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We present a particularly nice D-dimensional graph-based representation of the full color-dressed five-

point tree-level gluon amplitude. It possesses the following virtues: (1) it satisfies the color-kinematic

correspondence, and thus trivially generates the associated five-point graviton amplitude, (2) all external-

state information is encoded in color-ordered partial amplitudes, and (3) one function determines the

kinematic contribution of all graphs in the Yang-Mills amplitude, so the associated gravity amplitude

is manifestly permutation symmetric. The third virtue, while shared among all known loop-level

correspondence-satisfying representations, is novel for tree-level representations sharing the first two

virtues. This new D-dimensional representation makes contact with the recently found multiloop five-

point representations, suggesting all-loop, all-multiplicity ramifications through unitarity. Additionally we

present a slightly less virtuous representation of the six-point maximally helicity-violating (MHV) and

MHV amplitudes that holds only in four dimensions.
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I. INTRODUCTION

In this paper we employ loop-level techniques to estab-
lish the existence of tree-level representations satisfying
certain criteria in Yang-Mills (YM) and gravity (GR) theo-
ries. Indeed such criteria expose tree-level calculation to
many of the challenges faced in the discovery of particular
loop-level representations. As an eventual goal is to im-
prove at translating between loop-level representations, the
existence of such a tree-level proving ground is convenient.
We will see that there is already practical value for future
multiloop cut calculations arising from this five-point ex-
ploration. Further, study of the form of these representa-
tions may help unlock more constructive techniques for
satisfying similar criteria at loop level.

A particularly intriguing discovery is that full color-
dressed gluon tree-level scattering amplitudes in YM theo-
ries encode all the information necessary to write down
tree-level graviton scattering amplitudes in related gravity
theories. This was first demonstrated by Kawai, Lewellen,
and Tye (KLT) [1] for tree-level open and closed string
amplitudes in the 1980s. In the late 1990s an all-
multiplicity expression was written down by Bern,
Dixon, Perelstein, and Rozowsky [2] for tree-level field
theory. Recently Bern, Johansson, and one of the current
authors, Carrasco, (BCJ) discovered that it was possible to
extract gravity information from gauge theory representa-
tions in a very direct way [3].

To achieve this extraction, one must organize the YM
scattering amplitudes into a particularly stringent represen-
tation. First it must be in terms of cubic-vertex graphs,
absorbing higher-vertex contact terms into any of the cubic
graphs allowed by the color structure. Second, the kine-
matic factors of the graphs (numerator functions) must be
organized so as to share the same algebraic properties as

their corresponding color factors. Having done so, the
gravity amplitude is simply given by a sum over the
same cubic graphs, but with a second copy of the Yang-
Mills kinematic factor replacing the Yang-Mills color
factor, the so-called double-copy construction of gravity
amplitudes. Schematically, if the correspondence is satis-
fied in the YM representation,

YM / X
g2graphs

nðgÞcðgÞ
pðgÞ ) GR / X

g2graphs

nðgÞ~nðgÞ
pðgÞ ; (1.1)

where nðgÞ are the kinematic numerator factors, cðgÞ are
the color factors, pðgÞ are the propagators of the graphs,
and ~nðgÞ is simply another copy of the Yang-Mills factor
nðgÞ. The double-copy construction was conjectured and
tested to eight points in Ref. [3], and proven to hold for all
multiplicity at tree level by Bern, Dennen, Huang, and
Kiermaier [4].
The story gets even more interesting at the level of

quantum (loop-level) corrections: the double-copy con-
struction of gravity amplitudes holds for integrands when-
ever it is possible to find a YM representation satisfying
the color-kinematic correspondence of Ref. [3] as first
explicitly demonstrated in [5].
The four-point loop-level scattering amplitudes in

maximally supersymmetric Yang-Mills theory, in repre-
sentations that allow the double-copy construction of asso-
ciated gravity amplitudes [5–8], share three virtues:
(1) They satisfy the color-kinematic correspondence of

Ref. [3]. This is sufficient for the double-copy con-
struction. We will refer to representations sharing
this virtue as BCJ representations.

