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Scalar QED is studied with higher order derivatives for the scalar-field kinetic energy. A local potential

is generated for the gauge field due to the covariant derivatives and the vacuum with nonvanishing

expectation value for the scalar field, and the vector potential is constructed in the leading-order saddle-

point expansion. This vacuum breaks the global gauge and Lorentz symmetry spontaneously. The unitarity

of time evolution is assured in the physical, positive norm subspace, and the linearized equations of

motion are calculated. The Goldstone theorem always keeps the radiation field massless. A particular

model is constructed where the full set of standard Maxwell equations is recovered on the tree level,

thereby relegating the effects of broken Lorentz symmetry to the level of radiative corrections.
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I. INTRODUCTION

We know no exact equation of motion in physics; all
laws are inferred by ignoring some loosely attached part of
the system being considered. As a result, the equations of
motion should be tested for the stability of solutions
against adding small correction terms to the equations.
Such an analysis is usually performed in the framework
of the renormalization group [1], and perturbation expan-
sion can be used to establish that perturbing terms with
higher mass dimension (we use units c ¼ ℏ ¼ 1) are less
important at short distances.

Nevertheless, it is an important difference whether the
higher mass dimension arises from field amplitude or from
space-time derivative because the latter may modify the
tree-level, normal mode structure and generate new de-
grees of freedom. In fact, a field theory with a real, single-
component scalar field characterized by a Lagrangian
containing nd space-time derivatives of the field contains
nd degrees of freedom. Once the new propagating degrees
of freedom are present, their interactions might well be
nonnegligible due to IR or UV divergences even if the
coupling constants in the bare Lagrangian are weak.
Another more fundamental change is generated by these
terms: spontaneous symmetry breaking of space-time sym-
metries due to an inhomogeneous condensate, the subject
of this work. The point is that the renormalization-group
equations usually include only quantum fluctuations. The
higher order derivative terms may generate new relevant
operators in the IR on the tree level which lead to a vacuum
with an inhomogeneous condensate. We do not embark on
a general renormalization-group study here; rather, we
present a simple analysis of the symmetry and the quasi-
particle content of an Abelian gauge model in the leading-
order saddle-point expansion.

If the condensate consists of bosons with nonvanishing
momentum, filling up the whole quantization volume, then

the ‘‘wavy vacuum’’ breaks the space-time symmetries in a
manner similar to a solid, where the infinite inertia of the
solid prevents the zero modes from restoring the broken
external symmetries. The result, expected from solid-state
physics, is the appearance of several branches of the dis-
persion relations, different elementary excitations in the
theory. Note that, if translation invariance is broken at a
length scale sufficiently short to remain undetectable for
the class of observables one uses, then the vacuum appears
homogeneous. We shall see that, in models with gauge
symmetry where the covariant derivative is supposed to
acquire nonvanishing value in the condensate, the inhomo-
geneity of the vacuum may be gauged away, and we find a
homogeneous condensate, which simplifies the model
enormously. The result is some kind of extension of the
Higgs mechanism where the nonvanishing expectation
value for the gauge field breaks Lorentz symmetry. The
resulting Goldstone modes remain in the gauge field sector
and protect some components of the gauge field against
mass generation.
The model studied in this work is scalar QED where

higher order (covariant) derivative terms are introduced
for the charged scalar field. The higher order terms of
this model can be imagined either as a smooth cutoff in
defining an UV finite theory or as originating from the
elimination of some heavy particle and approximating the
self-energy of a scalar charged particle by a polynomial of
finite order in the momentum. The Goldstone theorem
protects the electromagnetic field against becoming mas-
sive, andMaxwell equations are recovered in the linearized
equation of motion, turning the Lorentz symmetry-
breaking effects into radiative corrections. The rather tech-
nical problem of proving unitarity of the model within the
physical, positive norm subspace is solved within pertur-
bation expansion by assuring a real energy spectrum for
normal modes and preserving the physical subspace, con-
sisting of states of positive norm during the time evolution.
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The dynamical breakdown of space-time symmetries by
higher order derivatives has already been studied in two-
[2], three- [3], and four-dimensional [4,5] Euclidean mod-
els where periodically modulated condensate has been
observed and several particle modes have been found
corresponding to a single quantum field [5]. The present
work can be considered a continuation of such inquiries for
models defined in Minkowski space-time and equipped
with gauge symmetry. The spontaneous breakdown of
relativistic symmetries has been considered within the
scheme of emerging photons [6] and the bumblebee mod-
els [7] where an external Mexican-hat potential is assumed
for the vector bosons. Our plan is less ambitious and starts
with photons as elementary particles.

Our results can best be summarized by comparing them
with the conventional Higgs mechanismwhere a Goldstone
mode arising from the spontaneous breakdown of global
gauge invariance appears in the gauge field, which becomes
massive. In our case, the relativistic space-time symmetry is
broken spontaneously as well, leaving behind three more
Goldstone modes. Two of them are nonvanishing helicity
components of the gauge field and restore the conventional,
massless radiation field of electrodynamics. The third soft
mode resides in a certain combination of the vanishing
helicity component of the photon and the scalar field and
is responsible for the preservation of the usual, long-range
Coulomb propagator for the temporal component of the
gauge field. Therefore, despite the spontaneous breakdown
of internal and external symmetries, the free propagator and
the normal modes of the electromagnetic field are equiva-
lent to those of conventional electrodynamics. The symme-
try breaking influences only radiative corrections and the
dynamics of the charged scalar field.

In Sec. II, we start by listing a few salient features of
scalar models with higher order derivatives. The issue of
unitarity and the way that it can be recovered by proving
reflecting positivity in Euclidean space-time are discussed
in Sec. III. Our model, scalar electrodynamics with a higher
order derivative for the charged scalar field, is introduced in
Sec. IV. The dynamics is discussed in the static temporal
gaugewhere the exceptional features of the time component
of the gauge field can be dealt with in the easiest manner.
Section V covers the construction of the vacuum in the
leading, tree-level order of the saddle-point expansion. The
stability of the vacuum and the unitarity within the physical
subspace are shown in Sec. VC. The particle content of the
theory is defined by the quadratic part of the Lagrangian
which is explored in Sec.VI. Finally, Sec.VII is reserved for
our summary. The Appendix contains the details of calcu-
lating the quadratic part of the action.

