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We discuss the nonrelativistic limit of quantum field theory in an inertial frame, in the Rindler

frame and in the presence of a weak gravitational field, and attempt to highlight and clarify several

subtleties. In particular, we study the following issues: (a) While the action for a relativistic free

particle is invariant under the Lorentz transformation, the corresponding action for a nonrelativistic

free particle is not invariant under the Galilean transformation, but picks up extra contributions at the

end points. This leads to an extra phase in the nonrelativistic wave function under a Galilean

transformation, which can be related to the rest energy of the particle even in the nonrelativistic

limit. We show that this is closely related to the peculiar fact that the relativistic action for a free

particle remains invariant even if we restrict ourselves to Oð1=c2Þ in implementing the Lorentz

transformation. (b) We provide a brief critique of the principle of equivalence in the quantum

mechanical context. In particular, we show how solutions to the generally covariant Klein-Gordon

equation in a noninertial frame, which has a time-dependent acceleration, reduce to the nonrelativistic

wave function in the presence of an appropriate (time-dependent) gravitational field in the c ! 1
limit, and relate this fact to the validity of the principle of equivalence in a quantum mechanical

context. We also show that the extra phase acquired by the nonrelativistic wave function in an

accelerated frame, actually arises from the gravitational time dilation and survives in the nonrelativistic

limit. (c) While the solution of the Schrödinger equation can be given an interpretation as being the

probability amplitude for a single particle, such an interpretation fails in quantum field theory. We

show how, in spite of this, one can explicitly evaluate the path integral using the (nonquadratic) action

for a relativistic particle (involving a square root) and obtain the Feynman propagator. Further, we

describe how this propagator reduces to the standard path integral kernel in the nonrelativistic limit.

(d) We show that the limiting procedures for the propagators mentioned above work correctly even in

the presence of a weak gravitational field, or in the Rindler frame, and discuss the implications for the

principle of equivalence.
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I. INTRODUCTION

The fundamental principles of physics, as we under-
stand them today, emphasize the role of three constants:
G (Newton’s gravitational constant), c (the speed of
light) and ℏ (the Planck constant). By a suitable choice
of units, we can set the numerical value of all these
three to unity and the broad structure of physical theo-
ries can be represented using a three-dimensional space
in which each of the Cartesian coordinates is taken to
be one of the above mentioned fundamental constants
(see Fig. 1). It turns out to be convenient to use (1=c)
rather than c in such a description, and the entire space
of physical theories will be confined within the unit
cube so formed.

The examination of this diagram reveals several inter-
esting features.1 The origin G ¼ 0, ℏ ¼ 0, c ¼ 1 repre-
sents an idealized nonrelativistic (point) mechanics (NRM)
with which many physics courses begin. Moving along the
speed of light axis to c�1 ¼ 1, (keeping G ¼ 0, ℏ ¼ 0),
will get us special relativistic mechanics. Similarly, mov-
ing along the G axis will lead to nonrelativistic, classical,
Newtonian gravity and travelling along the ℏ axis will lead
to nonrelativistic quantum mechanics (QM). More exact
theoretical structures emerge when a pair of constants are
nonzero. The vertex c�1 ¼ 1, G ¼ 1, ℏ ¼ 0 represents
classical general relativity which combines the principles
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1One of the authors (TP) has used this diagram during his
lectures in the mid-eighties. A somewhat similar diagram with a
tetrahedron rather than a cube appears in [1]. It is very likely that
many others have thought of such a description but we could not
find a published reference.
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of special relativity and gravity. Similarly, ℏ ¼ 1, c�1 ¼ 1,
G ¼ 0 leads to flat spacetime quantum field theory (QFT)
which combines the principles of special relativity and
quantum theory. The vertex at which all the three constants
are unity, c�1 ¼ 1, G ¼ 1, ℏ ¼ 1, should represent the
domain of quantum gravity but, more importantly for our
purpose, it also represents the study of quantum field theory
in curved space-time (QFT in CST), like, for example, the
study of radiation from black holes. (A description of the
thermal features of black holes requires all these three
constants to be nonzero.) While quantum gravity still
remains a distant dream, we do have a fair amount of
understanding of quantum field theory in curved spacetime
and, in this sense, this vertex (QFT in CST) can be con-
sidered as within our grasp.

While most of these limiting forms of physical theories
have attracted a reasonable amount of attention and made
it into textbooks, the above diagram brings out one limit-
ing case which probably has not been explored in com-
parable detail. This is the vertex with c�1 ¼ 0, G ¼ 1,
ℏ ¼ 1, which corresponds to exploring the nature of
gravity in a quantum mechanical context (GQM). Much
of the discussion in this paper is devoted to the explora-
tion of this vertex and, more generally, to projecting the
theories to the Gℏ plane by taking the c ! 1 limit in
different contexts.

This vertex is of interest for several reasons. First, there
are interesting questions related, for example, to the princi-
ple of equivalence and the free-fall of atomic systems in
Newtonian gravitational fields which are conceptually and
experimentally important [2,3]. This topic has received a
fair amount of attention in the context of neutron interfer-
ometry [4] as well as in the context of neutrino physics [5].
There are some controversies (and possible lack of clarity)
in the literature on this topic, which makes it worth studying.

Second, this vertex serves as an interesting test-bed for
several limiting processes. For example, note that one
can arrive at the GQM vertex from the quantum field
theory in curved spacetime (QFT in CST) vertex by
taking the limit c ! 1. It will be interesting to ask
what limiting forms the known results in quantum field
theory in curved spacetime take when we project (move)
along this direction and do a Taylor series expansion in
inverse powers of c. (For example, it would be interest-
ing to ask what is the lowest nontrivial order in c�1 one
should work at to reproduce, say, the thermal nature of
the inertial vacuum.)

Third, this limit also has interesting implications even in
the context of G ¼ 0, viz., when we move from quantum
field theory to quantum mechanics. How does quantum field
theory reduce to single particle quantum mechanics when
we take the c ! 1 limit, and how does this limiting
process get modified when we ‘‘switch on’’ G? We will
see that there are some subtleties even in the simplest
context of transition from special relativity to nonrelativistic

mechanics because the symmetry groups—the Lorentz
group and the Galilean group—have very different struc-
tures [6].
Finally, it is interesting to investigate the role of the

principle of equivalence in quantum mechanical and field

theoretic phenomena. (This issue has attracted attention in
many of the papers quoted in [2,3]). We know that one can

mimic the local effects of gravity by a coordinate trans-

formation to a suitable noninertial frame. Therefore, a
corresponding transformation to a noninertial frame in

quantum mechanics must allow us to incorporate the ef-

fects of gravity and take us from the QM to the GQM

vertex. It is interesting to verify this explicitly and under-
stand the details.
The key new results in our paper are the following:
(i) We show that the reason for the noninvariance of the

Galilean action under Galilean transformations is
intimately connected to the existence of rest-mass
energy of the particle which leaves a residue even in
the nonrelativistic limit. The details of the calcula-
tion might help to clarify some controversial con-
clusions in the literature [7].

(ii) We point out that the special relativistic action is
invariant under a Lorentz transformation even if we
ignore terms of order 1=c4 and beyond, and discuss
the consequences of this result, which does not seem
to have been noticed previously in the literature.

(iii) We show that the principle of equivalence does
hold good in quantum mechanics, if it is interpreted
as embodying the equivalence of the dynamical
equations in an accelerated frame and in a gravita-
tional field.We explicitly prove this equivalence for
the case of the Schrödinger equation in an inertial
and an accelerated frame of reference.

(iv) We show that the relativistic Feynman propagator
in quantum field theory can be obtained from a
path integral over expðiA=ℏÞ, just as in the case of
nonrelativistic quantum mechanics, but now with
the standard special relativistic action A which is
not quadratic. We also show explicitly how the
Feynman propagator reduces to the Feynman path
integral kernel in the nonrelativistic limit, not only
in the inertial frame, but also in the Rindler frame,
and in the more general context of a weak gravita-
tional field. This procedure also allows us to obtain
the leading relativistic correction to the Feynman
path integral.

(v) We show that the reason for the nontransitivity
property of the Feynman propagator is the same as
that for the nontransitivity of the corresponding
energy kernel in the nonrelativistic theory, and we
elaborate and discuss this connection.

Throughout the paper, we have tried to be as self-
contained as possible by giving the necessary pedagogical
details.
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II. BEHAVIOR OF SYSTEMS UNDER LORENTZ
TRANSFORMATIONS AND GALILEAN

TRANSFORMATIONS

We begin by discussing the—apparently elementary—
situation of the transition from special relativity to NRM
by taking the limit c�1 ! 0 which involves moving along
special relativistic to NRM in Fig. 1. While text books
consider this limiting procedure as straightforward, we will
see that some curious features arise when we consider the
limiting form of the action functional in this context. (Not
surprisingly, this issue has led to some controversial con-
clusions in published literature [7] which we also hope to
clarify.) As is well known, special relativity is invariant
under a Lorentz transformation of the coordinates, while
nonrelativistic mechanics is invariant under a Galilean
transformation of the coordinates. Given the fact that one
recovers the Galilean coordinate transformation by setting
c ¼ 1 in the Lorentz transformation equations, one would
have thought that any theory which is Lorentz invariant
will lead to a theory which is invariant under Galilean
transformations in the limit of c ! 1. As we shall see,
there are several subtleties in the manner by which
Galilean invariance of the theory arises in this limit from
Lorentz invariance. This topic is usually discussed in the
literature in relation to the structure of the Galilean group
and superselection rules in quantum mechanics (see e.g.,
[6]). We shall explore the issues in a more straightforward
and transparent manner.

A. Behavior of action functionals under Lorentz
and Galilean transformations

We begin by enquiring how the action functional for a
free particle changes under Lorentz transformations in
special relativity and Galilean transformations in nonrela-
tivistic mechanics. We note that the action A is given by

A ¼
Z

Lðx; v; tÞdt (1)

where the Lagrangian L can be expressed as a function
L ¼ Lðv2Þ of the square of the magnitude of the particle’s
velocity, by taking into account the homogeneity of space
and time and the isotropy of space. This holds both in the
case of relativistic and nonrelativistic mechanics.
It is impossible to proceed further and determine the

explicit form of the Lagrangian, without making some
additional assumptions. We now have to make a distinction
between nonrelativistic and relativistic mechanics by pos-
tulating the invariance of physical laws under different sets
of coordinate transformations.
In nonrelativistic theory, we postulate that the equations

of motion should retain the same form when we make a
Galilean transformation:

x ¼ x0 þ Vt; t ¼ t0 (2)

from the coordinates ðx; tÞ of an inertial frame S to the
coordinates ðx0; t0Þ of another frame S0 moving with a
uniform velocity V along the positive x direction with
respect to S. (In this and what follows, we suppress the
two spatial dimensions and work in (1þ 1) dimensions for
simplicity.) The corresponding velocity transformation is
v ¼ v0 þ V where v and v0 are the velocities measured in
frames S and S0 respectively.
The sufficient (though not necessary) condition for the

equations of motion to retain the same form in both S and
S0 is that the action should be invariant under the trans-
formations in Eq. (2). It is straight forward to see that no
nontrivial function Lðv2Þ has this property and hence we
fail to construct an action functional which remains invari-
ant under the Galilean transformation.
The usual procedure at this stage is to note that the

equations of motion will remain invariant even if the
Lagrangian is not, as long as the Lagrangian changes
only by the addition of a total time derivative of a function
of coordinates and time. It is again easy to show that this
requires the Lagrangian for the free particle to be propor-
tional to the square of the velocity i.e. L / v2 or L ¼
ð1=2Þmv2 wherem is defined to be the mass of the particle.
In this case, the Lagrangians L and L0 in the frames of
reference S and S0 respectively are related by

L ¼ 1

2
mv2 ¼ 1

2
mðv0 þ VÞ2 ¼ L0 þ d

dt

�
mx0V þ 1

2
mV2t

�
:

(3)

Hence, in the nonrelativistic theory, the Lagrangians L and
L0 differ by a total time derivative of a function of coor-
dinates and time. The corresponding actions differ by
contributions at the end points:

A ¼ A0 þ
�
mx0V þ 1

2
mV2t0

���������2

1
: (4)
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FIG. 1. The ‘‘physics cube’’. See text for discussion.
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Note that the canonical momentum (p0 ¼ p�mV) and
the energy (E0 ¼ E� pV þ ð1=2ÞmV2) are not invariant
when we transform from L to L0.