(2) All external-state information in the kinematic nu-
merator factors, including any dependence on
number of space-time dimensions, is encoded in
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tree-level color-ordered partial amplitudes. This vir-
tue carries a number of features. Their generaliza-
tion to D dimensions tends to be straightforward.
Supersums involving these representations involve
only the partial amplitude prefactors. Most impor-
tantly, these representations allow for state-agnostic
universal expressions. We will refer to representa-
tions sharing this virtue as amplitude-encoded
representations.

(3) Independent of permutations of external leg labels,
each graph topology has only one numerator func-
tion taking it to kinematic numerators. This allows
for a much smaller number of distinct graph nu-
merator mappings to be specified. The resulting
gravity-expression is then manifestly crossing sym-
metric. We will refer to representations sharing this
virtue as symmetric representations.

Constructing BCJ representations at loop level, while
advantageous in terms of minimizing the amount of theory-
specific input,1 comes with its own challenges. Namely, the
process involves solving nontrivial functional relations
between graph numerators. This has been accomplished
mainly by introducing sufficiently general Ansätze [8,15].
Amplitude encoding and symmetry, while certainly not
necessary at loop level, simplify the finding of BCJ repre-
sentations by constraining the size of the Ansätze. For a
particularly impressive example one can consider the rep-
resentation of four-point four-loop N ¼ 4 super-Yang-
Mills amplitudes in Ref. [8]. This representation allows
for the encoding of the entire amplitude in terms of a very
small number of numerator functions. In particular, all 85
symmetric kinematic numerators can be given as func-
tionals of either two planar, or—even more remarkably—
one nonplanar kinematic numerator. Amplitude encoding
allows for a systematic exploration of what ends up being a
fairly small Ansatz space, as well as recycling the four-loop
amplitude in D-dimensional box cuts for all multiplicity at
any higher-loop order.

At tree level, on the other hand, finding amplitude-
encoded BCJ representations is fairly straightforward [3].
Intriguingly, the additional requirement of finding a sym-
metric representation leads to the type of nontrivial func-
tional relations appearing at loop level. This is suggestive
because at tree level all the content of the theory is already
available in fairly compact forms—the color-ordered par-
tial tree amplitudes. The discovery of similar challenges as
at loop level means that, in tree level, we have a potential
testing ground for new techniques to move between repre-
sentations that could be broadly applicable.

The tree-level BCJ representations appearing in the
literature [3,4,17–29] have satisfied, in addition, at most
one of the two other virtues, although they may have other

very favorable features such as explicit locality in external
momenta, arising naturally from string theory, compact-
ness, or explicit forms for all multiplicity. The
D-dimensional2 tree-level representations arrived at by
the Feynman rules introduced in [4] are symmetric (and
local), but at the cost of fairly unwieldy expressions—
embedding external-state information in polarization
vectors. The tree-level representations arrived at by the
procedure outlined in [3] are amplitude-encoded.
Furthermore they make manifest all (generalized) gauge
freedom consistent with the correspondence between color
and kinematics. For generic choices of the generalized
gauge, however, these representations are asymmetric;
distinct numerator functions must be defined depending
on the permutation of the labeling of the graphs.
In this work we present two new representations of the

D-dimensional five-point tree—each sharing all three vir-
tues with the four-point multiloop representations discussed
above. One of these representations is directly expressible
in terms of the universal prefactors appearing in the recently
discovered five-point multiloop symmetric BCJ representa-
tions in N ¼ 4 sYM [30]. Having identified this relation
between tree level and loop level, we are able to render
the recent five-point multiloop representations amplitude-
encoded and thus just as virtuous as the four-point loop-
level amplitudes. Additionally, we present a similar
representation for the six-point maximally helicity-
violating (MHV) and MHV trees that hold only in four
dimensions, relying on special four-dimensional properties
relating MHV color-ordered scattering amplitudes.
It is amusing to note that the first and third virtues