II. UNITARITYAND HIGHER
ORDER DERIVATIVES

Effective theories may or may not be unitary. In fact, the
unitarity is lost when a particle, retained in an effective

theory, can lower its energy by the emission of other
particles which have been eliminated in deriving the effec-
tive theory. Nevertheless, nonunitary effective theory re-
mains a powerful approximation scheme when these decay
processes are kinematically suppressed and we make the
lifetime sufficiently long. But one would still prefer to
recover in effective theories, which tend to be rather com-
plicated, the simplicity following from unitarity. For in-
stance, processes whose energy remains below the massM
of the particle eliminated should reflect unitary dynamics
when considered for sufficiently long time. Nevertheless,
the UV divergences and quantum anomalies of the under-
lying theory mix the high-energy effects into the low-
energy sector. The most natural way of recovering a unitary
effective theory is to place the UV cutoff below the elim-
inated particle mass, �<M. But this solution is not so
simple as it seems. On the one hand, smooth cutoff allows
decay processes with small but nonvanishing probability,
and, on the other hand, sharp cutoff leads to artificial
nonlocal, acausal dynamics at the length scale ��1, which
is observable in this case.
The hallmark of effective theories is the appearance

of higher order derivatives in the Lagrangian, reflecting
momentum-dependent self-energies of quasiparticles or
form factors. The latter appear in vertices and have mainly
perturbative effects. But the self-energies of quasiparticles
are in the quadratic part of the action in the fields, modify
the structure of quasiparticles, and are sometimes used as a
kind of Pauli-Villars regulator which renders the effective
theory UV finite [8–10]. Even though the scale of this
smooth cutoff is M, the nonunitary processes are not fully
suppressed. Once the effective theory is rendered UV finite,
wemay consider it as an extension of the class of potentially
interesting, consistent, microscopic models because its UV
dynamics is well defined. Motivated by the search of pos-
sible fundamental theories, one naturally expects the com-
plete suppression of nonphysical, nonunitary processes.
We consider in this section a model for a neutral scalar

particle described by the field �ðxÞ. The interaction verti-
ces will be kept in a momentum-independent fashion only
and the Lagrangian

L ¼ 1

2
�ðxÞLð�hÞ�ðxÞ � Vð�2ðxÞÞ; (1)

where the real function Lðp2Þ represents the sum of the
kinetic term and a momentum-dependent self-energy and
is supposed to be a polynomial of order ðp2Þnd which
assumes the form

Lðp2Þ � V 0ð ��2Þ ¼ Z�1
Ynd
n¼1

ðp2 �m2
nÞ; (2)

where Z is real, the potential has a minimum at� ¼ ��, and
the poles might appear in complex pairs. The role of the
poles p2 ¼ m2

n can be seen more clearly by means of
partial fraction decomposition [11],
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Z

Lðp2Þ � V 0ð ��2Þ ¼ X
n

zn
p2 �m2

n

; (3)

where zn¼Z=@Lðm2
j Þ=@p2. We assumed single roots in

this equation. In the case that a root p2 ¼ m2
n is of ‘-th

order, then the right-hand side may contain terms
zkn=ðp2 �m2

nÞk with 1 � k � ‘. Complex roots produce
complex contributions to the loop integrals and lead to
exponentially damped or increasing amplitudes in time,
and unitarity can be saved only by a graph-by-graph modi-
fication of the theory [12]. Another problem is seen for
real roots when the kinetic term Lðp2Þ is a real function,
and it displays slope with alternating sign at its roots. Thus,
approximately half of the contributions to the kinetic en-
ergy have the wrong sign, indicating that the Hamiltonian
is unbounded from below. This instability can be cured by
introducing negative norm states [10], but the unitarity
within the physical, positive norm subspace could not be
established in a nonperturbative manner [13]. Therefore, a
careless truncation of the self-energy may spoil unitarity
and the stability of the effective theory.

III. UNITARITYAND REFLECTION POSITIVITY

A proposition to preserve the desired properties was put
forward by starting with an effective theory in Euclidean
space-time [14], where it is usually derived perturbatively.
The effective theory (1) should have a well-defined
Euclidean path integral representation, a condition assured
by imposing the constraint Lð�p02

E � p2Þ> 0. The safest
is to use lattice regularization in Euclidean space-time
where higher order derivatives can be represented as higher
order finite differences. It is easy to see in lattice regulari-
zation that we need new variables to regain the usual
description for theories with higher order derivatives
[15]. The Kolmogorov-Chapman equation expresses the
group structure of the time evolution in the Fock space and
can be written as

e�St3�t1
½�ð3Þ;�ð1Þ� ¼

Z
D½�ð2Þ�e�St3�t2

½�ð3Þ;�ð2Þ��St2�t1
½�ð2Þ;�ð1Þ�;

(4)

where the configurations �ðjÞ specify states in the
field diagonal representation at time tj, and the

expð�St�t0 ½�;�0�Þ denotes the matrix element of
the Euclidean time-evolution operator during the time
interval t� t0. This equation can obviously be derived
for any theory with nearest-neighbor coupling in time.
New variables �ðxÞ ! �aðxÞ, a ¼ 1; . . . ; nd, which allow
us to rewrite the action with higher derivative in a form
with nearest-neighbor coupling in time, can be introduced
in the following manner. Start with a hypercubic lattice
with lattice spacing a ¼ 1 in each direction and construct
an anisotropic lattice where the lattice spacing in the time
direction is increased to nd by regrouping nd time slices of
the original lattice. A natural choice is �aðxÞ ¼ @a0�ðxÞ,

the a-th order finite-difference operator in time acting
on the original field, where the finite difference is calcu-
lated from the center of the blocked time slice in a time-
reversal covariant manner assuming odd nd. The map
�ðxÞ ! �aðxÞ of the Euclidean field variables is an inver-
tible linear transformation which preserves the lattice regu-
lated action, SE½�� ¼ SE½�a�, and the generator
functional,

ZE½j� ¼
Z

D½��e�SE½��þ
R

dxj�

¼ Y
a

Z
D½�a�e

�SE½�a�þP
x

j�0

; (5)

as long as the source is placed at the center of the blocked
time slices. The transformation preserves its form in
Minkowski space-time and provides the mapping whose
inverse can be used after the Wick rotation of the blocked
time-slice theory to real time.
The signature of the norm of the states created by the

operator �aðxÞ turns out to be �½�a� ¼ ð�1Þa. In order
to preserve the orthogonality of field eigenvectors,
h�j�0i ¼ 0 for �ðxÞ � �0ðxÞ, we have to use skew-
adjoint field operators, which possess imaginary eigenval-
ues, in the negative norm sector and �½�� ¼ �1 for
self- and skew-adjoint variables. It is useful to introduce
fields with well-defined time reversal parity, T�ðtÞ ¼
�½���ð�tÞ, giving �½@a0�� ¼ ð�1Þa�½��. This relation

suggests the equivalence of the internal Euclidean time-
reversal parity and the signature of the state created by
acting on the time-reversal-invariant vacuum by any time-
reversal-invariant combination c of elementary fields �a,

�½c � ¼ �½c �: (6)

