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In this paper, we derive Lorentz force and Maxwell’s equations on kappa-Minkowski space-time up to

the first order in the deformation parameter. This is done by elevating the principle of minimal coupling to

noncommutative space-time. We also show the equivalence of minimal coupling prescription and

Feynman’s approach. It is shown that the motion in kappa space-time can be interpreted as motion in

a background gravitational field, which is induced by this noncommutativity. In the static limit, the effect

of kappa deformation is to scale the electric charge. We also show that the laws of electrodynamics depend

on the mass of the charged particle, in kappa space-time.
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I. INTRODUCTION

Quantum gravity effects are expected to lead to space-
time uncertainties at Planck scale. Noncommutative
geometry provides a natural way to incorporate this micro-
scopic structure of space-time. �-deformed space-time
[2,3] is a prototype of the Lie algebraic type noncommu-
tative space-time, fuzzy sphere being the well-known ex-
ample of this family [4,5]. The �-deformed space-time is
known to emerge naturally in the low-energy limit of
certain quantum gravity models. It is also the space-time
associated with doubly special relativity [6–8]. In recent
years, algebraic structure and symmetries of �-space-time
have been investigated in detail [9–11].

Generically, field theory models on noncommutative
space-time do have highly nonlocal and nonlinear interac-
tions, and are characterized by an interdependence of high-
and low-energy behavior, known as UV/IR mixing, which
had been studied in detail in field theory models on Moyal
space-time as well as on � space-time [12]. In noncommu-
tative space-times, Lorentz symmetry in the usual sense is
broken, but it is shown that this symmetry can be retained
by a Hopf algebra approach [13]. Thus, the conventional
notions of field quanta can be generalized to noncommu-
tative field theories. Following these developments, field
theory models on �-deformed space-time have been con-
structed and studied [14,15]. Investigations, trying to
obtain bounds on � deformation parameter using experi-
mental and observational results are being carried out in
last couple of years [16–19].

Construction and study of Uð1Þ gauge theory on
�-space-time using star product approach was taken up

in [20]. Using Feynman’s approach, Maxwell’s equations
on �-space-time were obtained in [21].
In Feynman’s approach, starting with Newton’s equation

of motion and assumed (quantum) commutators between
coordinates and velocities, one derives the homogeneous
Maxwell’s equations by the repeated application of Jacobi
identities [22]. This method has been generalized to rela-
tivistic case in [23]. It has also been shown that the quan-
tum mechanical particles consistently interact with scalar,
gauge, and gravitational fields only. In the commutative
space-time, it is known that the results obtained by
Feynman’s approach and minimal prescription are equiva-
lent [22,24]. Feynman’s approach has been generalized to
obtain inhomogeneous Maxwell’s equation in [25] and
various other aspects of this method has been studied in
[26]. In recent times, this method has been used to obtain
Maxwell’s equation in Moyal space-time also [27]. In [24],
it was shown that by assuming the minimal coupling of
gauge field and the ensuing relation between kinetic and
conjugate momenta, one can derive Lorentz force equation
and Maxwell’s equations. In this way, one can work with
Poisson brackets rather than (quantum) commutators in
Feynman’s approach. Thus, this approach of [24] allows
one to take a classical limit of the obtained equations, in a
proper fashion.
In this paper, we generalize a variant of Feynman’s

approach [24] to �-space-time and derive the deformed
Maxwell’s equations and force equation valid up to first
order in deformation parameter. In our approach, we do
power series expansion of the noncommutative coordi-
nates, momenta, as well as functions of noncommutative
coordinates and momenta in terms of commutative coor-
dinates, momenta and deformation parameter (keeping
terms up to the first order in deformation parameter). We
also exploit the generalization of minimal coupling pre-
scription to �-space-time in our calculations.
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This paper is organized as follows. In the next section,
we briefly recall Feynman’s approach using minimal pre-
scription [24]. Here we show how the force equation as
well as all the Maxwell’s equations can be derived. Our
main results are presented in Sec. III. In Sec. III A, we
discuss the derivation of force equation on � space-time for
a electrically neutral particle. The force equation we obtain
here is valid up to first order in the deformation parameter
a. In Sec. III B, we derive the Lorentz force equation and in
Sec. III C, Maxwell’s equation for a charged particle in
�-space-time is obtained. Here also, all equations derived
are valid up to first order in the deformation parameter a. In
sSec. III D, we discuss the natural realization of the coor-
dinates of �-space-time and obtain the Maxwell’s equation
in this realization. Finally we conclude with discussion in
Sec. IV.