conspire to engender a particularly satisfying state of grace
at tree level—the need to specify only one numerator
function. BCJ representations need merely to specify nu-
merator functions for some subset of the half-ladder dia-
grams (also termed multiperipheral diagrams [31], see
Fig. 1) with various permutations of external leg labels,
as all others graph functions are constrained algebraically.
If we can additionally impose symmetry, we will find that
the representation needs only a single function: all the
half-ladders at any given multiplicity will be mapped to
kinematic factors with the very same function, but with
permuted arguments—rendering the double-copy con-
structed gravity amplitudes manifestly permutation
symmetric.

FIG. 1 (color online). Illustration of a generic m-point half-
ladder diagram.

1Available most typically through the (generalized) unitarity
method [9–12]. See recent reviews for details [13–16].

2The Feynman rules introduced in [4] immediately generalize
to D dimensions.
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The organization of this paper is as follows. In Sec. II we
briefly review representations and relations between tree
level partial and fully color-dressed scattering amplitudes,
as well as the color-kinematic correspondence of Ref. [3].
In Sec. III we discuss the general approach to solving the
functional constraints of satisfying BCJ, amplitude-
encoded, and symmetric representations, and work out in
detail the identification of a virtuous representation of the
four-point amplitude. In Sec. IV we present and discuss the
new representations of the five-point tree, and their relation
to higher-loop symmetric BCJ representations. In Sec. V
we introduce the new representation of the six-point MHV
tree. Finally, in Sec. VI, we conclude by summarizing the
challenges involved with the question of finding similar
expressions at higher multiplicity, and discuss the value of
exploring various representations at tree level.

II. BACKGROUND

A. Cubic representation and correspondence
between color and kinematics

The correspondence between color and kinematics relies
[5,15,32] on the ability to write any m-point L-loop am-
plitude, with all particles in the adjoint representation, as

ð�iÞL
gm�2þ2L
YM

AL
m ¼ X

g2graphs

Z YL
i¼1

dDqi
ð2�ÞD

1

SðgÞ
nðgÞcðgÞQ
l22pðgÞ

l2
;

(2.1)

where gYM is the coupling constant. The sum runs over the
set of m-point L-loop graphs with only cubic vertices
including permutations of external momenta labels. The
product in the denominator collects all propagators of each
cubic diagram g and the integration is performed over all
independent loop momenta. The mapping cðgÞ takes the
graph g to the color factor obtained by dressing every

three-vertex in the graph with an ~fabc ¼ i
ffiffiffi
2

p
fabc ¼

Trf½Ta; Tb�Tcg structure constant, where the color-group
generators Ta encode the color of each external leg
1; 2; 3 . . .m. Accordingly, the mapping nðgÞ takes the graph
g to kinematic factors that can depend on momenta and
polarizations—and can be different for the same topology
under permutations of external leg momenta. Finally,
SðgÞ denotes the internal symmetry factors of the individ-
ual graphs. For supersymmetric amplitudes expressed in
superspace, the mapping nðgÞ will also contain Grassmann
parameters. The purely cubic form of Eq. (2.1) can be
obtained from other representations by expressing all con-
tact terms as inverse propagators in kinematic numerators
that cancel propagators.

The correspondence between color and kinematic map-
pings is satisfied if the kinematic factors obey Jacobi
relations in one-to-one correspondence with the color fac-
tors, as well as antisymmetry under the flip of ordering at
any odd number of vertices,

nðiÞ þ nðjÞ þ nðkÞ ¼ 0 , cðiÞ þ cðjÞ þ cðkÞ ¼ 0; (2.2)

nðgÞ ! �nðĝÞ , cðgÞ ! �cðĝÞ: (2.3)

In the early 1980s, two papers looking at general gauge
theories explored a ‘‘radiation zero’’ discovered a few
years earlier in an electroweak four-point process [33];
the relations they found were later recognized as the
four-point expression of a more general color-kinematics
correspondence [3]. This correspondence (or duality be-
tween color and kinematics) holds to all multiplicity at tree
level [18,21]. Conjectured to also hold at any loop level [5],
the color-kinematic correspondence is strongly supported
in the maximally supersymmetric theories for the four-
point amplitudes up through four loops [5–8], through
two loops at five points [30], at one loop in N ¼ 0 . . . 4
sYM [34], and in pure Yang-Mills theory at two loops [5].
Recent reviews of the use of the color-kinematic corre-
spondence in the construction of loop-level amplitudes is
given in [15,35].