In special relativity, we replace Eq. (2) by the Lorentz
transformations between S and S0 of the form:

x ¼ x0 þ Vt0

ð1� V2=c2Þ1=2 ; t ¼ t0 þ Vx0=c2

ð1� V2=c2Þ1=2 : (5)

The transformation of velocities is now given by

v ¼ v0 þ V

1þ v0V=c2
: (6)

In the limit of c ! 1, the above equations reduce to the
corresponding ones for the Galilean transformation.

Curiously enough, it is now possible to construct an
action functional which is actually invariant (instead of
picking up an extra boundary term) under the transforma-
tions in Eq. (5). This is given by

A ¼ �
Z
ð1� v2=c2Þ1=2dt (7)

where � is a constant. The above form of the action
remains invariant under Lorentz transformations. It is not
possible to choose � such that Eq. (7) reduces to the action
for nonrelativistic mechanics when c ! 1. The best we
can do is to choose � in such a way that in the non-
relativistic limit, we get back the nonrelativistic form of
the action, apart from a constant term in the Lagrangian.
This amounts to setting � ¼ �mc2. Hence, in special
relativity, the action for a free particle is taken to be

A ¼ �mc2
Z
ð1� v2=c2Þ1=2dt: (8)

The above discussion raises a couple of questions which
require investigation.

First, we expect the nonrelativistic theory to arise as a
limiting case of the fully relativistic theory, in the limit of
c ! 1. It is true that the Lorentz transformation equations
reduce to the Galilean transformation equations in the limit
of c ! 1. However, the special relativistic action does not
reduce to the nonrelativistic action in this limit, but instead
picks up an extra term, �mc2t evaluated at the end points.
As we shall see, this term—which is usually ignored in
textbooks as being due to ‘‘just an addition of a constant to
a Lagrangian’’—has some interesting implications for the
structure of special relativity and nonrelativistic mechan-
ics. This is already hinted at by the fact that the relativistic
action in Eq. (8) blows up in the limit of c ! 1 and does
not have a valid limit in the strict mathematical sense.
If one can ‘‘renormalize’’ this action by adding a term
A1 � mc2t to Eq. (8), then AþA1 will have a proper
limit. But then,A1 is not Lorentz invariant, and hence this
‘‘renormalization’’ is not a valid procedure. We will see
repeatedly that the term mc2t plays a crucial role in our
discussions.

Second, we find that in the special relativistic theory,
which is the more exact theory, the action remains invariant
under special relativistic (Lorentz) transformations.
However, in the nonrelativistic limit, the corresponding
nonrelativistic action does not remain invariant under the
analogous nonrelativistic (Galilean) transformations, but
again picks up some extra terms. This is surprising, when
seen in the light of the Galilean transformation being a
limiting case of the Lorentz transformation.2

Both the above issues are usually ignored by noting that
the equations of motion do not change when a total time
derivative of a function of coordinates and time is added to
the Lagrangian, and hence such action functionals are
equivalent as far as physical phenomena are concerned.
This is true in classical physics, but in quantum theory,
the form of the action is closely related to the phase of the
wave function. Our analysis suggests that the phase of the
wave function of a free particle remains invariant under
Lorentz transformations, but in the c ! 1 limit, this in-
variance gets broken. We will now explore this situation by
studying the phase of the free particle wave function in
relativistic quantum theory and its limiting form in non-
relativistic quantum mechanics.

B. Behavior of wave functions under Lorentz and
Galilean transformations

The key issue can be introduced by examining the
following argument which seems to allow one to find the
wave function of a moving free particle from that of a
stationary free particle. The argument runs as follows:
Consider a particle of mass m which is at rest in a frame
S0 that is moving with a velocity V along the x axis of
another inertial frame S. We postulate that (a) the phase of
the wave function in S0 should depend on the rest energy
mc2 in the usual manner and hence the wave function
should be c / expð�imc2t0Þ. If we also assume that
(b) c is a scalar under Lorentz transformations, then the
wave function in S is given by

c / expð�imc2t0Þ / exp½�imc2�ðt� Vx=c2Þ�
/ exp½�iEtþ ipx� (9)

where the symbols have their usual meanings and
E ¼ �mc2 and p ¼ �mV are the relativistic energy and

2As an aside, we note the following amusing fact: We imple-
mented homogeneity in time and space in the free particle
Lagrangian by excluding the explicit dependence of L on x or
t but incorporated Galilean invariance by allowing L to pick up a
total derivative. It is possible to do the converse. One can write
down free particle Lagrangians which are strictly invariant under
Galilean transformations but depend explicitly on t and x
through a total time derivative. A simple example is L ¼
ð1=2Þmðv� x=tÞ2 which is invariant under a Galilean trans-
formation but depends on t and x through a total time derivative;
L differs from L0 ¼ ð1=2Þmv2 by the total time derivative
�d=dtðð1=2Þmx2=tÞ.
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momentum of the particle in the frame S in which it is
moving with velocity V. Thus, given the postulates (a) and
(b) mentioned above, we can determine the wave function
of a moving particle from that of a particle at rest using the
Lorentz transformation.3

If we now take the limit of c ! 1, we find that p ! mV
and E ! mc2 þ p2=2m. Hence the wave function of a
nonrelativistic particle seems to be given by

c NR / exp½�imc2t� exp½�ið1=2ÞmV2tþ imVx�: (10)

Thus we seem to have obtained the correct solution to free
particle Schrödinger equation ‘‘except for’’ the phase term
(� imc2t) which has no interpretation in nonrelativistic
mechanics. Again, strictly speaking, c does not have a
limit when c ! 1. One needs to consider, instead, the
quantity c exp½imc2t� to get the correct limit, but, just as
in the case of the action functional, this is not a valid
prescription. The correct c in a relativistic theory is indeed
the one in Eq. (9) and not the one with an mc2t term
subtracted out from the phase.

The situation becomes more curious when we realize
that we could not have done any of these using Galilean
transformations alone. That is, there is no way of obtaining
the wave function of a moving particle from that of a
stationary particle by the application of a Galilean trans-
formation. To begin with, the postulate (a) above has no
meaning in nonrelativistic quantum mechanics and so we
cannot write down a wave function with a time-dependent
phase in its rest frame. Second, as we shall see, wave
functions do not transform as ‘‘scalars’’ under Galilean
transformations. To get everything right, one has to add
an extra phase, the origin of which we will now discuss.

Let us again start with the phase of a relativistic wave
function (Et� px). We know that under a Lorentz trans-
formation, this goes over to

ðEt� pxÞ ) ðE0t0 � p0x0Þ (11)

where E0 � �ðE� VpÞ; p0 � �ðp� VE=c2Þ. In this
transformation, we treat E, p as just two real numbers
parameterizing the wave function, and are not assuming
that they are components of a four-vector, etc. But once we
have applied the Lorentz transformation to the coordinates,
we can interpret the coefficients of t0, x0 (which are E0, p0)
as the energy and momentum of the particle in S0, and this
interpretation, as we know, is correct.

None of this works with Galilean transformations and
nonrelativistic quantum mechanics. Under a Galilean
transformation, the phase of the free particle wave function
in nonrelativistic quantum mechanics transforms as

p2

2m
t� px )

�
p2

2m
� pV

�
t0 � px0 (12)

which does not allow us to read off the coefficients of t0 and
x0 as the physical energy and momentum of the nonrela-
tivistic particle in S0. So, unlike in the relativistic case, we
cannot identify the correct energy and momentum from the
phase of the wave function after a Galilean transformation.
We can, of course, introduce by hand the two parameters
p0 ¼ p�mV, E0 ¼ E� Vpþ ð1=2ÞmV2 and re-express
the right-hand side of Eq. (12) in terms of p0, E0. The result
is best presented in terms of the identity�
p02

2m
t0 � p0x0

�
�

�
p2

2m
t� px

�
¼

�
mVx� 1

2
mV2t

�

¼
�
mVx0 þ 1

2
mV2t0

�
: (13)

So, if we express the phase in S0 in terms of E0 and p0, then
the phase is not invariant and we need to add an extra
phase in the right-hand side of Eq. (13). This extra phase
is essentially the difference between the two actions in
Eq. (4). Since the phases of wave functions are classical
actions for a free particle, it is clear that the noninvariance
of the action under Galilean transformations reflects itself
in the additional phase that arises in the wave function.
These facts are also related to the contrasting behavior of

the Klein-Gordon equation and the Schrödinger equation
under Lorentz transformations and Galilean transforma-
tions, respectively. With future applications in mind, we
will consider the transformation of the Schrödinger equa-
tion under a more general coordinate transformation from a
frame of reference S ¼ ðt; xÞ to a frame S0 ¼ ðt; x0Þ �
ðt; x� �ðtÞÞ where �ðtÞ is some arbitrary function of
time. (The Galilean transformation is a special case when
�ðtÞ ¼ Vt; when �ðtÞ is not a linear function of t this
represents a transformation to a noninertial frame.) Using

the fact that ð@=@xÞt ¼ ð@=@x0Þt0 , ð@=@tÞx ¼ ð@=@t0Þx0 �
_�ð@=@x0Þt0 we can transform the free particle Schrödinger
equation

i
@�

@t
¼ � 1

2m

@2�

@x2
(14)

into the ðt0; x0Þ coordinates and obtain

i
@�

@t0
¼ � 1

2m

@2�

@x02
þ i _�

@�

@x0
: (15)

(We have set ℏ ¼ 1 for convenience.) In the case of the
Galilean transformation, we have �ðtÞ ¼ Vt, leading to

i
@�

@t0
¼ � 1

2m

@2�

@x02
þ iV

@�

@x0
: (16)

Obviously the free particle Schrödinger equation is not
form invariant under the Galilean transformation if we

3Strictly speaking, quantum field theory does not allow the
notion of a single-particle wave function with a probabilistic
interpretation. We shall discuss this issue more rigorously in
Sec. V, but the key points mentioned here continue to hold even
when we take this fact into account. Hence we will not worry
about it in this section.
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consider � to be a scalar—unlike the Klein-Gordon equa-
tion, which is form invariant, with the wave function
remaining a scalar. It is the second term on the right-
hand side of Eq. (16) which requires an extra phase to be
added to the wave function for everything to be consistent.

Once again, all this is closely related to the fact that the
action in special relativity is invariant under Lorentz trans-
formations while the action in nonrelativistic mechanics
picks up an additional term under Galilean transforma-
tions. To see this explicitly, we will again consider the
behavior of the action for a free particle under the trans-
formation from a frame of reference S ¼ ðt; xÞ to a frame
S0 ¼ ðt; x0Þ � ðt; x� �ðtÞÞ as before, and relate it to the
extra phase in the wave function explicitly. The Lagrangian
of the free particle in S0 is given by

L0 ¼ ð1=2Þm _x02 ¼ ð1=2Þm _x2 �m _x _�þð1=2Þm _�2 (17)

which can be written in the form

L0 ¼ Lþ df

dt
(18)

where

f � �mx _�þ
Z
ð1=2Þm _�2dt (19)

and L is a new Lagrangian:

L ¼ ð1=2Þm _x2 þmx €� (20)

which is equivalent to L0 as far as the equations of motion
are concerned, since the total time derivative df=dt does
not contribute to the equations of motion. This L represents

the Lagrangian for a particle acted upon by a force m €� or,
equivalently, a particle located in a spatially homogeneous

but time-dependent gravitational field €�. (In fact, the entire
phase f acquires a simple physical meaning when we take
gravitational time dilation into account; we will say more
about this in Sec. III.)