We work with ��� ¼ ðþ;�;�;�Þ.

II. MINIMAL COUPLING AND FEYNMAN’S
APPROACH TO ELECTRODYNAMICS

We start with the same basic assumptions as those in
Feynman’s approach [22–24]. The coordinates of a rela-
tivistic particle in 4-D Minkowski space-time is described
by x�ð�Þ, (� ¼ 0, 1, 2, 3), where � is a parameter, and they

satisfy the following commutation relations

½x�ð�Þ; x�ð�Þ� ¼ 0; ½x�ð�Þ; _x�ð�Þ� ¼ � i

m
���; (1)

where _x� ¼ dx�
d� . Newton’s equation is also assumed

F�ðx; _xÞ ¼ m €x�: (2)

We introduce kinetic momentum �� ¼ m _x�, so that we

have

½x�;��� ¼ �i���; (3)

and we can write ��ð�Þ explicitly as

�� ¼ p� � eA�ðxÞ; (4)

where eA�ðxÞ is, for now, an arbitrary function of x, and

p�ð�Þ is canonical momentum satisfying

½p�; p�� ¼ 0; ½x�; p�� ¼ �i���: (5)

This is the principal of minimal coupling [24]. It is obvious

that with F� ¼ d��

d� , and taking the derivative with respect

to � of Eq. (3) one gets the following relations

½x�; F�� ¼ � 1

m
½��;���; ½��;��� ¼ �ieF��ðxÞ;

(6)

where F�� ¼ @�A� � @�A�. Because of (5) we have use-

ful identities

½x�; fðx; pÞ� ¼ �i
@f

@p� ; ½p�; fðx; pÞ� ¼ i
@f

@x�
: (7)

Here (and from now on) we take the ordering prescription
where x is put always on the left, and p on the right. Force
F�ðx; _xÞ can be understood as a function of x and p, that is
F�ðx; pÞ, and this is important because we only know how

to integrate over commuting variables. So, using (7) we can
now integrate (6) over p� and get

F� ¼ e

m
F��p

� þ ~G�ðxÞ; (8)

where ~G�ðxÞ is a function of x and we have used the
prescription that p goes to the right (for constructing
Hermitian operators we can symmetrize xp !
1
2 ðxpþ pxÞ). Now, using the definition of kinetic momen-

tum �� ¼ m _x�, relation (4), and defining G�ðxÞ ¼
~G�ðxÞ þ e2

m F��A
� we get the Lorentz force

F� ¼ G�ðxÞ þ eF�� _x
�: (9)

In the minimal coupling approach all the Jacobi identities
are satisfied by construction, i.e.,

½x�; ½x�; x��� þ ½x�; ½x�; x��� þ ½x�; ½x�; x��� ¼ 0;

½x�; ½x�; ���� þ ½x�; ½��; x��� þ ½��; ½x�; x��� ¼ 0;

½x�; ½��;���� þ ½��; ½��; x��� þ ½��; ½x�; ���� ¼ 0;

½��; ½��;���� þ ½��; ½��;���� þ ½��; ½��;���� ¼ 0:

(10)

The first two equations in (10) are trivially satisfied, the
third is in Feynman’s approach equal to the statement that
F�� is a function of x, and the fourth yields homogeneous

Maxwell equation

@�F�� þ @�F�� þ @�F�� ¼ 0: (11)

If we take (9) as a definition of G�ðxÞ, it is straightforward
to see

½��;G�� � ½��;G�� ¼ 0; @�G� � @�G� ¼ 0; (12)

which means that G� ¼ @��ðxÞ. We can conclude that

minimal coupling and Feynman’s approach are in complete
correspondence. From the definition of the commutator we
can show that

½��; ½��; ½��;����� ¼ 0; (13)

and by defining

½��; ½��;���� ¼ ej�; (14)

we get

½��; j
�� ¼ 0; @�j

� ¼ 0: (15)

Thus we see that j�ðxÞ is the conserved current, and by

definition Eq. (14) gives the inhomogeneous Maxwell’s
equations.