One has to make sure that unitarity holds within the
physical, positive norm subspace, too. This can be
achieved by the reconstruction theorem of axiomatic
quantum field theory, in particular, by showing that the
main nontrivial condition of the theorem, reflection pos-
itivity, holds in the linear space generated by the action
of local operators with positive time parity on the vacuum
as long as both dynamics and vacuum respect time-reversal
invariance and the boundary conditions �aðtf;xÞ ¼
ð�1Þa�aðti;xÞ are imposed, where ti and tf denote the

initial and final times. An important result of the argument
[14] is the direct verification of Eq. (6). This relation
indicates, as well, that the trajectory of �a in the path
integral is real or imaginary for a even or odd, respectively.
The vacuum may contain condensate as long as it is
invariant under time reversal.
This construction gives, at first glance, more than ex-

pected: it eliminates nonunitarity altogether for theories (1)
and (2). But the tacit assumptions the argument relies upon
are the convergence of the Euclidean path integral and the
possibility of its analytic extension, Wick rotation, back
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to real time. The former condition imposes <m2
n > 0.

The latter assumption requires that the rotation of the
frequency contour in the loop integrals is carried out
without passing singularities in the integrals. This condi-
tion excludes poles from the quadrant =m2

n � <m2
n > 0 of

the complex energy plane. Since poles come in complex
conjugate pairs, the remaining complex poles break time-
reversal invariance and generate acausality known from the
attempts of removing self-acceleration of point charges in
classical electrodynamics [16]. Thus, time-reversal invari-
ance restricts the argument to theories where the roots
of L are real.

Note that the exclusion of complex poles from the
kinetic term restricts the space-time dependence of the
perturbative Green functions to the sum of oscillatory
terms ei!t excluding monotonic terms like e!t. The
functional space in which the expectation values are con-
structed is tailored in this manner, and the runaway solu-
tions characteristic of unstable theories are excluded.
This is in contrast to classical physics, where the integra-
tion of the equations of motion is performed in an un-
limited functional space of trajectories. Therefore, the
classical and the quantum, loop-expansion-based stability
analysis disagree as far as the time-dependent instabilities
are concerned. This eliminates the notorious instability
problem of theories with higher order kinetic term [17].

IV. SCALAR ELECTRODYNAMICS

An important step toward more realistic models is
the extension of the previous discussion for gauge models.
We now turn to scalar electrodynamics, defined by the
Lagrangian

L ¼�1

4

Z
dxF��F

��þ
Z
dx½��Lð�D2Þ��Vð���Þ�;

(7)

with F�� ¼ @�B� � @�B� and D� ¼ @� � ieB�, LðzÞ
being a polynomial of finite order and supposed to possess
separate time- and space-inversion invariance. In relativ-
istically covariant canonical quantization procedure, one
adds a gauge fixing term, L ! L� �ð@AÞ2=2, and im-
poses the canonical commutation relations

½A�ðt;xÞ;��ðt; yÞ� ¼ �ig���ðx� yÞ; (8)

where�� ¼ @L=@@0A� and g�� ¼ ð1;�1;�1;�1Þ. The
wrong sign on the right-hand side for � ¼ � ¼ 0 indicates
that temporal photon states have negative norm. The
Gupta-Bleuler quantization procedure or BRST symmetry
can be used to prove that the usual QED, without a higher
order derivative, is unitary in the physical subspace,
spanned by states with positive norm.

With an A0 field represented by a self-adjoint field
operator, the field eigenstates are not orthogonal.

Orthogonality is assured if the operator A0 is skew-adjoint
only [14]. The complication, induced by the use of the
traditional self-adjoint representation, is that nonorthogon-
ality renders the path integral expression for the transition
amplitudes rather complicated. How then to recover the
standard path integral representation for gauge theories in
Minkowski space-time? The usual path integral over real
field configurations A�ðxÞ can easily be found by treating

A0 as an auxiliary, nondynamical field either in the static
temporal or Coulomb gauge. The former will be imposed
to establish unitarity in the physical subspace because the
impact of a nonvanishing vacuum expectation value for A0

on the dynamics and the similarity with spontaneous sym-
metry breaking can better be seen in the static temporal
gauge. The latter gauge will be used to clarify the physical
content of the theory since the dynamical degrees of free-
dom can be traced more easily in the Coulomb gauge.
We start with fields defined without initial or final con-

ditions in time for �1< t <1 and carry out the gauge
transformation A� ! A� þ @��, � ! eie��, and �� !
e�ie���, with

�ðt;xÞ ¼ �
Z

dt0A0ðt0;xÞ; (9)

to arrive at the temporal gauge A0 ¼ 0, where the
functional Schrödinger representation is constructed,
using AðxÞ as coordinates. The canonical momentum
� ¼ @0A ¼ �E satisfies the canonical commutation re-
lations ½AjðxÞ;�kðyÞ� ¼ i�jk�ðx� yÞ. Under Gauss’s law,
rE ¼ 	, where 	 is the electric charge density, the equa-
tion of motion for A0 is lost in this gauge but can be
regained as a constraint. In fact, it can easily be shown
by the help of the canonical commutation relations that

G½�� ¼
Z

d3x½r�ðxÞEðxÞ þ �ðxÞ	ðxÞ� (10)

generates static gauge transformations; hence, it commutes
with the gauge-invariant Hamiltonian H, ½GðxÞ; H� ¼ 0.
The average over static gauge transformations,

P ¼
Z

D½��ei
R

d3x½r�ðxÞEþ�ðxÞ	ðxÞ� (11)

projects into the subspace, satisfying Gauss’s law for a
given static charge distribution 	ðxÞ.
One is usually interested in the transition amplitude

between gauge invariant states, the latter constructed
from a gauge-noninvariant representative like a field eigen-
state,

jA; �;��isym ¼ P jA; �;��i: (12)

It is enough to insert the projection operator P only once in
the matrix element,
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hAf;�f;�
�
fje�itHjAi;�i;�

�
i isym¼hAf;�f;�

�
fjP e�itHjAi;�i;�

�
i i

¼
Z
D½��hAf;�f;�

�
fjei

R
d3x½r�ðxÞEþ�ðxÞ	ðxÞ�e�itHjAi;�i;�

�
i i; (13)

and one finds the path integral representation

hAf;�f;�
�
fje�itHjAi; �i; �

�
i isym

¼
Z

D½A�D½��D½���eiSst½A;�;���; (14)

where Sst½A;�;��� is the usual action in the static tempo-
ral gauge,

@0A0ðxÞ ¼ 0; (15)

and tA0ðxÞ ¼ �ðxÞ denotes the time-independent inte-
gral parameter of the projector. The integration is
over configurations Aðti;xÞ ¼ AiðxÞ, �ðti;xÞ ¼ �iðxÞ,
��ðti;xÞ ¼ ��

i ðxÞ, Aðtf;xÞ ¼ AfðxÞ, �ðtf;xÞ ¼ �fðxÞ,
and ��ðtf;xÞ ¼ ��

fðxÞ. If the projector is inserted at each
time slice of the path integral expression for transition
amplitude, then the gauge-invariant action is recovered:

hAf; �f;�
�
fje�i�tHP � � �Pe�i�tHjAi; �i; �

�
i isym

¼
Z

D½A�D½��D½���eiS½A;�;���: (16)

�tA0ðt;xÞ playing the role of parameter �ðxÞ in the pro-
jector inserted at time t.