We recall that when we add dfðx; tÞ=dt, to the
Lagrangian L, thus transforming it to L0 ¼ Lþ df=dt,
both the canonical momentum and the Hamiltonian
change, becoming p0 ¼ pþ @f=@x and H0 ¼ H �
@f=@t respectively. In quantum mechanics, the time evo-
lution of the wave function is determined by the
Hamiltonian operator and hence, the form of the wave
function must change when we make a coordinate trans-
formation from the frame S to the frame S0. Let�0ðt; x0Þ be
the quantum mechanical wave function for the free particle
in the frame S0. Then, it can be shown that the correspond-
ing wave function�ðt; xÞ for the same particle in the frame
S is given by

�ðt; xÞ ¼ �0ðt; x� �ðtÞÞe�if=ℏ (21)

and it satisfies the equation

iℏ
@�ðt; xÞ

@t
¼ � ℏ2

2m

@2�ðt; xÞ
@x2

�m €�x�ðt; xÞ (22)

in the frame of reference S, which is just the Schrödinger

equation with a ‘‘pseudopotential’’ energy term, �m €�x.
This term arises because the frame S is an accelerated
frame of reference and has a close link with the principle
of equivalence, which we shall take up later on in Sec. III.
(This result has been derived numerous times in the litera-
ture; for completeness we reproduce the derivation in
Appendix A).
Coming back to the case of Galilean transformation, we

have �ðtÞ ¼ Vt and

f ¼ �mxV þ 1

2
mV2t: (23)

Therefore, Eq. (21) takes the form

�ðt; xÞ ¼�0ðt; x�VtÞexp½ð�i=ℏÞð�mxVþ ð1=2ÞmV2tÞ�:
(24)

That is, we need to transform the wave function, treating it
as a scalar, and then add an extra phasewhich is consistent
with what we found in Eq. (13). As we have said before, all
this is perfectly consistent as regards the application of the
Galilean transformation in quantum mechanics.
How is it that the Klein-Gordon equation is invariant

under the Lorentz transformation, but the Schrödinger
equation—which is presumably obtained in the c ! 1
limit of the Klein-Gordon equation—is not invariant under
the Galilean transformation, given the fact that the Lorentz
transformation reduces to the Galilean transformation in
the appropriate limit?
This has to do with the manner in which one obtains the

Schrödinger equation from the Klein-Gordon equation and
brings to the center stage the role of the mc2 term in the
phase. We will outline how the extra phase in Eq. (24) can
be obtained from a fully invariant Klein-Gordon equation.
Consider the wave function�ðt; xÞ which is the solution to
a free particle Klein-Gordon equation. We know that under
a Lorentz transformation, �ðt; xÞ ) �0ðt0; x0Þ, thus trans-
forming as a scalar. To obtain the Schrödinger equation for
a wave function c ðt; xÞ we first have to separate the mc2t
term from the phase of the � by writing

�ðt; xÞ ¼ c ðt; xÞ exp½�imc2t�: (25)

It is then straightforward to show that in the limit of
c ! 1, c ðt; xÞ will satisfy a free particle Schrödinger
equation. [We will demonstrate a more general result in
the presence of a gravitational field later on, and hence we
skip the algebraic details here; see Eq. (48).] To obtain the
Schrödinger equation in S0, we have to similarly write
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�0ðt0; x0Þ ¼ c 0ðt0; x0Þ expð�imc2t0Þ. The fact that � trans-
forms as a scalar can now be used to relate c and c 0, and
we find that

c 0 ¼ c exp½�imc2ðt� t0Þ�: (26)

We see that, in addition to the scalar transformation, the
wave function picks up a phase which is just mc2ðt� t0Þ.
Incredibly enough, this expression has a finite, nonzero
limit when c ! 1! Evaluating this quantity in the limit
of c ! 1, we get

mc2ðt� t0Þ ¼ mc2�

�
t0 þ Vx0

c2

�
�mc2t0

¼ mc2
�
t0 þ Vx0

c2
þ 1

2

V2t0

c2
þO

�
1

c4

��
�mc2t0

¼ mVx0 þmV2t0

2
þO

�
1

c2

�
: (27)

This is precisely the mysterious phase which occurs in the
Schrödinger equation under a Galilean transformation. It
has a simple interpretation as being equal to mc2ðt� t0Þ,
thus emphasizing the role of rest energy even in the

nonrelativistic limit. We will see later that this interpre-
tation holds even in the presence of gravity, if we take the
gravitational time dilation effect into account.

C. A little surprise: Invariance under truncated
Lorentz transformation

There is another peculiar result closely related to the one
obtained above which deserves mention. We have already
seen that the action for a relativistic particle is invariant
under the Lorentz transformation while the action for the
nonrelativistic particle is not invariant under the Galilean
transformation. But it turns out—somewhat surprisingly—
that the action for the relativistic particle remains invariant
even if we only retain the terms in the action up to and
including Oð1=c2Þ (and ignore terms of Oð1=c4Þ and
higher) and also treat the Lorentz transformation to the
same order of approximation.
This may be seen as follows: In the expression for the

relativistic action for a free particle, we expand the inte-
grand in a power series retaining terms up to and including
order 1=c2, and ignoring all higher order terms. We then
find

A ¼ �mc2
Z
ð1� v2=c2Þ1=2dt ¼ �mc2

Z dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðV2=c2Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðV2=c2Þ � ðv02=c2Þ þOð1=c4Þ
q

¼ �mc2
Z

dt0
�
1þ V2

2c2
þOð1=c4Þ

��
1� v02

2c2
� V2

2c2
þOð1=c4Þ

�
¼ �mc2

Z
dt0

�
1� v02

2c2
þOð1=c4Þ

�
: (28)

However, to the same order of approximation, we also
know that:

A ¼ �mc2
Z

dt

�
1� v2

2c2
þOð1=c4Þ

�
: (29)

Hence we find that A and A0 are identical in form, even
to this order in (1=c)! (This is not at all an obvious result
and it occurs due to the cancellation of the (V2=2c2) term
coming from the velocity transformation, with that coming
from the t0 to t transformation.) Clearly, when both these
transformations are carried out consistently, the action
remains form invariant, even if we disregard Oð1=c4Þ and
higher terms!

Note that the action in Eq. (28) is what a text book would
have considered as being the ‘‘same as the action in non-
relativistic mechanics except for a constant added to the
Lagrangian’’. But we have proved that the action for a
nonrelativistic particle is not invariant under a Galilean
transformation, but picks up an extra term. If we express
the change in the nonrelativistic action under the Galilean
transformation as �AG, we can write

�AG ¼ m
Z

dt

�
1

2
v2 � 1

2
v02

�

¼ mc2
Z

dt

�
1� v02

2c2

�
�mc2

Z
dt

�
1� v2

2c2

�
:

(30)

We see that this difference �AG bears a close resem-
blance to the difference between the corresponding rela-
tivistic action functionals, with the crucial difference being
that the time has been kept invariant in Eq. (30) while the
expressions in Eq. (28) and (29) have integrals over t0 and t.
This shows clearly that the reason for the noninvariance of
the Galilean transformation lies in equating t to t0. If we
take into account the difference between t and t0, even to
the lowest order in (1=c2), it will lead to invariance of the
nonrelativistic action functional.
The invariance of the approximate action in Eq. (28)

allows us to obtain the result

mc2ðt� t0Þ ¼ 1

2
m

�Z
dtv2 �

Z
dt0v02

�
: (31)

The left-hand side can be interpreted as the difference in
the phase of a wave function arising due to the rest mass
energy in two coordinate systems. We see that this quantity
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is equal to the expression on the right-hand side which is
completely independent of c! In other words, this phase
difference which occurs in a wave function through the
factor exp½�imc2ðt� t0Þ� survives to a completely non-
relativistic expression in the c ! 1 limit as already seen in
Eq. (27). This result, which is surprising at first sight, arises
from the fact that the difference between the coordinate
time and the proper time carried by a moving clock is given
by

�� ¼ t�
Z

dtð1� v02=c2Þ1=2 � 1

2c2

Z
v02dt (32)

where the last equality holds toOð1=c4Þ. It follows that the
phase difference term

mc2�� � m

2

Z
v02dt (33)

survives in the nonrelativistic limit even though it has no
simple interpretation in the nonrelativistic limit.

This algebraic fact (but not its origin or connection with
the limiting process, etc.) has been noted earlier and dis-
cussed in a different context in Ref. [7] where it was
concluded that there are some difficulties in reconciling
the Galilean transformation with quantum mechanics.
Our analysis shows that this is not the case and that such
a result is indeed expected when the Galilean transforma-
tion is used correctly in quantum mechanics. The real
surprise—for which we have no simple explanation—is
the result that the relativistic action remains form invariant
even when we work to the accuracy of Oð1=c4Þ.

The above result, as well as the invariance of the trun-
cated action in Eq. (28), rely crucially upon our retaining
the mc2 term in all the expressions. In fact, if we define a
nonrelativistic energy as ENR � mc2 þ ð1=2Þmv2, then
one can again show that the phase of the wave function
given by (ENRt� px) transforms to (E0

NRt
0 � p0x0) under a

Lorentz transformation, if we again retain terms only to the
accuracy of Oð1=c4Þ.

III. PRINCIPLE OF EQUIVALENCE
IN QUANTUM MECHANICS

We next take up issues which arise when we switch onG
and move from quantum mechanics towards GQM in
Fig. 1. One of the key questions which has been debated
extensively in the literature is the validity of the principle
of equivalence in quantum mechanics [2,3]. In Newtonian
gravity, the principle of equivalence can be introduced in
many ways and it also leads to several different conclu-
sions. We cannot, a priori, expect all these descriptions of
the principle of equivalence (or the resulting conclusions)
to be equally applicable when we proceed from the vertex
QM to GQM in Fig. 1. We provide a brief critique of this
issue in this section, essentially arguing that much of the
debate can be settled by using an appropriate definition of

the principle of equivalence in the quantum mechanical
domain.

A. The many facets of the principle of equivalence

Consider the following two versions of the principle of
equivalence: (a) The dynamics of a system in a spatially
homogeneous (but possibly time dependent) gravitational
field gðtÞ is the same as the dynamics of the same system
viewed in an accelerated frame with coordinates t0 ¼ t,

x0 ¼ x� �ðtÞ and €� ¼ g. (b) The accelerations of different
masses m1; m2 . . . in a gravitational field are independent
of the masses m1; m2 . . . . Therefore, any measurement
based on the trajectories of a particle moving in a given
gravitational field cannot be used to determine its mass.
It is obvious that the statement (a) implies statement (b)

in nonrelativistic mechanics; we know that the acceleration

a produced in the noninertial frame is just a ¼ €� which is
indeed independent of the mass of the particle. If the
dynamics in the noninertial frame is the same as that in a
gravitational field, then we must have a ¼ gðtÞ in the
gravitational field implying statement (b). Further,
Newton’s law tells us that f ¼ miaðtÞ ¼ mggðtÞ implying

equality of inertial and gravitational masses. (In this paper,
the term ‘‘gravitational mass’’ refers to the passive gravi-
tational mass of the object.) Obviously, a measurement of
the trajectory of the particle cannot be used to determine its
mass.
A moment of thought shows that the last statement

requires qualification in quantum theory. We do not have
trajectories in quantum theory but one assumes that opera-
tors like x, x2, etc. are observables in quantum mechanics.
If so, one should be able to devise a suitable experiment
which measures, say, the dispersion in the position: �2 �
hðx� hxiÞ2i. This quantity certainly depends on the mass of
the particle when the particle moves in a gravitational field
or even if the particle is free. In fact, the case of the free
particle drives home the point without clouding the issue
by involving acceleration, gravity etc. The trajectory of a
free particle in nonrelativistic mechanics is certainly inde-
pendent of its mass, and any observation related to the
trajectory cannot determine its mass. But consider two free
particles having masses m1 and m2 (m1 � m2) with iden-
tical initially prepared states in which the wave functions
are Gaussian wave packets of mean zero and width �x. If
we allow these wave packets to propagate in time, then the
widths�x1 and�x2 of these wave packets at any later time
�t will be given by

ð�x1Þ2 ¼ ð�xÞ2 þ ℏ2ð�tÞ2
4m2

1ð�xÞ2
;

ð�x2Þ2 ¼ ð�xÞ2 þ ℏ2ð�tÞ2
4m2

2ð�xÞ2
:

(34)

Hence, the width of the wave packet at any later time
depends on m, the mass of the free particle. By measuring
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the width at a later time and knowing the initial width, we
can deduce the mass of the particle. The same result holds
for particles moving under a gravitational field (see e.g.,
[8]). Clearly, this cannot be used to prove any violation of
the principle of equivalence.