@�F
�� ¼ j�: (16)
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Nowwe have the complete set of Maxwell equations which
are covariant and we recognize A�ðxÞ as a gauge field, and
e as an electric charge of a particle.

III. �-DEFORMED ELECTRODYNAMICS

A. e ¼ 0 case

Minimal coupling approach seems natural for exploring
noncommutative spaces, all it takes is to substitute
x� ! x̂�, where ½x̂�; x̂�� � 0. We will consider a class of

noncommutating spaces, the so-called �-Minkowski
space-time, which are defined by

½x̂�; x̂�� ¼ iða�x̂� � a�x̂�Þ; (17)

where a� is the deformation parameter and x̂� is a non-

commutating coordinate operator. In the case when a ! 0,
we have ½x̂�; x̂�� ! 0, that is x̂� ! x�, so we take a

perturbative approach to find the realization of x̂� in terms

of operators x� and p� from the commutating space, up to

the first order in the deformation parameter a�. Sowewrite

x̂ � ¼ x� þ 	x̂�ðaÞ; (18)

where 	x̂�ðaÞ can be constructed from x�, p� and a� as

	x̂�ðaÞ ¼ 
x�ða � pÞ þ �ðx � aÞp�

þ �ðx � pÞa�; 
;�; � 2 R (19)

Taking into account that (17) must be satisfied up to the
first order in deformation parameter a� we get the con-

straint on the real parameters 
, �, and �

�� 
 ¼ 1; � 2 R: (20)

Now we have to construct the noncommutative momentum
operator p̂, but we are missing the relation ½p̂�; x̂�� ¼ ?; all

we know is that in the zeroth order in a� Eq. (5) holds. First

let us consider the e ¼ 0 case and postulate _̂x�ðe ¼ 0Þ �
1
m p̂�, then taking the derivative of (17) with respect to �

gives

½p̂�; x̂�� þ ½x̂�; p̂�� ¼ iða�p̂� � a�p̂�Þ; (21)

which only fixes the antisymmetric part of ½p̂�; x̂��. We can

take p̂� to be

p̂ � ¼ p� þ 	p̂�ðaÞ; (22)

and demand that (21) and Jacobi identities between p̂�, x̂�
and x̂� must be satisfied up to the first order in a and get the

explicit form of 	p̂�ðaÞ. This construction is equivalent to

just taking the form of 	x̂�ðaÞ given in (19) and substitute x
with p (which is also equivalent with _p� ¼ 0) and then

we get

p̂ � ¼ p� þ ð
þ �Þða � pÞp� þ �a�p
2: (23)

Now we have

½p̂�; p̂�� ¼ 0: (24)

Using (23) we have

½p̂�; x̂�� ¼ i���ð1þ sða � pÞÞ þ iðsþ 2Þa�p�

þ iðsþ 1Þa�p�; s ¼ 2
þ �: (25)

We are considering e ¼ 0 case, so there is no difference
between canonical and kinetic momentum. Analogous to
commutative space we have the Newton-like equation

F̂ �ðe ¼ 0Þ � Ĝ� ¼ dp̂�

d�
: (26)

Taking the derivative with respect to � of Eq. (25) we get

½Ĝ�; x̂�� ¼ i���sða � GÞ þ iðsþ 2Þa�G� þ iðsþ 1Þa�G�;

(27)

where we used (24), and the fact that all equations from
Sec. II. hold up to the zeroth order in a. We want to find

