on �. In
fact, the situation appears to be very similar to what
happens typically in the studies of chiral symmetry break-
ing through the standard gap equation. In this latter
context, the various approximations associated with renor-
malization introduce characteristic artifacts; for example,
the value of the anomalous dimension of the dynamical
quark mass is distorted, a problem that is usually compen-
sated by modifying accordingly (by hand) the kernel of the
gap equation. Needless to say, it would be very important
to improve on any of the above points, but at present this
appears to be technically rather difficult.

An additional potential improvement of our results may
be produced by a more refined numerical treatment, that
will deal with the full mass equation, without resorting to
any additional approximations, such as the angular ap-
proximation employed here. This could be in principle
achieved by using advanced numerical techniques, e.g.,
by expanding the solution using a suitable basis of poly-
nomials, such as the Chebyshev polynomials [58].

Given that the existence of a nontrivial vertex V is of
central importance, it would be absolutely essential to
establish its existence. This can be done following two
distinct but complementary approaches. First, one may
write down the most general longitudinal structure allowed
by Lorentz symmetry and then use theWI and STIs that the
V is supposed to satisfy [e.g., (3.5)] to actually determine
the form of the various form factors, in the spirit of [36].
Second, one may address the dynamical question of
whether such a nonperturbative vertex may be actually
produced by the strongly coupled Yang-Mills theory. In
fact, the main characteristic of the vertex V, which sharply
differentiates it from ordinary vertex contribution, is that
it contains massless bound-state poles. In principle, the
dynamical formation of such poles must be studied by
means of a homogeneous Bethe-Salpeter equation, follow-
ing the methodology developed in [31–33]. We hope to be
able to pursue some of these points in the near future.
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APPENDIX A: EXPLICIT FORM OF THE
VERTEX ℾ AND ℾm

The longitudinal part of the vertex ℾ (and therefore also
that of ℾm) has been constructed in [36] by simultaneously

solving the Ward and Slavnov-Taylor identities presented
in Eq. (2.19); for the kinematics, see Fig. 2. Specifically,
the longitudinal part is written as

ℾ ���ðq; r; pÞ ¼ X10
i¼1

Xiðq; r; pÞ‘���
i ðq; r; pÞ; (A1)

in the standard basis ‘i of [37]

‘
���
1 ¼ ðq� rÞ�g�� ‘

���
2 ¼ �p�g��

‘
���
3 ¼ ðq� rÞ�½q�r� � ðq � rÞg���
‘���
4 ¼ ðr� pÞ�g�� ‘���

5 ¼ �q�g��

‘���
6 ¼ ðr� pÞ�½r�p� � ðr � pÞg���
‘���
7 ¼ ðp� qÞ�g�� ‘���

8 ¼ �r�g��

‘���
9 ¼ ðp� qÞ�½p�q� � ðp � qÞg���
‘���
10 ¼ q�r�p� þ q�r�p�:

(A2)

and the Xi are given by

X1ðq; r; pÞ ¼ 1
4
~Jðq2Þf�p2bprqFðr2Þ
þ ½2arpq þ p2brpq þ 2ðq � rÞdrpq�Fðp2Þg
þ 1