Note that the Heisenberg equations of motion for the
quantum mechanical particle are identical in structure to

the classical equations of motion and read €x ¼ gðtÞ, and
hence, are independent of mass. Nevertheless, the disper-
sion in particle position will depend on the mass, in gen-
eral. This shows that all the consequences which we derive
from a particular version of the principle of equivalence in
the classical domain may not hold in the quantum domain.

As another example illustrating the same result, con-
sider the context of the gravitational hydrogen atom, with
the Coulomb force between the proton and the electron
being replaced by the gravitational force between two
particles of masses m and M respectively, with m orbiting
around M and m � M. For this system, the energy levels
are given by

En ¼ �G2M2m3

2ℏ2n2
: (35)

We see that the frequency of transition from one energy
state to another will also be proportional to m3, and hence
will depend on the mass of the orbiting particle. Thus, in
principle, this frequency can be used to determine m.
More generally, we can use the frequency of transitions
between successive energy levels of a system composed
of a massive particle orbiting around a ‘‘nucleus’’, to
determine the mass of the orbiting particle. This is clearly
impossible in the classical theory.

Again, this experimental determination of mass should
not be taken as a violation of the principle of equivalence.
To see what is involved, let us consider another example
consisting of a particle of massm, moving under the action
of a potential

VðxÞ ¼ �jxjn: (36)

This represents a ‘‘non-Hookean’’ spring when n � 2. We
will now choose the spring constant � such that it is
proportional to the mass of the particle: � / m ¼ km.
Classically, the mass m cancels out of the equations of
motion, m €x ¼ knmjxjn�1, showing that the acceleration is
independent of the mass of the particle. (More elaborately,
one can consider several masses m1; m2; . . . , each moving
under a separate potential with the same n and k, so that
each potential scales with the corresponding mass.) Once
again, classically, we cannot determine the mass by obser-
vations of the trajectory. The situation is different in quan-
tum mechanics. We can evaluate the energy levels of this
‘‘oscillator’’ in the WKB approximation using the Bohr-
Sommerfeld quantization ruleZ

pxdx ¼
Z
ð2mðEN � VðxÞÞÞ1=2dx ¼ Nℏ (37)

where N is the quantum number corresponding to the
energy level EN , and is assumed to be large compared to
unity. Using this integral we can determine the scaling of
EN withN andm for different values of the exponent n. We
find (Appendix B) that

EN / N2n=ðnþ2Þmðn�2Þ=ðnþ2Þ: (38)

When n ¼ 2, EN / N which is the case of the harmonic
oscillator; in this case, EN is also independent of the mass
m. However, when n � 2 the energy levels EN and hence
the spacing between energy levels depend onm. Therefore,
we can use quantum mechanical transitions between suc-
cessive energy levels of any of these oscillators to deter-
mine their mass m! Clearly, quantum mechanics allows
such a determination which is not possible in classical
theory based on measurements related to the trajectory of
a particle. As the above example shows, this fact has
nothing to do with gravity per se and is a general phe-
nomenon. (In fact, even in classical mechanics, if one
measures dynamical variables like momentum, energy,
etc., one can certainly determine the mass of a free
particle.)

B. Schrödinger equation in noninertial frames
and the principle of equivalence

We believe that issues related to the determination of the
inertial mass of a particle by quantum mechanical obser-
vations are red herrings to the proper formulation of the
principle of equivalence in quantum mechanics. Such a
formulation can be based on the statement (a) in the
beginning of the last section which embodies the mathe-
matical equivalence of dynamical equations in an acceler-
ated frame and in a gravitational field. Given the
Schrödinger equation for a free particle in one frame of
reference, if we transform it to any other arbitrarily accel-
erated frame of reference, we should obtain an equation
identical in form to the Schrödinger equation for a particle
in the presence of an appropriate, in general time-
dependent, gravitational field. For example, if we trans-
form from a frame S ¼ ðt; xÞ to an arbitrarily accelerated
frame S0 ¼ ðt; x� �ðtÞÞ, where �ðtÞ is a function of t, the
Schrödinger equation should pick up a ‘‘potential energy

term’’ VðxÞ ¼ �m €�ðtÞx where � €�ðtÞ is the instantaneous
acceleration of S0 with respect to S.
We have already demonstrated this result earlier in

Eq. (22). The only new feature is that the wave functions
in the two frames are not related by a scalar transformation,
but require an additional phase factor to be added. This
phase factor, as we demonstrated, was required for con-
sistency under Galilean transformations, but the situation is
less clear for the case of an accelerated transformation. In
what follows, we shall investigate this result in greater
detail from different perspectives.
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IV. THE NONRELATIVISTIC LIMIT IN THE
PRESENCE OF GRAVITY, AND THE PRINCIPLE

OF EQUIVALENCE

In Sec. II B, we showed that while the phase of the free
particle Klein-Gordon equation is Lorentz invariant, the
corresponding phase of the Schrödinger wave function is
not invariant under a Galilean transformation. We also
demonstrated that the transformation to an accelerated
frame in the nonrelativistic context leads to the
Schrödinger equation with a gravitational potential.
However, to obtain this result, we needed to explicitly
include a phase in the wave function in Eq. (24). The
question arises as to how we can understand this phase in
a general context when we are no longer dealing with the
Lorentz transformation, and the Galilean transformation as
its limiting form, but have to deal with noninertial frames.
It is important to obtain the result in Eq. (22) directly from
a fully generally covariant equation, just as we obtained the
results for the Galilean transformation by taking the ap-
propriate limit of the Klein-Gordon equation. We shall now
show how this can be done for a time-dependent accelera-
tion, which does not seem to have been discussed in the
literature before.

In the relativistic case, we have a quantum scalar field
satisfying the free particle Klein-Gordon equation in one
frame of reference, which we call ðx; tÞ; the frame ðx; tÞ
being arbitrarily accelerated with time-dependent accelera-
tion gðtÞ with respect to an inertial coordinate system S0 ¼
ðX; TÞ. In this frame (known as the generalized Rindler
frame) the metric is given by

ds2 ¼ ð1þ gðtÞx=c2Þdt2 � dx2: (39)

The explicit coordinate transformation [9] between S and
the inertial frame S0 is given by

X ¼ c
Z

dtð1þ gðtÞx=c2Þ sinh�ðtÞ;

T ¼
Z

dtð1þ gðtÞx=c2Þ cosh�ðtÞ
(40)

where �ðtÞ is related to gðtÞ by

gðtÞ ¼ c
d�

dt
: (41)

The generally covariant Klein-Gordon equation for a scalar
field �ðx; tÞ in this frame is given by

1ffiffiffiffiffiffiffi�g
p @ið ffiffiffiffiffiffiffi�g

p
gik@k�Þ ¼ �m2�: (42)

Hereafter, unless mentioned otherwise, we use units in
which c ¼ ℏ ¼ 1. Using the form of the metric as given
in Eq. (39), we find:

� 1

ð1þ gðtÞxÞ2
@2�

@t2
þ x

dg

dt

@�

@t

1

ð1þ gðtÞxÞ3 þ
@2�

@x2

þ @�

@x

g

ð1þ gðtÞxÞ ¼ m2�: (43)

We now substitute �ðx; tÞ ¼ c ðx; tÞe�imt and note the
following:

@�

@t
¼ �ime�imtc ðx; tÞ þ e�imt @c

@t
;

@�

@x
¼ e�imt @c

@x

(44)

and

@2�

@t2
¼ �m2e�imtc ðx; tÞ � 2ime�imt @c

@t
þ e�imt @

2c

@t2
;

(45)

@2�

@x2
¼ e�imt @

2c

@x2
; (46)

Substituting the above relations into Eq. (43), we find
(putting back the c- and ℏ factors):

�
��

1þ gðtÞx
c2

���
�m2c2c

ℏ2
� 2im

ℏ
@c

@t
þ 1

c2
@2c

@t2

�

�
�
imc2c

ℏ
� @c

@t

�
x

c4
dg

dt
þ

�
1þ gðtÞx

c2

�
3 @2c

@x2

þ
�
1þ gðtÞx

c2

�
2 @c

@x

g

c2
¼ m2c2

ℏ2

�
1þ gðtÞx

c2

�
3
c : (47)

Retaining terms to the lowest order (up to but excluding
order gx=c2), we get on simplification:

iℏ
@c

@t
¼ � ℏ2

2m

@2c

@x2
þmgðtÞxc (48)

which is identical to the Schrödinger equation for a particle
of mass m in an accelerated frame of reference moving
with acceleration �gðtÞ or equivalently, in a time-
dependent gravitational field of strength gðtÞ. Hence, we
see that the Klein-Gordon equation reduces in the appro-
priate limit to the Schrödinger equation, with the term
mgðtÞx indicating the accelerated nature of the frame.
Notice that we have excluded the terms of 1=c2 order.

This is consistent with our earlier comments on the
‘‘accuracy’’ of the Galilean transformation. For the
Galilean transformation and the nonrelativistic limit to be
valid, one must keep only those terms up to order (1=c) and
not beyond.
In fact, the phase f acquired by the nonrelativistic wave

function acquires a direct physical meaning when we
consider the Schrödinger equation as a limit of the Klein-
Gordon equation. We can transform the free particle solu-
tion to the Klein-Gordon equation in the inertial frame,
�ðT; XÞ, as a scalar to the noninertial frame, thus obtaining
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�ðt; xÞ. The nonrelativistic limits of �ðT; XÞ and �ðt; xÞ
will differ by a phase term mc2ðt� TÞ, which, in the
appropriate limit, will give the correct phase dependence
arrived at in Eq. (21) when we consider the effect of
gravitational time dilation. In the presence of a gravita-
tional potential �, the proper time lapse dT of a comoving
clock is related to the coordinate time lapse dt by

ds2 ¼ c2dT2 ¼ c2
�
1þ 2�

c2

�
dt2 � dx2

¼ c2dt2
��

1þ 2�

c2

�
� V2

c2

�
(49)

so that, when V ¼ _�, � ¼ x €�, we get

mc2ðt� TÞ ¼ �mc2
�Z

dt

�
1�

_�2

c2
þ 2x €�

c2

�
1=2 � t

�

� �m
Z

dt

�
�

_�2

2
þ x €�

�

¼ �mx _�þ 1

2
m
Z

dt _�2 (50)

which is precisely the phase f found in Eq. (19)! Once
again we see that a result in nonrelativistic quantum me-
chanics acquires a simple interpretation when we treat
it as a limit of relativistic theory, thanks to the factor
mc2ðt� TÞ in the phase. The result also shows that in the
instantaneous rest frame of the particle, the phase of the
wave function evolves as mc2d�, where � is the proper
time shown by the comoving clock, thereby again validat-
ing the principle of equivalence in quantum mechanics.

We conclude this section with a comment related to the
structure of the Schrödinger equation in Eq. (48) and its
relationship to quantum field theory in the Rindler frame.
For a general �ðtÞ, the potential in Eq. (48) depends ex-
plicitly on time, and hence it does not allow stationary state
solutions. The exception occurs in the case of a uniformly

accelerated frame for which €� ¼ g is a constant. In that
case, Eq. (48) possesses stationary state solutions with the
energy eigenfunctions being Airy functions. A similar
situation arises in the fully relativistic context. For a time
dependent gðtÞ, the metric in Eq. (39) is not stationary and
the Klein-Gordon equation does not possess mode func-
tions with an expð�iEtÞ dependence. The exception is the
case of constant g, leading to the Rindler metric, when
such stationary solutions exist. (In fact, these solutions,
given in terms of Hankel functions, reduce to the corre-
sponding Airy functions in the c ! 1 limit, as they
should.) We know, however, that the positive frequency
mode functions in the Rindler frame are a superposition of
positive and negative frequency mode functions in the
inertial frame, leading to [10] the well-known Davies-
Unruh temperature T ¼ ðℏ=cÞðg=2	Þ. (For a textbook
discussion, see Chap. 14 of Ref. [9].) When one takes the
c ! 1 limit, this effect vanishes at the lowest order (which
is independent of c) but leads to a nontrivial result at the

next order. We hope to describe this and related features in
a separate publication [11].