Ĝ�, but we can not simply integrate (27). The force Ĝ� can

be written as

Ĝ � ¼ G�ðxÞ þ 	Ĝ�ðaÞ; (28)

and combining (27) and (28) we can get an equation for

	Ĝ�ðaÞ

½	Ĝ�ðaÞ; x̂�� ¼ i
@	Ĝ�ðaÞ

@p�

¼�½G�; x̂��þ i���sða �GÞþ iðsþ 2Þa�G�

þ iðsþ 1Þa�G�; (29)

which can be easily integrated over p�. Before writing Ĝ�

explicitly, it is convenient to find an operator that com-
mutes with x̂�. We find an operator ŷ� such that

½x̂�;ŷ��¼0;

ŷ�¼x�þ�x�ða �pÞþð��1Þðx �pÞa�þ�ðx �aÞp�

(30)

and define fðŷÞ as

fðŷÞ ¼ fðxÞ þ �

�
x � @f

@x

�
ða � pÞ þ ð�� 1Þ

�
a � @f

@x

�
ðx � pÞ

þ �ða � xÞ
�
@f

@x
� p

�
; (31)

so that

½fðŷÞ; x̂�� ¼ 0: (32)

Finally we can write the operator for the force in the
noncommutating space when e ¼ 0 as

F̂�ðe ¼ 0Þ ¼ G�ðŷÞ þ sða � GÞp� þ ðsþ 2Þa�ðG � pÞ
þ ðsþ 1ÞG�ða � pÞ; (33)
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that is,

F̂�ðe ¼ 0Þ ¼ G�ðŷÞ þmsða � GÞ _x�
þmðsþ 2Þa�ðG � _xÞ þmðsþ 1ÞG�ða � _xÞ:

(34)

From the above, we see that a neutral particle with massm,
moving in a �-deformed Minkowski space-time can be
interpreted as moving in an ‘‘electromagnetic’’-like back-
ground that couples proportionally to the deformation
parameter a�, because these corrections are linear in _x.

B. e � 0 case and corrections to the Lorentz force

In Sec. II we have shown that the minimal coupling
principle leads to well known Lorentz force, so we want
to generalize the minimal coupling principle in a consistent
way. If we postulate �̂� ¼ m _̂x� and the simplest way to

introduce gauge field A�, as �̂� ¼ p̂� � eA�ðx̂ or ŷÞ, then
from the Jacobi identities and

½�̂�; x̂�� þ ½x̂�; �̂�� ¼ iða��̂� � a��̂�Þ; (35)

we get very restrictive conditions on A�. It is better to

understand minimal coupling principle as a way to intro-
duce a connection between canonical and kinetic momen-
tum through a gauge field in a way that the commutation
relations ½�̂�; x̂�� and ½p̂�; x̂�� are the same by form, which

is also true in the commutating case. In correspondence
with (25) we write

½�̂�; x̂�� ¼ i���ð1þ sða � �ÞÞ þ iðsþ 2Þa���

þ iðsþ 1Þa���: (36)

We also write �̂� as �̂� ¼ �� þ 	�̂�ðaÞ and from (36)

we get explicitly

�̂� ¼ p̂� � eA�ðŷÞ � e½ðsþ 2ÞðA � pÞa� þ sðA � aÞp�

þ ðsþ 1ÞA�ða � pÞ�: (37)

Taking the derivative with respect to � of (36) and using

F̂� ¼ d�̂�

d� , we get

½F̂�; x̂�� þ 1

m
½�̂�; �̂�� ¼ i���sða � FÞ þ iðsþ 2Þa�F�

þ iðsþ 1Þa�F�: (38)