The temporal gauge, used in the Hamiltonian formalism
after Eq. (9), is usually not accessible when boundary
conditions are imposed in time, as done in path integral
expressions. Actually, the field component A0ðxÞ represents
a true physical variable. We can see this by noting that
A0ðxÞ cannot be transformed away from the path integral
by gauge transformation. In fact, setting A0 ¼ 0 instead of
integrating over A0ðxÞ on the right-hand side of Eq. (16)
removes the projector P on the left-hand side, and the
matrix element is changed, h� � �isym ! h� � �i.

A generally applicable gauge choice is the static tempo-
ral gauge, given by Eq. (15). Whatever gauge we use, the
Polyakov line

�ðxÞ ¼ e
�ie

R
tf
ti
dtA0ðt;xÞ

(17)

denotes a physical, gauge-invariant quantity which pre-
vents us from reaching the temporal gauge as soon as
some boundary conditions are imposed at the initial and
final time. But the integrand of the path integral (14)
remains unchanged under global gauge transformation of
the initial or final state by the phase factor 1 ¼ exp2
i,
represented by the shift

A0ðxÞ ! A0ðxÞ þ 2


eðtf � tiÞ : (18)

Because of this discrete symmetry, the integrand in
Eq. (16) does not depend on the space-time-independent
component, A0ðxÞ ¼ A0, and the variable A0 decouples in
the limit tf � ti ! 1. Nevertheless, the homogeneous

component A0 remains a physical parameter when matrix
elements among the vacuum are considered because the
vacuum state depends on A0. In fact, eA0 acts as a chemical
potential, and one arrives at a grand canonical ensemble
where expectation values of observables are saturated by
the total charge sector of the Fock space which minimizes
H� eA0

R
d3x	.

V. SEMICLASSICALVACUUM

Let us suppose that the model given by Eq. (7) is weakly
coupled and that saddle-point expansion can be used to
explore its phase structure. The case of global symmetry,
e ¼ 0 in the absence of higher order derivative terms
Lðp2Þ ¼ p2, is well known; the model supports a homoge-
neous condensate for an appropriately chosen local poten-
tial. Higher order derivative terms in the action may induce
a condensation of particles with nonvanishing momentum,
which is an inhomogeneous coherent state, and a relativ-
istic ‘‘band structure’’ reminiscent of solid state physics is
observed. When the interaction with the gauge field is
turned on with Lðp2Þ ¼ p2, then the usual Higgs phase
can be found. An interesting variant of the Higgs mecha-
nism can be generated by the higher order derivative’s
terms. The point is that the partial derivatives are turned
into covariant derivatives in the minimal coupling scheme
and contain the connection term which can induce a non-
trivial local potential for the gauge field. The effective
interaction, represented by this potential, may induce a
nonvanishing expectation value for the gauge field. We
call such a vacuum ‘‘condensate,’’ although one should
keep in mind that it is actually a coherent state only
because our gauge particle, the photon, is neutral and the
Bose-Einstein condensation is not possible.

A. Condensate

We follow the strategy of the saddle-point approxima-
tion, and to this end we separate the fields into the sum
of saddle-point and quantum fluctuations by writing � ¼
��þ � and B� ¼ �A� þ A�, the first term in each expres-

sion representing the saddle point. When a nonvanishing
value of the covariant derivative

�D2 ��ðxÞ ¼ k2 ��ðxÞ (19)

is selected for the semiclassical vacuum by the kinetic
energy of the charges, then a gauge transformation can
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always exchange contributions of the partial derivative
and the connection term. One possibility is when the
eigenvalue k2 in this equation is provided by the partial
derivative alone, ��ðxÞ ¼ ��e�ipx, �A� ¼ 0. By a suitable

gauge transformation, we may rearrange the semiclassical
vacuum into ��ðxÞ ¼ ��, e �A� ¼ k�. This is a remarkable

simplification offered by gauge invariance; the vacuum
consisting of the condensate of particles of nonvanishing
momentum can be made homogeneous. We exploit this
possibility and assume the homogeneity of the saddle point
and the orthogonality of the fluctuations to the saddle
point, Z

dx�ðxÞ ¼
Z

dxA�ðxÞ ¼ 0: (20)

Note that apart from broken global gauge invariance the
gauge-field condensate leads to the spontaneous break-
down of the Lorentz symmetry. When the function Lðp2Þ
generates spacelike gauge-field condensate, k2 < 0, then
Lorentz symmetry is reduced to Oð1; 2Þ and the excitation
spectrum loses rotational invariance. We seek a vacuum
with nonrelativistic Galilean Oð3Þ invariance; hence, we
restrict our attention to models with timelike gauge-field
condensate, e �A� ¼ g�0k > 0. Hence, there will be four

combinations of fields playing the role of Goldstone bo-
sons when ��; �A� � 0, corresponding to gauge rotations

and Lorentz boosts. The number of massless particle
modes is not necessarily the same. On the one hand, it
may be smaller because either nonrelativistic fields have
half as many particle modes as their relativistic counter-
parts [18] or some field combinations may not control
particlelike excitations, with vanishing residuum in the
propagator at the ‘‘mass shell.’’ On the other hand, it
may be more because higher order derivative terms may
generate several ‘‘bands.’’ Global gauge rotation is applied
if necessary to make the scalar condensate, ��, real.

B. Fluctuations

According to Sec. III, classical stability analysis is suf-
ficient for the homogeneous components of the fields, and
the stability of the fluctuations around the vacuum will be
verified by checking the spectrum of the elementary ex-
citations in quantum theory. The energy-momentum tensor
of a theory with polynomial, higher order derivative terms
can easily be obtained; it is the sum of the usual expression
for the energy-momentum tensor plus terms containing
higher order derivatives of the fields. Therefore, the energy
density of the semiclassical homogeneous vacuum charac-
terized by �A� and �� is given by the Lagrangian up to

a sign,

Uðe2 �A2; ��2Þ ¼ � ��2Lðe2 �A2Þ þ Vð ��2Þ: (21)

We assume at this point that Lðp2Þ is bounded from above
and that it assumes a maximal value at p2 ¼ k2, thus the
minimization with respect to �A2,

0 ¼ @Uðe2 �A2; ��2Þ
@e2 �A2

¼ � ��2L0ðe2 �A2Þ; (22)

sets e2 �A2 ¼ k2 and e �A� ¼ g�;0k, as mentioned above.