V. PROPAGATORS IN RELATIVISTIC AND
NONRELATIVISTIC QUANTUM THEORIES

In the previous sections we dealt with the Klein-Gordon
equation and the Schrödinger equation without worrying
about the physical interpretation of their solutions in the
relativistic and nonrelativistic contexts. It is, however, well
known that while the nonrelativistic wave function has a
standard interpretation, as the probability amplitude in a
single particle theory, the solution to the Klein-Gordon
equation cannot be interpreted as a probability amplitude
for the relativistic particle. In fact, consistent interpretation
of quantum field theory requires us to recognize the exis-
tence of antiparticles and treating the solutions of relativ-
istic wave equations as operator-valued entities. This
requires a closer scrutiny of the limits which we studied
in the previous sections, which we shall now turn our
attention to.
The solution �ðxiÞ of a Klein-Gordon equation treated

as an operator, can be expanded using creation (ayk) and
annihilation (ak) operators in the second quantized
formalism:

�ðxiÞ ¼ X
k

ðakfk þ aykf
�
kÞ (51)

where fkðxiÞ is a c-number solution to the Klein-
Gordon equation labeled by the momentum k. The
transition element h0j�j1ki ¼ fk between the standard
vacuum state j0i and the one-particle state j1ki with
momentum k is what we have taken to be the relativ-
istic analog of a wave function in the previous sections.

In the c ! 1 limit, the combination c ¼ fke
imc2t will

reduce to the Schrödinger wave function for the free
particle. In a similar way, one can think of the state
�ðxÞj0i as representing a state with a particle at posi-
tion xi and the quantity

GFðx; yÞ ¼ h0jT½�ðxÞ�ðyÞ�j0i (52)

as the amplitude for a particle to propagate from the
event y to event x with the time ordering operator T
to take care of the distinction between particles and
antiparticles.
Relativistic quantum field theory makes use of the

(Feynman) propagator GF extensively and, in fact, all the
standard results of interacting field theory can be obtained
using this propagator. It is, of course, possible to introduce
a similar propagator in nonrelativistic quantum mechanics,
which can also be interpreted as the amplitude for a particle
to propagate from one event to another, even though it is
not as extensively used as the propagator in field theory.
Given the fact that the solutions to the Klein-Gordon
equation have no direct interpretation as probability am-
plitudes in quantum field theory, it is better to study the
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nonrelativistic limit of quantum field theory in terms of the
two propagators. In the present section, we shall consider
different aspects of this issue.

A. Path integral description of relativistic
and nonrelativistic particles

In nonrelativistic quantum mechanics, one can deter-
mine the wave function at t ¼ t2 from the wave function
at t ¼ t1, where t2 � t1, by a suitable integral kernel K via
the equation:

c ðx2; t2Þ ¼
Z

Kðx2; t2;x1; t1Þc ðx1; t1Þdx1: (53)

This propagation kernel can be expressed formally as a
sum over paths xðtÞ of an amplitude expðiA½xðtÞ�Þ where
A½xðtÞ� is the action for the path satisfying the appropriate
boundary conditions at t ¼ ðt1; t2Þ. For a free particle of
mass m0, the kernel is given by

K ¼ X
xðtÞ

exp

�
i

ℏ

Z t2

t1

1

2
m0j _xj2dt

�
: (54)

The sum over paths can be rigorously defined by a time-
slicing procedure which assumes that at any intermediate
time t, with t1 	 t 	 t2, the particle has a unique position.
If the action is a quadratic functional, it can be shown that
(see e.g., [12]) the propagation kernel has the form:

Kðx2; t2;x1; t1Þ ¼ Nðt1; t2Þ exp iℏAcðt2;x2; t1;x1Þ (55)

whereAc is the action for the classical path. In particular,
the kernel for a free particle is given by

Kðx2; t2;x1; t1Þ ¼
�

m0

2	iℏðt2 � t1Þ
�
D=2


 exp

�
im0ðx2 � x1Þ2
2ℏðt2 � t1Þ

�

ðt2 � t1Þ

� 
ðt2 � t1ÞFðx2; t2;x1; t1Þ (56)

where D is the number of spatial dimensions. (The 

function is just conventional; purely algebraically,
Eq. (53) holds even for t2 < t1.) It is also often convenient
to define the propagator in the energy space by the
definition

GðE;x2;x1Þ ¼
Z 1

�1
dTeiETKðT;x2;x1Þ

¼
Z 1

0
dTeiETFðT;x2;x1Þ (57)

where T ¼ t2 � t1. This holds for any time-independent
action functional; for a free particle, we have the result

GðE;x2;x1Þ ¼
�
m0

2	i

�
1

jx2 � x1j exp
�
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0Ejx2 � x1j2

q �
:

(58)

From Eq. (53), it also follows that

Fðt3;x3; t1;x1Þ ¼
Z

dx2Fðt3;x3; t2;x2ÞFðt2;x2; t1;x1Þ
(59)

which we will call the transitivity property of the kernel.
The same result, of course, holds for K as well but we
explicitly express it in the above form (using F) to stress
that—purely algebraically—this result is valid even with-
out any time ordering.
We do not expect something analogous to Eq. (53) to

hold in the relativistic case. A mathematical reason for this
fact is simple: The relativistic mode function satisfies a
second-order differential equation in time, unlike its non-
relativistic counterpart which satisfies the Schrödinger
equation that is first order in time. Hence the mode function
at time t2 cannot be determined given only the mode
function at an earlier time, unlike in the case of Eq. (53).
In fact, if the mode function � and its first time derivative
are known at some initial time t1, then, at some other time
t2, we have

�ðx2; t2Þ ¼
Z

d3x1

�
Gðx2; t2;x1; t1Þ@�ðx1; t1Þ

@t1

� @Gðx2; t2;x1; t1Þ
@t1

�ðx1; t1Þ
�

(60)

whereGðx2; t2;x1; t1Þ is the retarded Green’s function. It is
obvious that both � and its first derivative are required to
be known at the initial time t1 in order to determine� at the
later time t2.
Nevertheless, given the fact that we do have a valid

action functional for a relativistic particle, one can for-
mally define a kernel using the path integral as

Kðxi; yiÞ ¼ X
all xiðsÞ

exp½iA½xðsÞ�=ℏ� (61)

where

A ¼ �m0

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _x2

p
dt ¼ �m0

Z 1

0
d�

�
dxi

d�

dxi
d�

�
1=2

:

(62)

The second form of action expresses the trajectory xið�Þ in
terms of a parameter � chosen such that xið0Þ ¼ yi,
xið1Þ ¼ xi are the boundary values. Unfortunately, this
action is not quadratic in the dynamical variables and
hence the standard procedure for evaluating the path inte-
gral fails.
It is, however, possible to evaluate the path integral in

Eq. (61) exactly by at least two other methods. The first
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involves utilizing the fact that the integral in Eq. (62) is just
the proper length of a given path connecting the end points.
We can implement the sum over paths in a Euclidean
lattice and take an appropriate limit to the continuum at
the end, thereby evaluating Eq. (61). This is worked out in
detail in Ref. [13].

A second procedure is more heuristic, but physically
transparent, and is based on the fact that even in non-
relativistic quantum mechanics, there exists an action
functional, called the Jacobi action, which has a structure
similar to the one in Eq. (62) involving a square root. We
shall briefly indicate how this procedure can be used to
explicitly evaluate the path integral in Eq. (61). We shall
essentially prove that the following relation holds:

X
all x

exp
i

ℏ

Z 1

0
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0ðE� VÞj _xj2

q

¼
Z 1

0
dTeði=ℏÞET

�X
xðtÞ

exp
i

ℏ

Z T

0
dt

�
1

2
m0 _x

2 � V

�	
:

(63)

(On either side of the equation, the overdot denotes
differentiation with respect to the integration variable
used.) The expression on the left-hand side is a path
integral defined using the Jacobi action for a particle
propagating from one spatial point to another with energy
E in an external potential V. The right-hand side involves
the Fourier transform of the usual path integral (given in
the curly brackets) which we know how to evaluate. This
relation allows us to give meaning to path integrals in-
volving reparameterization invariant action functionals
which have square roots in them. The proof of Eq. (63)
is given in Appendix C.

We can evaluate the path integral for the relativistic
particle involving a square root in the action using the
result in Eq. (63) by making the following substitutions
in Eq. (63): (i) E ! m, (ii) m0 ! m=2, (iii) V ¼ 0, and a
change of sign on the integration variable. Thus, Eq. (63)
becomes

X
paths

exp� i

ℏ

Z 1

0
dsm

ffiffiffiffiffiffiffiffi
_xi _x

i
q

¼
Z 1

0
d�e�im�=ℏ

�X
xi

exp� i

ℏ
m

4

Z �

0
_xi _xids

	
: (64)

On transforming the integration variable on the left-hand
side of the above equation from s to t ¼ Ts, we find that it
becomes

X
paths

exp� im

ℏ

Z T

0
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi
dt

dxi

dt

s

¼ X
paths

exp� im

ℏ

Z T

0
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _x2

p
(65)

which is exactly the relativistic propagator with the square-
root action that we were interested in evaluating (Eq. (61)).
The sum over paths within the curly brackets on the

right-hand side of Eq. (64) can be evaluated by the standard
procedure for a free particle which allows the relativistic
kernel to be expressed as the integral

K ¼ m

16	2

Z 1

0

ds

s2
e�im2se�il2=4s ¼ ðimÞGF;

l2 ¼ ðx� yÞ2
(66)

where we have done a rescaling from � to s � ð�=mÞ to
express it in the standard form. The GF is the standard
Feynman propagator in Schwinger’s proper time represen-
tation, which differs from the kernel by an unimportant
constant. (Dimensionally, this constant is to be expected,
because the Feynman propagator has dimensions of square
of inverse length, while the kernel which we have eval-
uated has the dimensions of cube of inverse length). The
way we have obtained the relativistic kernel shows that it is
actually the result of evaluating a path integral, with the
action for a relativistic particle—as to be expected.
Hereafter, we shall work with the Feynman propagator
GF, as it is the usual quantity of interest in quantum field
theory.
As usual, the factor exp�im2s is not strongly convergent

in the upper limit of the integration. This difficulty can be
tackled by interpreting m2 as (m2 � i�) or by rotating the
integration contour to the imaginary axis by going over to
the Euclidean sector. The Euclidean propagator is given by

GF ¼ 1

16	2

Z 1

0

d�E
�2E

e�m2�Ee�x2E=4�E

¼ m

4	2

1ffiffiffiffiffiffi
x2E

q K1

�
m

ffiffiffiffiffiffi
x2E

q �
(67)

where K1 is the modified Bessel function of the second
kind.
The above expression can indeed be interpreted as the

amplitude for a relativistic particle to propagate from
one event yi to another event xi, and hence is equal to
h0jT½�ðxÞ�ðyÞ�j0i. But it does not propagate any ‘‘wave
function’’ in the relativistic theory for reasons explained
earlier. We, however, would expect this propagator to
reduce to the standard nonrelativistic kernel in the c ! 1
limit. We shall now describe how this comes about.