Writing the force as F̂� ¼ F� þ 	F̂�ðaÞ, we can get a

equation for 	F̂�ðaÞ as

½	F̂�ðaÞ; x�� ¼ ½x̂�; F�� � 1

m
½�̂�; �̂�� þ i���sða � FÞ

þ iðsþ 2Þa�F� þ iðsþ 1Þa�F�; (39)

where F� is the force from the commutative space and

½�̂�; �̂�� ¼ �ie

�
F�� þ 2ðsþ 1ÞF��a � pþ ið
þ �Þa � @F��

@x
þ �

�
x � @F��

@x

�
ða � pÞ þ ð�� 1Þ

�
a � @F��

@x

�
ðx � pÞ

þ �ða � xÞ
�
@F��

@x
� p

�
þ sa
ðF
�p� � F
�p�Þ þ ðsþ 2Þða�F
� � a�F
�Þp


þ i�

�
a�

@2A�

@x
@x

 � a�

@2A�

@x
@x



��
þ ie2

�
ðsþ 2ÞA


�
a�

@A�

@x

� a�

@A�

@x


�

þ sða � AÞF�� þ ðsþ 1Þa

�
A�

@A�

@x

� A�

@A�

@x


�
� @A�

@x

@A�

@x�
ðx
a� � a
x�Þ

�
: (40)

The right-hand side (rhs) of Eq. (39) can be explicitly
calculated and the left-hand side is

½	F̂�ðaÞ; x�� ¼ i
@ð	F̂�ðaÞÞ

@p� ; (41)

so we can integrate (39) over p�. After tedious calculation
and expressing everything in terms of _̂x�, we get

F̂� ¼ Ĝ� þ eF��ðŷÞ _̂x� þ e ~F��
_̂x� �m���

_̂x� _̂x

þOða � e2Þ þOða2Þ; (42)

where Ĝ� ¼ F̂�ðe ¼ 0Þ is defined in (33), F��ðŷÞ is de-
fined like (31), that is,

F��ðŷÞ¼F��ðxÞþ�

�
x �@F��

@x

�
ða �pÞ

þð��1Þ
�
a �@F��

@x

�
ðx �pÞþ�ða �xÞ

�
@F��

@x
�p

�
;

(43)

and the remaining two terms are

~F�� ¼ i

�
ð
þ �Þa � @F��

@x

� �

�
a�

@2A�

@x
@x

 � a�

@2A�

@x
@x



��
;

��� ¼ e½ð
þ �ÞF��a þ ð�þ �ÞF��a
���

� sF��a
��� � ð3�� 2�� 1ÞF��a�: (44)
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Terms proportional to _x can be interpreted as a correction
to the Lorentz force due to the background electromagnetic
field, and those proportional to _x2 as quasigravitational
effects caused by the background curvature induced by
the noncommutativity of space-time. Both effects are pro-
portional to ea�.

C. �-deformed Maxwell equations

In our approach, all the Jacobi identities using �̂, p̂ and x̂
are satisfied by construction up to the first order in the
deformation parameter a. Formally the Jacobi identity

½�̂�; ½�̂�; �̂��� þ ½�̂�; ½�̂�; �̂��� þ ½�̂�; ½�̂�; �̂��� ¼ 0

(45)

leads to

@�F̂�� þ @�F̂�� þ@�F̂��

¼ ið½	�̂�ðaÞ;F���� e½A�;	F̂��ðaÞ�þ cyclicð�;�;�ÞÞ;
(46)

where

½�̂�; �̂�� � �ieF̂�� ¼ �ieF��ðxÞ � ie	F̂��ðaÞ (47)

is given in (40), so we see that F̂�� is expressed in terms of

operators from the commutative space. This is the
�-deformed analogue of the homogeneous Maxwell equa-
tion. The rhs of (46) can be explicitly calculated in terms of

commutative variables and fields ~E and ~B, that satisfy the
usual Maxwell equations. From

½�̂�; ½�̂�; ½�̂�; �̂���� ¼ 0; (48)

and by defining

½�̂�; ½�̂�; �̂��� ¼ eĵ�; (49)

we have

½�̂�; ĵ
�� ¼ 0; (50)

so that ĵ is a conserved current and we formally have

@�F̂
�� ¼ ĵ�þ i½	�̂�ðaÞ;F���� ie½A�;	F̂

��ðaÞ�þOða2Þ:
(51)

This is the �-deformed analogue of the inhomogeneous
Maxwell equation. The rhs in (51) can also be explicitly
calculated.