B. Color stripped amplitudes and relations

In contrast to Eq. (2.1), the full tree-level amplitude can
be alternatively decomposed,

Atree
m ð1;2;3; . . . ;mÞ
¼gm�2

YM

X
P ð2;3;...;mÞ

Tr½Ta1Ta2Ta3 ���Tam�Atree
m ð1;2;3; . . . ;mÞ;

(2.4)

where Atree
m is a tree-level color-ordered m-leg partial

amplitude, and the trace is over the group-theory color
generators. The sum runs over all noncyclic permutations
of legs, which is equivalent to all permutations keeping
leg 1 fixed.
Each color-ordered partial tree amplitude can in turn be

expanded into its subset of the cubic graphs that appear in
Eq. (2.1),

Atree
m ð1; 2; 3; . . . ; mÞ ¼ X

g2cyclic

nðgÞQ
l22pðgÞ

l2
; (2.5)

where the sum is over all cyclic-relabelings of all top-
ologies that can contribute to the particular color ordering.
One might expect that for m interacting gluons there

could be m! distinct partial amplitudes (all the different
orderings). Fortunately, however, a number of relations
constrain the count to ðm� 3Þ! independent partial
amplitudes.
First, the color-ordered partial amplitudes satisfy the

cyclic and reflection properties,

Atree
m ð1; 2; . . . ; mÞ ¼ Atree

m ð2; . . . ; m; 1Þ;
Atree
m ð1; 2; . . . ; mÞ ¼ ð�1ÞmAtree

m ðm; . . . ; 2; 1Þ: (2.6)

VIRTUOUS TREES AT FIVE- AND SIX-POINT LEVELS . . . PHYSICAL REVIEW D 84, 085009 (2011)

085009-3



Second, they satisfy the ‘‘photon’’-decoupling identity
(or subcyclic property) [36,37],X

�2cyclic

Atree
m ð1; �ð2; 3; . . . ; mÞÞ ¼ 0; (2.7)

where the sum runs over all cyclic permutations of legs
2; 3; 4; . . .m.

Next are the Kleiss-Kuijf relations [37]:

Atree
m ð1; f�g; m; f�gÞ ¼ ð�1Þn� X

f�gi2OPðf�g;f�T gÞ
Atree
m ð1; f�gi; mÞ;

(2.8)

where the sum is over the ‘‘ordered permutations’’
OPðf�g; f�TgÞ, that is, all permutations of f�gSf�Tg that
maintain the order of the individual elements belonging to
each set within the joint set, where n� is the number of �

elements. Following [37] we use the notation f�Tg to
represent the set f�g with the ordering reversed. These
relations were first conjectured in Ref. [37] and later
proven in Ref. [38]. After taking all of the above relations
into account, the number of independent m-point ampli-
tudes is ðm� 2Þ!.

Finally the ability to construct BCJ representations at
tree level was used [3] to predict additional relations
between color-ordered partial tree amplitudes, which re-
duce the number of independent amplitudes to ðm� 3Þ!.
While the general form of the identities is somewhat
involved, the structure and the occurrence of kinematic
coefficients in the relations can be seen in the following
five-point example:

s24s245A
tree
5 ð1;2;4;5;3Þ¼�Atree

5 ð1;2;3;4;5Þs34s15
�Atree

5 ð1;2;3;5;4Þs14ðs245þs35Þ;
(2.9)

where sij... ¼ ðpi þ pj þ � � �Þ2, and the set of ð5� 3Þ!
independent five-point tree amplitudes on the right-hand
side is obtained by keeping legs 1 through 3 fixed. An all-
multiplicity expression is given in Ref. [3]. These relations
were later derived and proven from string theory using
monodromy [39–41], as well as in a pure field-theoretic
approach using on-shell recursion [42,43].