The separation of the kinetic and the potential energy terms
in the Lagrangian (7) for the scalar field is not unique;
the invariance of the action under the transformation
Lðp2Þ ! Lðp2Þ þ�L, Vð�2Þ ! Vð�2Þ � �L�2 can be
used to set Lðk2Þ ¼ 0. We assume the form

Lðp2Þ ¼ � 1

k2
ðp2 � k2Þ2; (23)

the simplest polynomial satisfying our requirements. The
scalar condensate �� is found by minimizing Uðk2; �2Þ,
i.e., solving the equation

0 ¼ V0ð ��2Þ � Lðk2Þ; (24)

with the auxiliary condition that the first nonvanishing
derivative of the potential at the vacuum is positive.
Once the homogeneous field components are found, we

turn to the free theory by considering the quadratic part of
the action. We use the decomposition � ¼ �1 þ i�2, and
A ¼ nAL þAT , n ¼ p=jpj, followed by the separation of

the static components ~�a, ~AL, and ~AT by writing �a !
�a þ ~�a, AL ! AL þ ~AL, and AT ! AT þ ~AT . The qua-

dratic action is written as a sum Sð2Þ ¼ Sð2Þ þ ~Sð2Þ, with

Sð2Þ ¼ 1

2

Z
d4xð�1; �2; AL;ATÞ

�

K11 K12 K1L 0

K21 K22 K2L 0

KL1 KL2 KLL 0

0 0 0 KTT

0
BBBBB@

1
CCCCCA

�1

�2

AL

AT

0
BBBBB@

1
CCCCCA

~Sð2Þ ¼ tf � ti
2

Z
d3xð~�1; ~�2; ~A0; ~AL; ~ATÞ

�

~K11 0 ~K10
~K1L 0

0 ~K22 0 ~K2L 0

~K01 0 ~K00 0 0

~KL1
~KL2 0 ~KLL 0

0 0 0 0 ~KTT

0
BBBBBBBB@

1
CCCCCCCCA

~�1

~�2

~A0

~AL

~AT

0
BBBBBBBB@

1
CCCCCCCCA
: (25)

The momentum space representation of the quadratic form,

KðpÞ ¼
Z

dxeipðx�yÞKðx; yÞ; (26)

is calculated in Appendix , with the result
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K11 ¼ Lþ
d ðpÞ � 4V 00 ��2 ¼ K22;

K12 ¼ iL�
d ðpÞ ¼ �K21;

K1L ¼ �jpj½zðpÞLdðpÞ�� ¼ KL1;

K2L ¼ ijpj½zðpÞLdðpÞ�þ ¼ �KL2;

KLL ¼ p2½z2ðpÞLdðpÞ�þ þ!2;

KTT ¼ !2 � p2;

(27)

where the notation f�ðpÞ ¼ fðpÞ � fð�pÞ has been intro-
duced with

LdðpÞ ¼ Lððpþ e �AÞ2Þ � Lðk2Þ; (28)

zðpÞ ¼ e ��=ðp2 þ 2!kÞ, and p ¼ ð!;pÞ for the four-
dimensional fields. The three-dimensional, static sector
has the quadratic forms ~KðpÞ ¼ KðpÞj!¼0, obtained from

the equations in (27) and

~K 10 ¼ � 4e ��k

p2
LdðpÞj!¼0 ¼ K01;

~K00 ¼ 8e2 ��2k2

ðp2Þ2 LdðpÞj!¼0 þ p2:

(29)

C. Unitarity

We turn now to the question of unitarity of the time
evolution within the positive norm subspace of the Fock
space. Two circumstances require us to go beyond the
argument based on the reconstruction theorem for
Euclidean theories [19]. One is that the manifest
Oð4Þ/Lorentz invariance of the Euclidean/Minkowski
Green functions, one of the numerous conditions of the
theorem, is lost in our case. The other point is that states
belonging to excitations generated by the time component
of the gauge field have negative norm in Minkowski space-
time and are thus nonphysical. Rather than attempting to
generalize the reconstruction theorem, we choose a simpler
argument, valid in any finite order of the perturbation
expansion.
The partial fraction decomposition of the propagator is

now made in terms of!2 rather than p2, and the realness of
the one-particle energies guarantees the unitarity of the
perturbative model within the Fock space with indefinite
norm. Perturbation expansion, based on the vacuum with
homogeneous fields �� and �A�, leads to a stable and unitary

theory if all solutions of the equation detKðpÞ ¼ 0 of the
quadratic form K of Eq. (25),

detKðpÞ ¼ 4

k4
ð!2 � p2Þ2f!10 � 4!8ðp2 þ 2k2Þ þ!6½16k4 þ 16k2p2 þ 6ðp2Þ2 þ 4V00 ��2k2�

�!4½4V00 ��2ðe2p2 ��2 þ 2k2p2 � 4k4Þ þ 4ðp2Þ3 þ 8k2ðp2Þ2� þ!2½64V002 ��4 þ 4V 00 ��2k2ðp2Þ2
þ 2e2 ��2ðp2Þ2 � 4e2 ��2k2p2� � 2e2k2p2V00 ��3 � 4e2ðp2Þ3V 00 ��3g; (30)

obtained for the kinetic term (23) have real frequency
components, !2 > 0. It is easy to see that this expression
has negative or complex !2 as roots; there are instable
modes in the scalar particle, longitudinal gauge-field sec-
tor. These instabilities can be excluded by imposing the
condition

V00ð ��2Þ ¼ 0 (31)

on the local potential, which is not a natural relation; it
requires fine-tuning to cancel the scalar particle-scattering
amplitude at vanishing momentum.