Now we study the �-deformed space-time where a� ¼
ða0; ~0Þ, that is, a0 � a ¼ ��1 and ai ¼ 0. We define

F̂0i ¼ �Êi; F0i ¼ �Ei;

F̂ij ¼ ��ijkB̂k; Fij ¼ ��ijkBk:
(52)

Note that F̂��, Êi and B̂i are functions of commutative

operators x and p [see (40)]. Now we can rewrite the rhs of

(46) and (51) in terms of commutative electric and mag-
netic field and get

~r � ~̂B ¼ að
þ �Þ _~B � ~p� aeð ~DB � ~Bþ s ~E � ~BÞ; (53)

~r� ~̂Eþ @ ~̂B

@t
¼ �a

�
ð
þ �Þð _~Bp0 � _~E� ~pÞ

þ �

�
p � @ ~B

@x
þ @ ~B

@x
� p

��

þ ae½ ~hE � ~EþDB
~B� ðsþ 2ÞBi

~rAi�;
(54)

~r � ~̂E ¼ �̂� að
þ �Þðp0
~r � ~E� _~E � ~pÞ

þ aeð ~DE � ~E� ðsþ 2Þ ~B2Þ; (55)

~r� ~̂B�@ ~̂E

@t

¼ ~̂jþa

�
ð
þ�Þðp0

_~Eþ _~Ep0�p0
~r� ~B� _~B� ~pÞ

þ�

�
p �@ ~E

@x
þ@ ~E

@x
�p

��

�aeð ~hB� ~BþDE
~Eþðsþ2Þ ~B� ~EþsEi

~rAiÞ: (56)
These equations represent the �-deformed set of Maxwell

equations. The operators ~DB, ~DE, DB, DE, ~hB� and ~hE�
are given as follows:

DB ¼ ð~r � ~rÞ� @

@t
� _�ð~r � ~rÞ þ ð2sþ 3Þ� @

@t

� 2ðsþ 1Þ _�þ ðsþ 2Þð ~A � ~rÞ þ ðsþ 2Þð ~r � ~AÞ;
DE ¼ DB þ s�

@

@t
� 2ðsþ 1Þ _�� 2ðsþ 1Þð ~r � ~AÞ;

~DB ¼ ð~r � ~rÞ ~A @

@t
� _~Að~r � ~rÞ þ ðsþ 1Þ ~A @

@t
� 2ðsþ 1Þ _~A;

~DE ¼ � ~DB þ s� ~rþ 2ðsþ 1Þ _~A;
~hB� ¼ ð~r � ~rÞ ~A� @

@t
� _~A� ð ~r � ~rÞ

� s� ~r�þðsþ 1Þ ~A� @

@t
� ð3sþ 4Þ _~A�;

~hE� ¼ � ~hB ��s� ~r� : (57)

D. Natural realization

We see that all the corrections to commutative electro-
dynamics depend on the realization of operator x̂�

x̂� ¼ x� þ 
x�ða � pÞ þ �ðx � aÞp� þ �ðx � pÞa�; (58)

that is, on the parameters 
, � and �. We are going to
investigate the so-called natural realization [28]. The
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easiest way to get the natural realization is to demand that
(58) is Hermitian, that is x̂y ¼ x̂ and put � ¼ 0, then we
get 
 ¼ �1, and � ¼ 1, and for operator x̂ in natural
realization we have

x̂ nat
� ¼ x�½1� ða � pÞ� þ ðx � aÞp�: (59)

The parameter s becomes snat ¼ �1. For the complex
operators given in (57) in natural realization we get

~DB ¼ ð~r � ~rÞ ~A @

@t
� _~Að ~r � ~rÞ;

~DE ¼� ~DB �� ~r;
DB ¼ ð~r � ~rÞ� @

@t
� _�ð ~r � ~rÞþ�

@

@t
þð ~A � ~rÞþ ð ~r � ~AÞ;

DE ¼DB ��
@

@t
;