B. Nonrelativistic limit of Feynman propagator
in inertial frame

Let us first consider the nonrelativistic (c ! 1) limit of
Eq. (66). It is easy to see that, in this limit, the integral in
Eq. (66) can be evaluated in the saddle point approxima-
tion. (In this section, we set ℏ ¼ 1.) To avoid mathematical
ambiguities, it is convenient to work in the Euclidean space
and start with Eq. (67):
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GF ¼ m

16	2

Z 1

0

d�E
�2E

e�m�Ee�mx2E=4�E (68)

where we have rescaled �E in Eq. (67) to �E=m so that �E
has the dimensions of length (or time). The stationary
phase of this integral occurs at �2E ¼ ðx2E=4Þ, where
x2E ¼ t2E þ jxj2, so that the integral evaluates to

GF ¼ N
m

4	2x2E
exp�mc

ffiffiffiffiffiffi
x2E

q

¼ N
m

4	2x2E
exp�mc2tE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxj2

c2t2E

s
(69)

where we have put back the c-factors in the phase. The
prefactor is given by:

N ¼
�

2	

f00ð�0Þ
�
1=2 ¼

0
B@	

ffiffiffiffiffiffi
x2E

q
2m

1
CA

1=2

(70)

where �0 ¼
ffiffiffiffiffiffi
x2E

q
=2 is the saddle point of the integrand

and fð�EÞ ¼ �m�E �mx2E=4�E is the argument of the
exponential.

We now take the c ! 1 limit of the above expression.
Noting that, in this limit, �2E ¼ x2E=4c

2 ’ t2E=4 where
x2E ¼ c2t2E þ jxj2, we get (relabeling GF to K, the kernel):

K ’
�
1

2m

��
m

2	tE

�
3=2

expð�mc2tEÞ expð�mjxj2=ð2tEÞÞ:
(71)

Finally, going back to Lorentzian time with tE ¼ it, we
obtain

K ’
�
1

2m

��
m

2	it

�
3=2

expð�imc2tÞ expðimjxj2=ð2tÞÞ (72)

which matches exactly with the nonrelativistic path integral
kernel for a free particle in three dimensions, apart from two
standard factors: (i) The factor expð�imc2tÞ is the standard
extra term in the action functionalwhich arises on taking the
nonrelativistic limit of the fully relativistic action func-
tional. This is exactly the phase term which we factored
out in the wave function, while going from the Klein-
Gordon equation to the Schrödinger equation for an accel-
erated particle, previously in Sec. IV. (ii) The factor 1=2m
arises due to the difference in normalization conventions for
the relativistic and nonrelativistic mode functions. In non-
relativistic quantummechanics, the free particlewave func-

tions are normalized with the factor ð2	Þ�3=2, while in
quantum field theory, the mode functions are normalized

with the factor ð2	Þ�3=2ð2EpÞ�1=2. Since the Feynman

propagator is bilinear in the mode functions, this leads to
an extra factor (1=2Ep) in the Feynman propagator as

compared to the path integral kernel. The factor (1=2Ep)

in the nonrelativistic limit reduces to just (1=2m).
By the same procedure, we can also compute the first-

order relativistic correction to the path integral. To do
this, we retain one more order in (1=c) in the expansion of

ð1þ jxj2=c2t2EÞ1=2 in Eq. (69) to obtain

K0 ¼ K

�
1� 3jxj2

4c2t2E
þmjxj4

8c2t3E
þO

�
1

c4

��
: (73)

This gives the correction to the nonrelativistic propagator
to one higher order in 1=c. We hope to discuss the physics
from these corrections in a future work.
The above analysis shows that the Feynman propagator

of the field theory does reduce to the correct free particle
propagator in nonrelativistic quantum mechanics in spite
of all the interpretational differences between the two
theories. This is related to the following facts.
(i) The time component of the conserved probability

current for the Klein-Gordon equation reduces to
jc j2 in the appropriate limit, allowing for the stan-
dard probabilistic interpretation. Since, in this limit,
the Klein-Gordon equation becomes effectively first
order in time, we find that Eq. (53) also holds to the
correct order of approximation. More formally, the
second-order propagation equation for the mode
functions of the Klein-Gordon equation does reduce
to Eq. (53) (with GF reducing to K) in the appro-
priate limit, making everything consistent.

(ii) In the nonrelativistic path integral defining the
propagator K, we sum over paths which always go
forward in time. However, in the expression in the
curly bracket in Eq. (64) which gives the corre-
sponding path integral in four dimensions, particles
go forward in proper time but their paths may go
forward or backward in coordinate time. On the left-
hand side of Eq. (64), this will correspond to paths
with v > c for which the amplitude is exponentially
suppressed. All these effects vanish in the c ! 1
limit, thus allowing a single particle interpretation.

(iii) The situation is very similar to that of paraxial
propagation in optics, which allows us to approxi-
mate the second-order wave equation into one
which involves only first derivatives with respect
to a given coordinate, viz., the coordinate along
which light is propagating. The mathematics is
identical in both the cases [14]. In the case involv-
ing a beam of light (of frequency!) traveling along
the z-axis from a slit located at ðz1;x?

1 Þ, say, to a
point on a screen with coordinates ðz2;x?

2 Þ, withðz2 � z1Þ � jx?
2 � x?

1 j (‘‘paraxial propagation’’),
the relevant physics is contained in the phase dif-
ference acquired by the beam corresponding to a
path difference �l:
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�
!

c

�
�l�!

c
f½ðz2�z1Þ2þðx?

2 �x?
1 Þ2�1=2�ðz2�z1Þg

�!

c

ðx?
2 �x?

1 Þ2
2ðz2�z1Þ : (74)

For a relativistic particle of mass m, the corre-
sponding phase is related to the proper time lapse
�� and is given by

mc2

ℏ
�� � mc

ℏ
f½c2ðt2 � t1Þ2 � ðx2 � x1Þ2�1=2

� cðt2 � t1Þg (75)

which reduces, in the c ! 1 limit (which implies
the paraxial propagation condition: cðt2 � t1Þ �
jðx2 � x1Þj along the time axis), to

mc2

ℏ
�� � m

ℏ
ðx2 � x1Þ2
2ðt2 � t1Þ (76)

which is precisely the phase of the quantum me-
chanical kernel for the nonrelativistic particle, aris-
ing again from the rest mass energy term in the
appropriate limit. Just as in paraxial optics we
retain the propagation of light along the forward z
direction (from slit to screen, say), ignoring back-
ward propagation, in arriving at nonrelativistic
quantum mechanics from field theory, we retain
the propagation of the particle forward in the time
axis, ignoring backward propagation. In both the
contexts, the approximation effectively reduces the
degree of the relevant differential equation from
two to one in the appropriate independent variable
(which is z in optics and t in quantum theory). That
is, in arriving at nonrelativistic quantum mechanics
from quantum field theory, one considers paraxial
propagation of the Klein-Gordon modes with the
axis now being along the time direction.

C. Nonrelativistic limit of the Feynman propagator
in the Rindler frame

We have already seen in Sec. IV that, at the level of
differential equations, the relevant limits work out cor-
rectly: The c ! 1 limit of the Klein-Gordon equation in
a homogeneous, time dependent, gravitational field gives
us the correct Schrödinger equation. Further, except
for a phase whose origin we can understand, the same
Schrödinger equation is obtained in a noninertial frame
mimicking the same gravitational field. This establishes
the principle of equivalence in the context of quantum
mechanics at the level of the field equations.

But, as mentioned earlier, there is a significant differ-
ence in the interpretation of the solutions of the Klein-
Gordon and Schrödinger equations in the two contexts.
Therefore, it is not clear whether the formal equivalence
of the two differential equations in the appropriate limit

ensures the validity of the principle of equivalence. A more
rigorous way of establishing this result would be to work at
the level of propagators, and show that the Feynman
Green’s function in a noninertial frame reduces in the
c ! 1 limit to the nonrelativistic kernel for the appro-
priate gravitational field. We shall now describe how this
comes about in the case of a constant acceleration gðtÞ ¼
g in the negative x direction, or equivalently, a constant
gravitational field g in the þx direction. The nonrelativ-
istic kernel for this case is given by ([12])

Kðxb; Tb; xa; 0Þ ¼
�

m

2	iℏTb

�
exp

im

2ℏTb

�
ðxb � xaÞ2

� 1

12
g2T4

b � gT2
bðxb þ xaÞ

�
: (77)

The transformation from an inertial frame ðT; XÞ to an
accelerated frame ðt; xÞ is given by

gT ¼ ð1þ gxÞ sinhðgtÞ;
1þ gX ¼ ð1þ gxÞ coshðgtÞ:

(78)

The Feynman propagator in this uniformly accelerated
frame can be obtained from the propagator in the inertial
frame, given by

GF ¼ �i
Z ds

ð4	Þ2s2 e
�im2se�il2=4s (79)

by expressing the line interval l2 in terms of the Rindler
coordinates. (This result holds because of the bi-scalar
nature of the Feynman propagator.) Elementary algebra
using Eq. (78) gives the line interval between the two
events ðta; xaÞ and ðtb; xbÞ to be

l2 ¼ � 1

g2

��
1þ gxb

c2

�
2 þ

�
1þ gxa

c2

�
2

� 2

�
1þ gxb

c2

��
1þ gxa

c2

�
coshgðtb � taÞ

�
(80)

so that the propagator becomes

GFðxb; tb; xa; taÞ
¼ �

Z 1

0

ds

16	2s2
exp

�
i

4g2s

��
1þ gxb

c2

�
2 þ

�
1þ gxa

c2

�
2

� 2

�
1þ gxb

c2

��
1þ gxa

c2

�
coshgðtb � taÞÞ � im2s

�
:

(81)

The above integral can be again approximated by the
method of stationary phase. The phase of the integrand
becomes stationary for the value of s given by

s ¼ i

2gm

��
1þ gxb

c2

�
2 þ

�
1þ gxa

c2

�
2 � 2

�
1þ gxb

c2

�



�
1þ gxa

c2

�
coshgðtb � taÞ

�
1=2

: (82)
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Substituting for s in Eq. (81), we get:

GF ¼ N exp
mc3

gℏ

���
1þ gxb

c2

�
2 þ

�
1þ gxa

c2

�
2

� 2

�
1þ gxb

c2

��
1þ gxa

c2

�
coshgðtb � taÞ

��
1=2

(83)

where N is the standard normalization factor arising from
the saddle point approximation.

We will now obtain the nonrelativistic (c ! 1) limit of
the above expression by expanding the exponent in a power
series retaining terms up to order (1=c4) inside the radical.
This gives

mc3

ℏ

�
2

g2
þ 2xb

c2g
þ x2b

c4
þ 2xa

c2g
þ x2a

c4

� 2

g2

�
1þ gxb

c2
þ gxa

c2
þ g2xbxa

c4

��
1þ g2ðtb � taÞ2

2c2

þ g4ðtb � taÞ4
24c4

þO
�
1

c6

���
1=2

: (84)

On simplification, ignoring all terms of order 1=c6 and
higher inside the bracket, we obtain

� imc2ðtb � taÞ
ℏ

�
1� ðxb � xaÞ2

2c2ðtb � taÞ
þ gðxb þ xaÞ

2c2

þ g2ðtb � taÞ2
24c2

�
(85)

which simplifies to: (with ðtb � taÞ � T)

� imc2T

ℏ
þ imðxb � xaÞ2

2ℏT
� imgðxb þ xaÞT

2ℏ
� img2T3

24ℏ
(86)

which, apart from the term �imc2T=ℏ, is identical to the
phase of the standard, nonrelativistic Feynman path inte-
gral for a particle of mass m, moving with a constant
acceleration g in the negative x direction, or equivalently,
situated in a uniform gravitational field of strength g in the
positive x direction, as given in Eq. (77); see also Eq. (D7)

in Appendix D with €� replaced by �g. The normalization
factor N also works out correctly just as in the case of the
free particle. Hence, we have shown that the relativistic
Feynman propagator in the Rindler frame reduces, in the
appropriate limit, to the corresponding nonrelativistic
Feynman path integral for the case of a particle moving
with uniform acceleration.