According to the Goldstone theorem, the minimization
of the vacuum energy with respect to the strength of
condensate cancels the gap for certain modes. The
Goldstone mode arising from the breakdown of global
gauge invariance is made by Eq. (24). As far as the three
soft-field combinations, which correspond to the break-
down of Lorentz symmetry, are concerned, let us intro-
duce a mass term for the gauge field by the extension
L ! Lþm2B2=2 of the Lagrangian (7) as in Proca the-
ory, which leads to the modified potential Uðe2 �A2; ��2Þ !
Uðe2 �A2; ��2Þ �m2 �A2=2 in Eq. (21). The minimization with
respect to the gauge-field condensate, Eq. (22), gene-
rates three soft-field combinations. Two of them are the

nonvanishing helicity components of the transverse gauge
field even for m2 � 0, and the third is a combination of
@�A

�, �A�A
�, �1, and �2. To simplify matters, we return in

our discussion to scalar electrodynamics, m2 ¼ 0, where
the determinant of Eq. (30), whose vanishing identifies the
normal mode dispersion relation, reads

detKðpÞ ¼ 4

k4
ð!2 � p2Þ2!2ð!2 � 2k!� p2Þ2ð!2

þ 2k!� p2Þ2: (32)

The energy spectrum is real; transverse gauge fields make
up two Goldstone modes with ! ¼ �jpj. The scalar field,
together with the longitudinal components of the gauge
field, produce the dispersion relations

! ¼ �1kþ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2

q
; (33)

where �1, �2 ¼ �1. The choice �1�2 ¼ �1 in Eq. (33)
belongs to two other Goldstone modes. The determinant
(30) corresponds to nonstatic fluctuations; therefore, the
factor ! ¼ 0 in Eq. (32) is never vanishing.
Once the unitarity has been established in the whole

Fock space, let us turn to the physical subspace. The argu-
ment in Ref. [14] was presented for the Yang-Mills-Higgs
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model, given by the Lagrangian (7), although some addi-
tional care is required in this case to draw conclusions
for Minkowski space-time theories. The Wick rotation is
more involved for gauge than for scalar fields because the
norm of state created by A0 changes sign during Wick
rotation between Euclidean and Minkowski space-time.
This leads to the following two problems. One has already
been mentioned in Sec. IV: the usual path integration
formulas require the orthogonality of the field eigenstates,
and we should use skew-adjoint representation for A0 in
Minkowski space-time. This amounts to integration over
an imaginary A0 field, which is in obvious conflict with the
usual interpretation of A0 as the temporal component of
a Hermitian quantum field. The solution of this apparent
contradiction is well known: the treatment of A0 as a non-
dynamical, auxiliary variable. This is what happens in the
static temporal gauge where A0 is the (real) integral vari-
able of the projection operator to restrict the dynamics into
the subspace with Gauss’s law. Once the real, static A0

configurations are accepted in the path integral of Eq. (14),
then we may return to the gauge-free case, Eq. (16) in the
calculation of gauge-invariant quantities. In other words, in
the usual path integral formalism for real time, available
for gauge theories with higher order derivatives as well, it
is better to interpret the temporal component of the gauge
field as an auxiliary variable to handle Gauss’s law rather
than as a quantum field handling physical excitations.
The situation is reminiscent of conventional QED where
elementary excitations, stability, renormalizability, etc. are
trivial in relativistic gauges but one has to go into another,
physical gauge, usually chosen to be the Coulomb gauge,
to recover unitarity in the physical subspace in an obvious
manner.

The other problem, caused by an exceptional feature of
A0ðxÞ during Wick rotation, is that Eq. (6), used to identify
the signature of the norm, is no longer valid for this
component of the gauge field in Minkowski space-time.
A generalization valid for the gauge field is

�½c � ¼ �½c �
½c �; (34)

where c is any local combination of the elementary bo-
sonic fields @a0�, @a0�

�, and @a0A, and space inversion acts

as Pc ðt;xÞ ¼ c ðt;�xÞ with 
½�� ¼ �
½A� ¼ 1. Com-
bined space- and time-reversal invariance yields the con-
servation of � and assures unitarity within the positive
norm, physical subspace [20].

VI. QUASIPHOTONS

It has been established so far that our model has unitary
time evolution within the positive norm subspace and is
therefore physically interpretable. The next question is
about its physical content, which will be assessed by com-
paring it with standard electrodynamics. The usual Higgs
mechanism renders photonsmassive. TheGoldstonemodes

arising from the spontaneous breakdown of the Lorentz
invariance make three combinations of the fields soft.
Two of them are the transverse, nonvanishing helicity com-
ponents of the gauge field, and they keep the radiation field
massless, just as in standard electrodynamics. Two further
soft field combinations are made from the longitudinal
gauge and the scalar-field components.
The double pole of (23) may render the normal modes of

the scalar field nonparticlelike because scattering ampli-
tude wave packets, constructed by this kind of excitation
may be vanishing according to the reduction formulas.
Thus, we take the point of view that the scalar field corres-
ponds to so far nonobserved excitations and seek only the
dynamics of the gauge field. To simplify matters further,
we ignore radiative corrections due to the charged scalar
field and restrict ourselves to the OðA2Þ part of the action
where the normal modes are quasiphotons. We consider
below two aspects of the model: the number of propagat-
ing, dynamical degrees of freedom and their dispersion
relation. It is worthwhile to separate two different kinds
of dynamics for the gauge field, the first arising through the
field strength tensor in the Maxwell action [the first term in
the Lagrangian (7)] and the second coming directly from
the connection term of the covariant derivative in the
minimal coupling. The former, field-strength tensor dy-
namics, represents conventional electrodynamics and the
latter, connection term dynamics, is the source of genuine
quantum and topological effects.
Let us first have a look into the Proca theory, the simplest

model with the massive vector field, and use the standard
three-dimensional notation A� ¼ ð’;AÞ, j� ¼ ð	; jÞ,E ¼
�r’� @0A,H ¼ r�A. We separate the transverse and
longitudinal components, A ¼ AT þr�, j ¼ jT þr�,
where current conservation implies @0	þ�� ¼ 0. The
Lagrangian

L ¼ 1

2
E2 � 1

2
B2 � 	’þm2

2
ð’2 �A2Þ þ jA (35)

can bewritten as L ¼ LT þ LL0, where the first and second
terms contain the transverse and longitudinal and temporal
components,

LT ¼ 1

2
ð@0ATÞ2 � 1

2
B2 �m2

2
A2

T þ jTAT;

LL0 ¼ 1

2
ðr’þ @0r�Þ2 þm2

2
½’2 � ðr�Þ2�

� 	’þr�r�: (36)

As is well known, the temporal component ’ is not a
dynamical degree of freedom and can be eliminated by
solving its algebraic equation of motion in time,

’ ¼ 1

m2 � �
ð	þ @0��Þ; (37)

without generating nonlocal effects in time, and the result-
ing effective Lagrangian for � is
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L L0 ¼ � 1

2
	

1

m2 � �
	þm2

2
�
�ðhþm2Þ
m2 ��

�

þ�

�
�

m2 ��
@0	���

�
: (38)