~hE�¼ _~Að~r � ~rÞ� ð~r � ~rÞ ~A� @

@t
þ _~A�;

~hB�¼� ~hE �þ� ~r� : (60)

And for the �-deformed Maxwell equations in the natural
realization we finally have

~r� ~̂B¼�aeð ~DB � ~B� ~E � ~BÞ;

~r� ~̂Eþ@ ~̂B

@t
¼ aeð ~hE � ~EþDB

~B�Bi
~rAiÞ; ~r � ~̂E

¼ �̂þaeð ~DE � ~E� ~B2Þ;

~r� ~̂B�@ ~̂E

@t
¼ ~̂j�aeð ~hB � ~BþDE

~Eþ ~B� ~E�Ei
~rAiÞ:
(61)

For the the force operator we have

F̂ nat
� ¼ Ĝnat

� þ eFnat
��ðŷÞ _̂x� �m�nat

�� _x
� _x; (62)

where

~Fnat
�� ¼ 0;

�nat
�� ¼ aeð�F�0�� þ F0��� þ 3F��	

0
Þ;

Fnat
��ðŷÞ ¼ F�� þ at

�
@F��

@x
� p

�
� a _F��ðx � pÞ;

Ĝnat
� ¼ G�ðŷÞ � amG0 _x� þ amðG � _xÞ	0

�:

(63)

Note [see Eq. (62)] that the force depends not only on the
charge of the particle, but on its mass also. This mass
dependence vanishes in the limit of a ! 0.

IV. CONCLUSION

In this paper, we have constructed a force equation and
Maxwell’s equation on �-deformed space-time. For this
construction, we have generalized a variation of Feynman’s
approach [24] to �-deformed noncommutative space-time.

This approach also starts with the same assumptions as in
Feynman’s approach [22,23], and uses the notion of ca-
nonical conjugate momenta and their commutators (or
Poisson brackets) with coordinates. Then, as in the
Feynman’s approach, by repeated use of Jacobi identity,
the force equation and Maxwell’s equations are derived.
The main differences in this approach are the use of
minimal coupling prescription for the gauge field, and
the existence of a classical limit. This approach [22–24]
allows us to take the classical limit which is obtained by
replacing ðiℏÞ�1½� with fgPB.
We have obtained the �-dependent modification to the

Newtons force equation in Sec. III A. Then we introduce
the gauge field in Sec. III B, and derive the Lorentz force
equation, as well as Maxwell’s equations, in the �-space-
time. The additional contributions due to �-deformation of
space-time to the force equation that are linear in _x can be
interpreted as due to a background electromagnetic field
and those proportional to _x2 as a induced curvature of
space-time. This is in similar spirit as the induced gravity
in Moyal space-time considered in [29]. Here, these cor-
rections are obtained up to first order in the deformation
parameter. This change in the Lorentz force equation will
affect the trajectories of charged particles in external elec-
tromagnetic fields. This can lead to possible observable
effects in the beams of high-energy accelerators. It is clear
that these effects would violate Lorentz symmetry and
modify the dispersion relations. These aspects are inves-
tigated in detail in [17].
The �-dependent corrections to the force equation and

Maxwell’s equations change with the choice of realization
of noncommutative coordinates we use. We have investi-
gated this modification for natural realization [28] in
Sec. III D. This realization is Hermitian and has the prop-
erty that the corresponding momentum transforms as a
4-vector under Lorentz algebra.
The �-deformed Maxwell equations obtained here are

complicated, even in the natural realization. With further
simplifying assumptions, they can be compared easily with
what we know in the commutative case. For the static case,
with �̂, E, and � set to zero we get the equations for
�-deformed magnetostatic. They are

~r � ~̂B ¼ 0 ~r� ~̂B ¼ ~̂j: (64)