4Jðr2Þ½2þ ðr2 � q2Þ~bqprFðp2Þ�
þ 1

4Jðp2Þp2 ~bqrpFðr2Þ
X2ðq; r; pÞ ¼ 1

4
~Jðq2Þfðq2 � r2ÞbprqFðr2Þ
þ ½2arpq þ ðr2 � q2Þbrpq
þ 2ðq � rÞdrpq�Fðp2Þg
þ 1

4Jðr2Þ½�2þ p2 ~bqprFðp2Þ�
þ 1

4Jðp2Þðr2 � q2Þ~bqrpFðr2Þ

X3ðq; r; pÞ ¼ Fðp2Þ
q2 � r2

f~Jðq2Þ½arpq � ðq � pÞdrpq�

� Jðr2Þ½~aqpr � ðr � pÞ~dqpr�g
X4ðq; r; pÞ ¼ 1

4
~Jðq2Þq2½bprqFðr2Þ þ brpqFðp2Þ�
þ 1

4Jðr2Þ½2� q2 ~bqprFðp2Þ�
þ 1

4Jðp2Þ½2� q2 ~bqrpFðr2Þ�
X5ðq; r; pÞ ¼ 1

4
~Jðq2Þðp2 � r2Þ½bprqFðr2Þ þ brpqFðp2Þ�
þ 1

4Jðr2Þ½2þ ðr2 � p2Þ~bqprFðp2Þ�
� 1

4Jðp2Þ½2þ ðp2 � r2Þ~bqrpFðr2Þ�

X6ðq; r; pÞ ¼ Jðr2Þ � Jðp2Þ
r2 � p2

X7ðq; r; pÞ ¼ X1ðq; p; rÞ

X8ðq; r; pÞ ¼ �X2ðq; p; rÞ X9ðq; r; pÞ ¼ X3ðq; p; rÞ
X10ðq; r; pÞ ¼ 1

2f~Jðq2Þ½bprqFðr2Þ � brpqFðpÞ�
þ Jðr2ÞFðp2Þ~bqpr � Jðp2ÞFðr2Þ~bqrpg:

(A3)
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The functions aqrp � aðq; r; pÞ, etc. are the form factors

appearing in the tensorial decomposition of the ghost-
gluon kernels H��ðp; r; qÞ and ~H��ðp; r; qÞ, namely

H��ðp; r; qÞ ¼ g��aqrp � r�q�bqrp þ q�p�cqrp

þ q�p�dqrp þ p�p�eqrp; (A4)

and similarly for ~H. They satisfy the nontrivial all-order
constraints

Fðr2Þ½aprq � ðr � pÞbprq þ ðq � pÞdprq�
¼ Fðp2Þ½arpq � ðr � pÞbrpq þ ðq � rÞdrpq�;

Fðr2Þ½~aqrp � ðq � rÞ~bqrp þ ðq � pÞ~dqrp� ¼ 1: (A5)

APPENDIX B: ON THE RELATION BETWEEN
~m2ðq2Þ AND m2ðq2Þ

In Sec. V, we have assumed that the relation (5.20)
between the masses ~mðqÞ and mðqÞ holds. This is tanta-
mount to claiming that the BQIs (2.14) hold after dynami-
cal mass generation has taken place.

To further substantiate this claim, let us consider the

SDE for the QB gluon self-energy ~�. If we keep dressed
the background side of the equation, we can still truncate
meaningfully the SDE retaining only the one-loop dressed
gluon contributions, which now read

ðb1Þ��¼ 1
2g

2CA

Z
k
�ð0Þ
���ðq;k;�k�qÞ���ðkÞ���ðkþqÞ

� ~����ðq;k;�k�qÞ;
ðb2Þ��¼g2CA

�
g��

Z
k
��

�ðkÞ�
Z
k
���ðkÞ

�
: (B1)

The projection to the Landau gauge gives rise to three
terms only, which coincide with A1, A2, and A4 of
Eq. (2.16). Then, writing

~��1ðq2Þ � q2 ~Jðq2Þ � ~m2ðq2Þ ¼ q2 þ i ~�ðq2Þ; (B2)

it is relatively straightforward to establish that the rhs of the
equation for ~m is determined by the mass term of A1 only.
Specifically, using the result (5.13) one has (Euclidean space)

~m2ðq2Þ¼2g2CA

Z
k

�
k2�ðk �qÞ2

q2

�
m2ðkþqÞ�m2ðkÞ

ðkþqÞ2�k2

��mðkÞ�mðkþqÞ

¼g2CA

d�1
½A1þA2þA4�m2 ; (B3)

where in the last step we have used Eq. (5.13).
Substituting the above result, together with (5.19), into

Eq. (5.2), we find

m2ðq2Þ¼ ~m2ðq2Þ
½1þGðq2Þ�2þ

~m2ðq2ÞGðq2Þ
½1þGðq2Þ�2 ¼

~m2ðq2Þ
1þGðq2Þ ; (B4)

namely the relation of Eq. (5.20).
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