For a massless photon, m2 ¼ 0, the equation of motion for
� is the current conservation and longitudinal photons
drop out from the field strength dynamics. But the mass
term, arising from the connection term dynamics, may
bring the longitudinal component back as a genuine dy-
namical variable. Gauge transformations may make the
separation of auxiliary and truly dynamical variables diffi-
cult. For instance, there are gauges, such as the static
temporal gauge, where the longitudinal component appears
to be dynamical but it drops out from gauge-invariant
observables. When higher order derivative terms appear
in the connection term dynamics, then either the temporal
or the transverse component of the gauge field may acquire
nontrivial dynamics. The formal gauge invariance always

makes the theory redundant; therefore, one expects three
dynamical, propagating degrees of freedom for the theory
(7) from the photon field, just as in the usual Higgs mecha-
nism. But their dispersion relations differ from those of the
Higgs mechanism, betraying the different underlying
symmetry-breaking patterns.
Let us look into the dispersion relation of the model (7)

in the Coulomb gauge which offers a particularly clear
view in our model with spontaneously broken Lorentz
symmetry. The Lagrangian L ¼ LT þ L0m is written as
the sum of the transverse part, given by the first equation
in Eqs. (36), and the rest, whose quadratic part is

L ð2Þ
0m ¼ 1

2
ð�1; �2; ’ÞKC

�1

�2

’

0
@

1
A; (39)

where � ¼ �1 þ i�2 and

KC ¼
Lþ
d ðpÞ iL�

d ðpÞ ½ðp0 þ 2kÞzðpÞLdðpÞ�þ
�iL�

d ðpÞ Lþ
d ðpÞ �i½ðp0 þ 2kÞzðpÞLdðpÞ��

½ðp0 þ 2kÞzðpÞLdðpÞ�þ i½ðp0 þ 2kÞzðpÞLdðpÞ�� ½ð2kþ p0Þ2z2ðpÞLdðpÞ�þ þ p2

0
BB@

1
CCA: (40)

The dispersion relation is defined by the roots of the
determinant of the quadratic form:

detKCðpÞ ¼ 4

k4
p2ð!2 � 2k!� p2Þ2ð!2 þ 2k!� p2Þ2:

(41)

Comparing this expression with Eq. (32), the determinant
of the small fluctuations in the static temporal gauge, apart
from the obvious absence of two massless modes, corre-
sponding to nonvanishing helicity transverse modes of
the gauge field, one notices the appearance of a new root,
p2, suggesting the emergence of a conventional Coulomb
propagator. One can obtain a more detailed view of the
normal modes by the inspection of the propagators. The
inverse of KC is a full matrix with rather involved matrix
elements. Matrix elements of K�1

C between the matter field
contain the factor ð!2 � 2k!� p2Þ2ð!2 þ 2k!� p2Þ2,
indicating the nonparticlelike behavior. The matrix ele-
ments between the matter field and ’ have the factors
ð!2 � 2k!� p2Þð!2 þ 2k!� p2Þ and p2 in the denomi-
nators. Finally, the simplest inverse matrix element is the
diagonal one for ’,

ðK�1
C Þ00 ¼ 1

p2
; (42)

confirming that the factor p2 in Eq. (41) corresponds to the
unchanged Coulomb law.

The expectation of three dynamical, propagating com-
ponents for the gauge field, mentioned after Eq. (38) above,

turned out to be wrong, and the nontrivial dynamics for the
longitudinal component, expected by analogy with the
Proca case, Eq. (38), was too naı̈ve. The higher order
derivative terms render the nontrivial dispersion relation
for the longitudinal component a gauge artifact, and the
usual dispersion relation is recovered for the electromag-
netic field.
The surprising simplicity of Eq. (42) is the result of

nontrivial cancellations. This can be seen most easily by
calculating the A0 propagator directly. To this end, we
eliminate the charged field by its equation of motion which
is simplest to carry out in the complex � basis, where

L ð2Þ ¼ 1

2
ð��; �; ’Þ

K� 0 K0

0 0 0
K0 0 K00

0
@

1
A �

��
’

0
@

1
A; (43)

with K� ¼ �2ðh� 2ik@0Þ2=k2, K0 ¼ 2e ��ð2kþ i@0Þ
ðh� 2ik@0Þ=k2, and L00¼2e2 ��2ð@20�4k2Þ=k2��. The
equations of motion for �� and �, 0 ¼ K��þ K0A0, and
0 ¼ �yK� þ A0K0, used to eliminate the scalar field, yield

L ð2Þ ¼ 1

2
’D�1

00 ’; (44)

where

D�1
00 ¼ K00 � 1

2
ðK0K

�1� K0 þ Ktr
0 K

�1tr� Ktr
0 Þ (45)

give D�1
00 ¼ p2 after some cancellations. Therefore, the

deviation from usual electrodynamics and the impact of
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the higher order derivative terms are seen by the charged
scalar field in our approximation.

VII. CONCLUSION

A novel spontaneous symmetry breaking is discussed in
the framework of a scalar QED which involves higher
order covariant derivatives. One finds a nonvanishing ex-
pectation value for the gauge field and unitary, physically
acceptable interactions in properly fine-tuned models.

The unitarity is proven in the physical, positive norm
subspace in two steps. First, it is assured in the whole Fock
space by fine-tuning the self-interactions for the charged
scalar field. Second, it is shown that combined space- and
time-reversal invariance makes the physical subspace
closed under time evolution.

The particle content of our model is radically different
than the one found in the conventional Higgs mechanism.
The Goldstone theorem renders the radiation field mass-
less. Furthermore, a particular model is proposed where all
components of the gauge field are massless and Maxwell
equations are recovered in the linearized equations of
motion.

We sought in this work a vacuum which supports
Galilean invariance; therefore, the temporal component
of the gauge field was allowed to develop vacuum expec-
tation value. It acts as some dynamically generated chemi-
cal potential for the charged scalar particle. The scalar
particle condensate remains electrically neutral due to the
equal number of particles and antiparticles it contains as a
result of the higher order derivative terms in their disper-
sion relation.

The status of Lorentz symmetry, broken by the vacuum
expectation values to the Galilean group, is rather peculiar
in the Abelian model. Despite the breakdown of Lorentz
invariance, Goldstone modes display relativistic dispersion
relations. Furthermore, three components of the gauge field
become Goldstone modes corresponding to the spontane-
ous breakdown of relativistic symmetries and hence remain
massless even if one starts with massive Proca action for
photons. The quadratic part of the Lagrangian in the fluc-
tuations of the gauge field is identical to that of QED,
leaving the Lorentz noninvariant part of the photon dy-
namics to be generated by radiative corrections. The de-
viation of this model from standard electrodynamics is due
to radiative corrections only.