In the electrostatic limit, there are additional terms. The
framework employed here to derive the force equation and
Maxwell’s equations allows us to replace the (quantum)
commutators with corresponding Poisson brackets to get
the classical result [22–24]. Thus, by substituting commu-
tator with Poisson bracket, that is 1

iℏ ½; � ! f; g and all the

operators go to c-number functions. Now the parameter �
becomes the proper time of a particle.
In this classical limit we calculate the corrections to the

classical Coulomb force between two test particles of
charge e at rest separated at a distance r in the
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�-deformed noncommutative space-time. Since we con-
sider nonrelativistic case, we get d�dt ¼ 1. By setting _xi ¼ 0

and with vanishing G�, B, A and E ¼ e
4�r2

in (62), we get

F̂ ¼ e2

4�r2
ð1� 2amÞ: (65)

Thus we see that the Coulomb law does not change the
form. The effect of noncommutativity can be interpreted as

change in the charge of the particle e ! eð1� 2amÞ1=2.
This shows that the electrodynamics depends on the mass
of the particle as well as its charge. The same feature was
shown in [21] also.

Next, we consider the case of a particle of mass m and
charge e, moving in a constant external electric field E,
with a velocity ~v. From Eq. (62), we find

~̂F ¼ e ~Eð�� amð2�2 þ ~v2ÞÞ � aemð ~E � ~vÞ ~v
¼ �e ~E� ame ~Eð2�2 þ ~v2Þ � aemð ~E � ~vÞ ~v; (66)

where � ¼ ð1� ~v2Þ1=2. With further choice ~E ¼ ðE; 0; 0Þ,
we get

F̂x ¼ eEð�� amð2�2 þ ~v2ÞÞ � aemðEvxÞvx

F̂y ¼ �aemðEvxÞvy

F̂z ¼ �aemðEvxÞvz:

(67)

These can be solved to get

_̂yð�Þ ¼ _yð0Þe�aeExð�Þ

ŷð�Þ ¼ _yð0Þ�� _yð0ÞaeE
Z

d�xð�Þ þ yð0Þ:

(68)

It is easy to see that ẑð�Þ also obeys the same equation as
ŷð�Þ, showing the a-dependent modification of ŷð�Þ and
ẑð�Þ as deviations from classical trajectories. This pure
noncomutative effect may also put some bounds on the
parameter a. With initial conditions, _yð0Þ ¼ _zð0Þ ¼ 0, we
get the a-dependent modified equation

€̂x ¼ eE=m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� _x2
p � 2aeE

1� _x2
� 2aeE _x2: (69)

Eq. (67) shows that the a-dependent modification to force
equation also depends on the mass of the particle apart
from its charge.
We also note that, to the first order in the deformation

parameter, there are no corrections to Newton’s law of

gravity. This can be seen by setting _xi; G0 ¼ 0 and Gi ¼
�Gm2

r2
in Eq. (34). This is different from what was shown

in [19]. In [19], using the Hamiltonian framework, a modi-
fication to Newton’s second law due to �-deformation was
derived. The (nonrelativistic) Hamiltonian for a free parti-
cle was obtained by taking the appropriate limit of the
energy-momentum relation valid in �-space-time. Here,
up to first order in the deformation parameter a, the effect
of deformation was to modify the mass m ! mð1þ amÞ.
Though the 1

r potential was also modified (up to first order

in a), this term did not contribute to the force equation.
Here also we do see the same feature.
Also, the fact that the force equation was obtained in

[19] using the Hamiltonian framework different from what
we get here raises the question whether the equations (of
motion) obtained here are derivable from a Hamiltonian or
a Lagrangian. In the commutative case, the condition for
existence of Lagrangian/ Hamiltonian from which equa-
tions of motion can be derived had been studied
[30,31].This problem, in the Moyal space was investigated
in [32]. We plan to study this in the case of �-space-time.
In Feynman’s approach, due to the nonvanishing

commutators between the coordinates and velocities, the
rotation symmetry is broken and it was shown that by
including magnetic angular momentum, this symmetry
can be restored [26]. Inclusion of magnetic monopoles in
Feynman’s approach was also considered. We plan to
address these issues separately. Generalizing the method
adopted here for general relativistic case, where the metric
will depend on the space-time coordinate, is of immense
interest. This work is in progress and will be reported
elsewhere.
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