It should be emphasized that all of these relations be-
tween partial amplitudes share an important feature: they
hold in arbitrary dimensions. As such, they can be used to
analytically establish D-dimensional representations with-
out explicit evaluation in any particular dimension.

III. METHODS

Finding an amplitude-encoded BCJ satisfying represen-
tation at m-point tree level is straightforward. We start by
identifying the cubic tree graphs with m external legs,
independent under vertex-flip antisymmetry, and write
down the linear system of equations generated by the

Jacobi relations between kinematic numerator factors.
We can reduce this linear system by simple elimination
of kinematic factors, solving each in terms of simple linear
combinations of others, until no more elimination is pos-
sible, and we are left with a solution for every kinematic
factor as a linear functional of the graphs independent
under these relations. These independent graphs are termed
‘‘master graphs,’’ as they effectively encode the full am-
plitude. It is important to realize that these master graphs
are often related by graph isomorphisms; their ‘‘indepen-
dence’’ is only under the Jacobi relations. As such, the
same topology may appear several times with different
labelings in the master graphs.
We can take any set of independent partial amplitudes,

decompose them into their cubic-graph representation, and
express their kinematic factors in terms of the master
kinematic factors. As there are ðm� 3Þ! independent par-
tial amplitudes for m-point interactions, this allows us to
solve for ðm� 3Þ! of the master kinematic factors in terms
of the independent partial amplitudes, propagators, and the
remaining unconstrained kinematic factors associated with
the other master graphs.
At this point we have a complete BCJ, amplitude-

encoded representation: all external dependence of the
scattering amplitude are encoded in the ðm� 3Þ! color-
ordered partial amplitudes, and the representations satisfy
the color-kinematic Jacobi relations by construction. None
of the unconstrained factors can affect the actual value of
the scattering amplitudes if the constrained ðm� 3Þ! nu-
merator kinematics have been defined as above, so they are
described as parameterizing a generalized gauge freedom
[3]. These dynamic3 parameters can be set to any value.
They could be set to vanish, or chosen to be functions that
maximize the total number of graphs whose numerators
vanish, c.f. the representations of Refs. [18,21].
Recall that many of these graphs may share the same

topology—in fact, the master graphs can all be chosen to
be various labelings of the half-ladder4—as we will do for
the rest of this discussion. For symmetric representations,
each of these master numerators nðgÞ will be given by the
same function nhl taking as its argument the various per-
mutations of external labels. All decompositions of color-
ordered partial amplitudes in terms of their cubic graphs
simply represent functional constraints that the nhl must
satisfy. The Jacobi relations and symmetry relations reflect
the sole remaining functional constraints. Finding an
Ansatz general enough to satisfy these functional con-
straints, and yet remain computationally tractable, poses
the primary obstacle to finding symmetric BCJ representa-
tions at tree level.

3Functions of kinematics.
4This was demonstrated by Del Duca, Dixon, and Maltoni for

tree-level color factors [31]. As the argument was purely based
upon Jacobi identities, it holds for kinematic numerators in a
BCJ representation.
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Four-point example