There are numerous extensions one may consider.
Similar models with non-Abelian gauge symmetry should
lead to some massive gauge-field components because
the Goldstone theorem can no longer protect all compo-
nents of the gauge field against mass generation. Using a
basis in internal space where the massless gauge bosons are
diagonal, the other, noncommuting components of the
gauge field are charged and allow us to construct models
with an unbroken Uð1Þ subgroup, as in the standard
model. It remains to be seen if natural models, requiring

no fine-tuning, can be constructed by the eventual in-
clusion of charged fermions. Another issue, the scale-
dependence of the breakdown of Lorentz invariance, is
interesting, too. Being a spontaneous symmetry breaking,
it should be strong at low energy. But some interesting
results about non-Lorentz-invariant quadratic terms in
gauge theories [21] suggest that certain Lorentz
symmetry-breaking parameters of the dynamics tend to
be suppressed in the low energy limit. A systematic
renormalization-group study of the model would be needed
to reveal the true scale dependence of this symmetry break-
ing. Finally, an extension for gravity opens new questions
since the spontaneous breakdown of Lorentz symmetry
may generate massive gravitons by a gravitational Higgs
effect.

APPENDIX A: QUADRATIC ACTION
IN MOMENTUM SPACE

To find the momentum dependence of the quadratic form
KðpÞ, we evaluate the quadratic action (25) for the test
functions

�ðxÞ ¼ �0e�ipx; A�ðxÞ ¼ A0
�e

�ipx; (A1)

before gauge fixing for the sake of simplicity. The qua-
dratic form of the Oð���Þ part can easily be written as

K��� ¼ 2LdðpÞ � 4V 00 ��2 (A2)

by means of Eq. (24) with LdðpÞ introduced in Eq. (28).
To find the other terms, it is advantageous to represent

the higher derivative kinetic term of the scalar field as a
polynomial,

Lðp2Þ ¼ Xnd
n¼0

cnp
2n: (A3)

The block that mixes the scalar and the gauge field origi-
nates from the OðBÞ piece in

Lð�D2Þ �� ¼ Xnd
n¼0

cn½�ð@� ie �A� ieAÞ2�n ��; (A4)

and we find for the OðA�Þ contributions
1

2

Z
dxdy�ðxÞK�Aðx; yÞAðyÞ

¼ ie
Z

dx�ðxÞ Xnd
n¼0

cn
Xn
‘¼1

ð� �hÞ � � �

� ð2AðxÞ �@þ @AðxÞÞ � � � ð� �hÞ ��; (A5)

where �@� ¼ @0 � ie �A�, �h ¼ �@� �@�, and the ‘-th factor of

the termOðð�D2ÞnÞ is replaced by theOðAÞ part of�D2 in
the right-hand side. The choice (A1) leads to
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K�AðpÞA0 ¼ 2ie
Xnd
n¼0

cn
Xn
‘¼1

ðpþ e �AÞ2 � � �

� ð�2iA0
0k� ipA0Þk2 � � � ��; (A6)

written as

K�AðpÞA0 ¼ 2eð2A0
0kþ pA0Þk�2

Xnd
n¼0

cnk
2n

� Xn�1

‘¼0

�
1þ p2 þ 2p0k

k2

�
‘
��: (A7)

The geometric series can be summed,

K�AðpÞA0 ¼2e
2A0

0kþpA0

p2þ2p0k

�Xnd
n¼0

cnk
2n

��
1þp2þ2p0k

k2

�
n�1

�
��; (A8)

and we have

K�A�
ðpÞ ¼ 2e ��

�
LdðpÞ 2g

�0kþ p�

p2 þ 2p0k

�
: (A9)

The OðA2Þ quadratic form for the real field requires
more care. Since it acts on the real field, it must be sym-
metrical. We shall consider a complex plane wave compo-
nent of the gauge field in the actual calculation of this term
and carry out the symmetrization only at the end. This term
is the sum of two contributions. One of them is the standard
Maxwell piece,

Kð1Þ
A�A�

ðpÞ ¼ �T��p2; (A10)

where T�� ¼ g�� � p�p�=p2 is the projection into the
transverse polarization subspace. The other part is the
OðA2Þ contribution in

��Lð�D2Þ �� ¼ X
n

cn ��½�ð@� ie �A� ieAÞ2�n ��; (A11)

which will be written as the sum Kð2Þ
AAðpÞ þ Kð3Þ

AAðpÞ. The
first term stands for the OðA2Þ contributions of the �D2

factor,

A0Kð2Þ
AAA

0 ¼ 2e2
Xnd
n¼0

cn
Xn
‘¼1

��ð�h0Þ � � �A2ðxÞ � � � ð�h0Þ ��;

(A12)

which is vanishing,

Kð2Þ
A�A�

ðpÞ ¼ 2g�� ��2e2L0ðk2Þ ¼ 0: (A13)

The other contribution is for the product of two OðAÞ
terms,

A0Kð3Þ
AAðpÞA0 ¼�2e2

Xnd
n¼0

cn
Xn�1

‘¼1

Xn
‘0¼‘þ1

��ð�h0Þ���

�ð2A@0 þ@AÞ���ð2A@0 þ@AÞ���ð�h0Þ ��

¼2e2
Xnd
n¼0

cn
Xn�1

‘¼1

Xn
‘0¼‘þ1

��k2 ���ð2A0kþpAÞ���

�ðk2þp2þ2p0kÞ���ð2A0kþpAÞ���k2 ��;

(A14)

which is written as

A0Kð3Þ
AAðpÞA0 ¼2e2 ��2ð2A0kþpAÞ2k�4

�Xnd
n¼0

cnk
2n
Xn�1

‘¼1

Xn
‘0¼‘þ1

�
1þp2þ2p0k

k2

�
‘0�‘�1

:

(A15)

The summation of this geometric series gives

A0Kð3Þ
AAðpÞA0 ¼ 2e2 ��2 ð2A0kþ pAÞ2

p2 þ 2p0k
k�2

Xnd
n¼0

cnk
2n

�
"Xn�1

‘¼1

�
1þ p2 þ 2p0k

k2

�
n�‘ � nþ 1

#
:

(A16)

The resulting geometrical series in the square bracket can
again be summed with the result

A0Kð3Þ
AAðpÞA0 ¼2e2 ��2 ð2A0kþpAÞ2

ðp2þ2p0kÞ2
Xnd
n¼0

cnk
2n

�
��

1þp2þ2p0k

k2

�
n�1�n

p2þ2p0k

k2

�
;

(A17)

yielding finally

A0Kð3Þ
AAðpÞA0 ¼ 2e2 ��2LdðpÞ ð2A0kþ pAÞ2

ðp2 þ 2p0kÞ2 (A18)

and

KA�A�
ðpÞ¼�T��p2þe2 ��2LdðpÞ

�ð2g�0kþp�Þð2g�0kþp�Þ
ðp2þ2p0kÞ2

þe2 ��2Ldð�pÞð2g
�0k�p�Þð2g�0k�p�Þ

ðp2�2p0kÞ2
(A19)

after symmetrization.
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