D. Nonrelativistic limit of Feynman propagator
in a weak gravitational field

We now generalize the above result and formally show
how the limiting form of the nonrelativistic propagator can

be obtained for any weak Newtonian gravitational field,
starting from a fully relativistic description. Such a weak
field is described by a metric of the form

ds2 ¼
�
1þ 2�

c2

�
c2dt2 � dx2 (87)

where � is the Newtonian potential. The Feynman propa-
gator again has the integral representation

Gðx; yÞ ¼
Z 1

0
dse�im2sKðx; s; y; 0Þ

¼
Z 1

0

ds

s2
X
paths

e�im2c2s=ℏ2e�il2ðx;yÞ=4s (88)

where l2 now represents the proper length of a path be-
tween two events evaluated using the metric in Eq. (87).
Assuming that we can formally interchange the sum over
paths and the integration over s, we can express the above
result as

Gðx; yÞ ¼ X
paths

Z 1

0
dse�im2c2s=ℏ2


 exp

�
� i

4

Z s

0
d�

�
c2
�
1þ 2�

c2

�
_t2 � _x2

�	

¼ X
paths

Z 1

0
dse�im2c2s=ℏ2

exp

�
� ic2

4

Z s

0
d� _t2

	
FðsÞ

(89)

where

FðsÞ ¼ exp

�
i

4

Z s

0
d� _x2

	
exp

�
� i

2

Z s

0
d�� _t2

	
(90)

is treated as a function of the parameter s. Thus, we can
write the expression for the propagator as

Gðx; yÞ ¼
Z

DxDt
Z 1

0
dse�im2c2s=ℏ2


 exp

�
� ic2

4

Z s

0
d� _t2

	
FðsÞ (91)

where we have identified the sum over paths as functional
integrals over spatial and time coordinates:

X
paths

�
Z

DxDt: (92)

In order to estimate the above integral in the c ! 1
limit, we note that this limit is equivalent to taking a saddle
point on the integrand treated as a function of the parame-
ter s. The saddle point of the integrand is given by
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m2c2

ℏ2
¼ c2

4

�
dt

d�

�
2
���������¼s

) t ¼ 2ms

ℏ
: (93)

We now evaluate the integral in Eq. (91) in the saddle point
limit given by Eq. (93). The functional integral over all
paths Dt reduces, in saddle point, to the condition that
_t ¼ constant. From our preceding argument for the saddle
point of s, we see that the value of this constant is
(2m=ℏ). If we use these results in the expression for
Gðx; yÞ, we find

Gðx;yÞ ¼
Z
Dxexp

�
� imc2t

2ℏ

�
exp

�
� ic2

4

ℏt
2m

�
4m2

ℏ2

��


 exp

�
� i

4

Z s

0
d�ð2� _t2� _x2Þ

�

¼
Z
Dxe�imc2t=ℏ exp

�
� i

4

Z s

0
d� _t2

�
2��

�
dx

dt

�
2
�	
:

(94)

With these, admittedly formal, manipulations we have
succeeded in converting a four-dimensional functional
integral (over t and x) and an ordinary integral over s
into the standard three-dimensional functional integral
over x which is appropriate for the nonrelativistic limit.

According to our previous arguments, the validity con-
dition for the saddle point approximation is that _t is a
constant, and hence, it can be taken out of the integral in
the phase of the exponential, and substituted by (2m=ℏ).
We also change the variable of integration form � to t
(noting that the entire operation is performed under the
condition that, at � ¼ s, ðdt=d�Þ ¼ 2m=ℏ). We get

Gðx; yÞ ¼
Z

Dxe�imc2t=ℏ exp

�
� i

4

�
4m2

ℏ2

�



Z t

0

ℏdt
2m

�
2��

�
dx

dt

�
2
�	

¼
Z

Dxe�imc2t=ℏ exp

�
� im

ℏ

Z t

0
�dt

þ
Z t

0

im

2ℏ

�
dx

dt

�
2
dt

	

¼
Z

Dxe�imc2t=ℏ exp

�
i

ℏ

�Z t

0

m

2

�
dx

dt

�
2
dt

�
Z t

0
m�dt

�	
: (95)

The above expression is identical in form (except, of
course, for the standard exp�imc2t=ℏ phase) to the non-
relativistic Feynman path integral for a particle of mass m
in an external potential �. This proves that in the c ! 1
limit, the Feynman propagator does indeed reduce to the
nonrelativistic Feynman path integral for the case of an
external weak gravitational potential.

VI. LACK OF TRANSITIVITY OF THE
FEYNMAN PROPAGATOR IN RELATIVISTIC

FIELD THEORY

In nonrelativistic quantum mechanics, the kernel satis-
fies the transitivity condition given by Eq. (59). This rep-
resents the fact that a particle which propagates from
ðx1; t1Þ to ðx3; t3Þmust exist at some unique spatial location
x2 at any intermediate time t2. We cannot have a similar
transitivity condition obeyed in terms of spatial coordi-
nates, which is apparent from the fact that time and space
coordinates enter differently in the kernel. In the path
integral, one evaluates paths which go forward in time
but can go forward or backward in spatial coordinates.
In the case of the Feynman propagator, we instead work

with the path integral in Eq. (64) in which the particles go
forward in the proper time s, but can go forward or back-
ward both in coordinate time and spatial coordinates. After
evaluating the path integral, we do a Fourier transform with
respect to the proper time to obtain the Feynman Green’s
function. It is obvious that, just as we cannot have tran-
sitivity vis-à-vis spatial coordinates in the nonrelativistic
kernel, we cannot have transitivity in spatial or time coor-
dinates for the Feynman propagator. One can, in fact, prove
that the transitivity integral for the Feynman propagator
leads to the result

Z 1

�1
GFðx3; x2ÞGFðx2; x1Þd4x2 ¼ i

@

@ðm2ÞGFðx3; x1Þ

¼ GFðx3; x1Þ
�
i

@

@ðm2Þ lnGFðx3; x1Þ
�

(96)

where the factor in square brackets expresses the lack of
transitivity. We shall provide a simple demonstration of
this result since we have not seen it discussed in the
literature.
The result can be obtained from the Schwinger repre-

sentation of the propagator by straightforward integration
(as shown in Appendix E). However, it is somewhat easier
to prove the result using the well-known momentum space
representation of the Feynman propagator given by

GFðx; yÞ ¼ i
Z d4p

ð2	Þ4
e�ipðx�yÞ

ðp2 �m2 þ i�Þ : (97)

Explicit substitution of Eq. (97) in Eq. (96) gives

Z 1

�1
GFðt3;x3; t2;x2ÞGFðt2;x2; t1;x1Þd4x2

¼
Z 1

�1
d4x2

�
d4p

ð2	Þ4
ie�ipðx3�x2Þ

p2 �m2 þ i�

��
d4k

ð2	Þ4
ie�ikðx2�x1Þ

k2 �m2 þ i�

�

¼ � 1

ð2	Þ4
Z d4pe�ipðx3�x1Þ

ðp2 �m2 þ i�Þ2 : (98)
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Since

@

@ðm2ÞGFðx3; x1Þ ¼ i
Z d4p

ð2	Þ4
e�ipðx3�x1Þ

ðp2 �m2 þ i�Þ2 (99)

we immediately get the result in Eq. (96). Once again, in
the nonrelativistic limit, the extra factor in Eq. (96) reduces
to unity which can be demonstrated by straightforward
manipulation. It is also interesting to notice that the kernel
in Eq. (73), which contains the first-order relativistic cor-
rection to the nonrelativistic path integral, does not possess
the transitivity property due to the presence of additional
terms in the integrand.

The origin of this nontransitivity can be understood from
the fact that, even in the nonrelativistic case, the energy
kernel is not transitive. This is to be expected purely from
dimensional analysis and can be seen as follows. The
energy kernel in nonrelativistic quantum mechanics is
given by

GðE;x2;x1Þ ¼
Z 1

�1
dTeiETKðT;x2;x1Þ (100)

so that G has the dimensions of ½TL�3�. If G is to be
transitive, we must have

Z
d3x2GðE;x3;x2ÞGðE;x2;x1Þ¼? GðE;x3;x1Þ (101)

which is clearly impossible since the left-hand side has
dimensions of ½L�3T2� and the right-hand side, that of
½TL�3�. Clearly, one needs a factor having dimensions of
time (or equivalently, of inverse energy) on the right-hand
side of Eq. (101) to make it dimensionally consistent.

The correct result can be easily obtained when the action
has no explicit time dependence. The nonrelativistic en-
ergy kernel can be expressed as

GðE;x2;x1Þ ¼
Z 1

�1
dTeiETKðT;x2;x1Þ

¼
Z 1

0
dTeiET

X
n

e�iEnT�nðx2Þ��
nðx1Þ

¼ X
n

i�nðx2Þ��
nðx1Þ

E� En þ i�
(102)

where �n is the energy eigenfunction corresponding to the
eigenvalue En. Hence, we get, on using the orthonormality
of energy eigenfunctions:

Z
d3xGðE;x2;xÞGðE;x;x1Þ

¼ �X
n

1

ðE� En þ i�Þ2 �nðx2Þ�nðx1Þ ¼ �i
@G

@E

¼ G

�
�i

@

@E
lnG

�
(103)

which is similar in form to the result we obtained above in
Eq. (96) for the Feynman propagator. In fact, the equiva-
lence arises from the fact that the Feynman propagator is
just the energy Fourier transform (with E replaced bymc2)
of the path integral with the relativistic quadratic action, as
is clear from Eq. (64). (The sign flip between the right-
hand sides of Eq. (103) and (96) is unimportant, being the
result of the difference in the Fourier transform conven-
tions used in their derivations.) Hence, the nontransitivity
of the Feynman propagator can be understood directly
from this fact, and the result does not require any deeper
quantum field theoretic concepts (like that of antiparticles)
for its explanation.

VII. CONCLUSIONS

We have discussed several aspects of the nonrelativistic
limit of quantum field theory in both inertial and non-
inertial frames and in weak gravitational fields. Starting
from curious subtleties in the transition from special rela-
tivity to classical mechanics, we have explained the physi-
cal origin of the extra term in the nonrelativistic action
under Galilean transformations, thereby clarifying some
points discussed previously in the literature. We have
taken the nonrelativistic limit of the generally covariant
Klein-Gordon equation, and shown that it reduces to the
Schrödinger equation in the presence of the corresponding
gravitational field, thus providing an interpretation of the
principle of equivalence in quantum mechanics. We also
showed how such limiting processes can be described,
fairly rigorously, in the language of propagators, which is
essential because relativistic field theory does not allow an
interpretation in terms of a single particle wave function.
Along the way, we have indicated how the relativistic
Feynman propagator can be explicitly obtained from the
standard special relativistic square-root action functional
and connected it up with the Schwinger proper time de-
scription. We have also obtained the nonrelativistic limit of
the Feynman propagator in the inertial and Rindler frames,
and in a weak gravitational field, and demonstrated its
reduction to the corresponding path integral kernels.
Thus, we have effectively explored the GQM vertex of
the physics cube (Fig. 1), and studied the c�1 ¼ 0 plane as
a projection from other parts of the cube. While some of
these results are obvious with hindsight, we were per-
suaded to present the details because we have not seen
them discussed properly in textbooks or in published
literature.
As Fig. 1 shows, the exact theories of physics allow

useful, but approximate, limiting forms. Sometimes, these
approximate versions—though incorrect—can be inter-
nally consistent with all their features being understand-
able within the approximation. But in some other contexts,
approximate theories can host features which are residues
of the more exact description. This paper highlights some
features of the nonrelativistic limit which belong to the
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latter class. We saw that the behavior of the action func-
tional and the phase of the wave function in the nonrela-
tivistic limit have no simple explanation within the
nonrelativistic theory. But they emerge very naturally
from the nonrelativistic limit of the term mc2ð�� tÞ,
thereby acquiring a direct physical meaning in the relativ-
istic domain. This interpretation, as we saw, holds even in a
noninertial frame and in the presence of a weak gravita-
tional field. What is curious is the fact that this phase
has a nonzero, finite, limit even when c ! 1. This is
essential to make quantum mechanics and Galilean rela-
tivity consistent; essentially, one needs to start with rela-
tivistic quantum theory and Lorentz transformations, and
take appropriate limits to understand what happens when
one combines quantum mechanics with Galilean relativity!
This is an example of a more exact theory leading to
curious residues in its approximate version.
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APPENDIX A

In this appendix we prove that the wave function
Eq. (21) satisfies the Schrödinger equation, Eq. (22). We
set m ¼ ℏ ¼ 1 for convenience, so that Eq. (22) becomes

i
@�

@t
¼ � 1

2

@2�

@x2
� €�x�: (A1)

The coordinate transformation is given by x0 ¼ x� �ðtÞ,
t0 ¼ t. We now substitute �ðx; tÞ ¼ �0ðx0; t0Þe�if into the

above equation, where f ¼ �x _�þ 1
2

R
_�2dt. We have the

following relations:

i
@ð�0e�ifÞ

@t
¼ i

@�0

@t
e�if þ e�if�0 @f

@t
(A2)

and

@

@x
ð�0e�ifÞ ¼ e�if @�

0

@x0
� ie�if @f

@x
�0: (A3)

Hence,

@2

@x2
ð�0e�ifÞ ¼ e�if @

2�0

@x02
� 2i

@�0

@x0
@f

@x
e�if � e�if

�
@f

@x

�
2
�0

(A4)

where we have used the facts that @�0=@x ¼ @�0=@x0 and
@2f=@x2 ¼ 0. Using these relations, Eq. (A1) becomes

i
@�0

@t
þ�0@f

@t
¼�1

2

@2�0

@x02
þ i

@�0

@x0
@f

@x
þ1

2

�
@f

@x

�
2
�0 � €��0x:

(A5)

We also know that

@�0

@t
¼ @�0

@t0
� _�

@�0

@x0
(A6)

and

@f

@x
¼ � _�;

@f

@t
¼ � €�xþ 1

2
_�2: (A7)

Using the above relations in Eq. (A5), it readily transforms
to

i
@�0

@t0
¼ � 1

2

@2�0

@x02
(A8)

which is satisfied identically, since we know that �0ðx0; t0Þ
is a solution to the free particle Schrödinger equation in the
ðx0; t0Þ frame of reference. Hence, we see that the wave
function in Eq. (21) satisfies Eq. (22).

APPENDIX B

In this appendix we determine the scaling of the energy
levels EN of the (in general) non-Hookean oscillator with
the quantum number N. Consider Eq. (37) which, for the
case of the power-law potential (36), becomes:

Z
ð2mðEN � �jxjnÞÞ1=2dx ¼ Nℏ: (B1)

This integral is to be evaluated between the two turning
points. As the potential is symmetric in x, we can write

N / ffiffiffiffiffiffiffiffiffiffiffi
mEN

p Z ðEN=aÞ1=n

0

�
1� �xn

EN

�
1=2

dx: (B2)

Substituting y ¼ �xn=EN , we get

N / m1=2Eðnþ2Þ=2n
N

�
��1=n

n

�Z 1

0

dy

yðn�1Þ=n
ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
: (B3)

Since we are only interested in the scaling of EN with N
and m, we can see that (using the fact that � / m):

EN / N2n=ðnþ2Þmðn�2Þ=ðnþ2Þ: (B4)

Hence, we see that, only in the case n ¼ 2, we have
EN / N, with the mass dependence scaling out. In all
other cases, the energy levels EN , and consequently, the
transition frequency between successive energy levels,
will depend on m, the mass of the oscillator. [The full
expression for EN in the WKB approximation has been
worked out in, for e.g., [15].]
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APPENDIX C

The result in Eq. (63) can be proved by using the
Hamiltonian form of the Feynman path integral and con-
verting the path integral sums over the coordinates and
momenta in an appropriate form. We will need to use the
following three standard results in functional integration:

ðfðtÞÞ ¼ X
�ðtÞ

expi
Z

dt�ðtÞfðtÞ (C1)

X
p

expi
Z

dt½p� _xþ aðtÞp2� ¼ expi
Z

dt
_x2

4aðtÞ (C2)

X
�ðtÞ

expi
Z

dtð�ðtÞaðtÞ þ bðtÞ
�ðtÞÞ ¼ expi

Z
dt½�4ab�1=2:

(C3)

The Eq. (C1) is just the definition of delta functional;
Eq. (C2) and (C3) can be easily obtained in the Euclidean
sector by usual time-slicing techniques and can be analyti-
cally continued. They represent direct generalizations of
the corresponding results for ordinary integrals.

To prove Eq. (63), we begin by writing the standard
Feynman path integral in the Hamiltonian form:

Kðx2;x1;TÞ ¼
X
all x

X
all p

exp
i

ℏ

Z T

0
dtðp: _x�Hðp;xÞÞ;

H ¼ p2

2m0

þ VðxÞ (C4)

where the sum is over all functions pðtÞ but only those
functions xðtÞ which satisfy the boundary conditions. (We
will assume H � 0.) We now introduce inside the func-
tional integral, the factor unity in the form:

1 ¼
Z 1

0
dEðE�Hðp;xÞÞ (C5)

leading to

Kðx; tÞ ¼
Z 1

0
dE

X
x

X
p

ðE�Hðp;xÞÞ


 exp
i

ℏ

Z
dtðp� _x�Hðp;xÞ

¼
Z 1

0
dE

X
x

X
p

ðE�HÞe�iEt expi
Z

dtðp� _xÞ:

(C6)

So

Z 1

0
Kðx; tÞeiEtdt � Bðx; EÞ

¼ X
x

X
p



�
p2

2m
þ VðxÞ � E

�
expi

Z
dtðp� _xÞ: (C7)

We now express the delta functional using Eq. (C1):



�
p2

2m
þVðxÞ �E

�
¼X

�ðtÞ
expi

Z
�ðtÞ

�
p2

2m
þVðxÞ �E

�
dt:

(C8)

We then get, by straightforward manipulations, the result

Bðx; EÞ ¼ X
x

X
�ðtÞ

expi
Z

dt�ðtÞ½VðxÞ � E�X
p

expi
Z

dt

�
p� _xþ �ðtÞ

2m
p2

�

¼ X
x

X
�ðtÞ

expi
Z

dt�ðtÞ½VðxÞ � E� expi
Z

dt
1

2

m

�ðtÞ _x
2

¼ X
x

X
�ðtÞ

expi
Z

dt

�
�ðtÞðVðxÞ � EÞ þ m

2�ðtÞ _x
2

�

¼ X
x

expi
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� VÞj _xj2

q
: (C9)

The left-hand side is just the propagator for a particle with
energy E, which now has an explicit path integral repre-
sentation in terms of a square-root action. Using this result
in Eq. (C7), we obtain Eq. (63).

APPENDIX D

In this appendix, we describe how the nonrelativistic
kernel transforms when one goes over from an inertial

frame to an accelerating frame, and use our general result
to verify explicitly the form of the kernel for the case of a
particle moving with uniform acceleration.
We consider the two frames of reference S and S0,

where the particle is free in S0 ¼ ðx0; t0Þ and accelerated
in the frame S ¼ ðx; tÞ; S and S0 being related by the
transformation x0 ¼ x� �ðtÞ; with t0 ¼ t. Let
K0ðx0b; tb; x0a; taÞ be the nonrelativistic propagator in S0,
where ðx0b; tbÞ and ðx0a; taÞ are the coordinates of the final
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and initial points, respectively. Then, it turns out that in

the frame S, in which the particle has an acceleration €�,
the propagator Kðxb; tb; xa; taÞ takes the form:

Kðxb; tb; xa; taÞ ¼ K0ðx0b; tb; x0a; taÞe�i�=ℏ (D1)

where

� � ð�mxb _�b þmxa _�aÞ þ ð1=2Þm
Z tb

ta

_�2dt: (D2)

Here, the overdot denotes differentiation with respect to

time, and an expression like _�b denotes the time deriva-
tive of � evaluated at tb.

The above relationship is easy to understand along the
following lines: Recall that the Lagrangian picks up a total
time derivative term as we go from frame S0 to frame S (or
vice versa). Since we are dealing with a free particle, the
Lagrangian is a quadratic function of the coordinates and
velocities, and the transformation preserves the quadratic
nature of the Lagrangian. We know that, for quadratic
Lagrangians, the propagator contains a phase term that is
proportional to the action functional for the classical tra-
jectory between the initial and the final points. From
Eq. (18), we see that A and A0, the classical action
functionals in the two frames, are related by A0 ¼ Aþ
fðx; tÞ. Hence, we would expect that the propagators in the
same two frames are related by Kðx; tÞ ¼ K0ðx0; tÞ

exp½�iðfb � faÞ=ℏ� where fb � fðxb; tbÞ and fa �
fðxa; taÞ. From Eq. (19) we can see that

ðfb � faÞ ¼ mðxa _�a � xb _�bÞ þ ð1=2Þ
Z tb

ta

m _�2dt � �;

(D3)

from which the result (D1) follows.
We now specialize to the case of uniform acceleration.

We have a free particle in the frame of reference S0 ¼
ðx0; t0Þ and we transform from this frame to frame S ¼ ðx; tÞ
where x0 ¼ x� ð1=2Þ €�t2, t0 ¼ t, and €� is a constant.
Consider first the free particle kernel K0 in the frame
ðx0; t0Þ which is given by:

K0ðx0b; tb; x0a; taÞ ¼ Nðtb; taÞ exp
�
im

ℏ
ðx0b � x0aÞ2
ðtb � taÞ

�
(D4)

where N is a normalization constant, which depends on the
initial and final time coordinates ta and tb respectively, and
we have used the fact that t0 ¼ t. Since we have transla-
tional invariance as far as the time coordinate is concerned,
we can replace ta and tb by 0 and T respectively.

We now substitute for the coordinate x0 in terms of x and

also add the phase factor e�i�=ℏ. Here, � is given by

� � mðxa _�a � xb _�bÞ þ 1

2

Z T

0
m _�2dt

¼ m

�
�xb €�T þ 1

6
€�2T3

�
: (D5)

Substituting Eq. (D4) and (D5) into Eq. (D1), we find

Kðxb;T;xa;0Þ ¼ NðTÞexp im

2ℏT

��
xb � 1

2
€�T2

�
2 þ x2a

� 2xa

�
xb � 1

2
€�T2

�
þ 2xb €�T

2 � 1

3
€�2T4

�
:

(D6)

On simplification, we get

Kðxb; T; xa; 0Þ ¼ NðTÞ exp im

2ℏT

�
ðxb � xaÞ2 � 1

12
€�2T4

þ €�T2ðxb þ xaÞ
�

(D7)

which matches identically with the standard expression
for the propagator for a uniformly accelerated particle

moving with acceleration €� [12]. Hence, we have verified
the validity of our general formula Eq. (D1) for the special
case of the frame ðx; tÞ being a uniformly accelerated
frame of reference.

APPENDIX E

We provide a direct proof of Eq. (96) working in the
Euclidean sector and evaluating the integral on the left-
hand side explicitly. From the expression for the Euclidean
Feynman propagator:

GFðz; yÞ ¼ 1

ð4	Þ2
Z 1

0

d�

�2
e��m2

e�ðzE�yEÞ2=4� (E1)

in the left-hand side of Eq. (96), we get

Z 1

�1
GFðz; yÞGFðy; xÞd4y

¼ 1

ð4	Þ4
Z 1

�1
d4ye�ðzE�yEÞ2=4�e�ðyE�xEÞ2=4�



Z 1

0

Z 1

0

d�

�2

d�

�2
e�ð�þ�Þm2

: (E2)

Now, using the standard result

Z 1

�1

ffiffiffiffi
a

	

r ffiffiffiffi
b

	

s
e�aðx��Þ2e�bðu�yÞ2du

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab

	ðaþ bÞ

s
exp

�
� ab

aþ b
ðx� yÞ2

�
(E3)

we find that
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Z 1

�1
GFðz; yÞGFðy; xÞd4y ¼ � i

ð4	Þ2
Z 1

0

d�d�e�ð�þ�Þm2

ð�þ �Þ2 exp

�
� 1

4ð�þ�Þ ðxE � zEÞ2
�
: (E4)

Transforming the variables to � ¼ �þ � and � ¼ �� � gives

Z 1

�1
GFðz; yÞGFðy; xÞd4y ¼ � i

2ð4	Þ2
Z 1

0

Z �

��

d�d�

�2
e��m2

e�ðxE�zEÞ2=4�

¼ � i

ð4	Þ2
Z 1

0

d�

�
e��m2

e�ðxE�zEÞ2=4�

¼ i
@

@ðm2ÞGFðz; xÞ: (E5)

This demonstrates the result in Eq. (96).
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