Let us warm up by seeing how this all comes together at
four points. There is only one cubic topology at four points,
shown with arbitrary labels ða; b; c; dÞ in Fig. 2. We first
consider all 24 ways of giving ða; b; c; dÞ different values
of ðk1; k2; k3; k4Þ. If we recognize that there is nothing to
distinguish the labeled graph ða; b; c; dÞ from ðc; d; a; bÞ,
then the number of different ways of labeling drops to 12.
Imposing antisymmetry, nðb; a; c; dÞ ¼ �nða; b; c; dÞ,
takes us to only 6 labelings, and considering the same
flip on the other vertex reduces the number of distinct
labelings to 3. These three four-point graphs are tradition-
ally named for the Mandelstam variable carried as their
propagators [s ¼ ðk1 þ k2Þ2, t ¼ ðk2 þ k3Þ2, and u ¼
ðk3 þ k1Þ2 with sþ tþ u ¼ 0]. We will use the shorthand
notation ns, nt, and nu for their three different numerator
functions. Here, and as in the rest of the paper, external-
state indices on external particles are suppressed—they are
to be taken as to follow the momentum labels in any
argument to numerators or color-ordered partial ampli-
tudes. The cubic representation of the full four-point am-
plitude is then

A tree
4 ¼ g2YM

�
nscs
s

þ ntct
t

þ nucu
u

�
; (3.1)

where gYM is the gauge coupling constant, ci are the
associated color factors with each tree graph. There is
but one kinematic Jacobi relation between these graphs,
and following the signs of the color factors associated with
this edge ordering, it is nu ¼ ns � nt, in correspondence
with the color Jacobi relation cu ¼ cs � ct.

We can write down any ð4� 3Þ! ¼ 1 independent color-
ordered partial amplitude, which without loss of generality
we choose to be

Atree
4 ð1; 2; 3; 4Þ ¼ ns=sþ nt=t; (3.2)

and solve it for one of the numerators. Now we can express
nt as a function of ns, s, t, and Atree

4 ð1; 2; 3; 4Þ,

nt ¼ t

�
Atree
4 ð1; 2; 3; 4Þ � ns

s

�
; (3.3)

and together with

nu ¼ ns � nt ¼ �u

s
ns � tAtree

4 ð1; 2; 3; 4Þ; (3.4)

we have a full BCJ, amplitude-encoded solution. With a
little algebra one can see that ns drops out of all physical
quantities, and so parameterizes the generalized gauge
freedom consistent with a BCJ representation.
As mentioned, all external-state information is encoded

in the color-ordered scattering amplitude in the solution to
nt, and all residual generalized gauge freedom is encoded
in ns. For example we are free to choose ns ¼
�ðstuÞAtree

4 ð1; 2; 3; 4Þ such that nu vanishes. Similarly, one

could have chosen ns such that nt explicitly vanishes, or
simply set ns ¼ 0. Unlike, for example, the nondynamic
single-parameter gauge freedom we will find in our sym-
metric five-point representation, this asymmetric freedom
is much more flexible: ns can be any function whatsoever.
The natural question to the point of this paper is whether
one can find a symmetric representation: i.e. the same
function nða; b; c; dÞ such that nð1; 2; 3; 4Þ returns an ap-
propriate ns, nð2; 3; 4; 1Þ returns an appropriate nt, and
nð3; 1; 4; 2Þ returns an appropriate nu.
It will turn out to indeed be possible. In order to find the

correct form of nða; b; c; dÞ we need to solve the following
functional constraints:

nða; b; c; dÞ ¼ nðc; a; d; bÞ þ nðb; c; d; aÞ; (3.5)

Atree
4 ða; b; c; dÞ ¼ nða; b; c; dÞ

sab
þ nðb; c; d; aÞ

sbc
; (3.6)

nða; b; c; dÞ ¼ nðc; d; a; bÞ ¼ �nða; b; d; cÞ
¼ �nðb; a; c; dÞ; (3.7)

where the first relation is the Jacobi identity ns ¼ nu þ nt,
the second is the decomposition of the color-ordered par-
tial tree amplitude, and the last three impose the required
graph autmorphisms.
We introduce an Ansatz for the form of nða; b; c; dÞ. In

order to satisfy amplitude encoding we will express our
Ansatz in terms of color-ordered partial amplitudes. Given
that ð4� 3Þ! ¼ 1, we could choose to use an Ansatz that
only depends on a single color-ordered scattering ampli-
tude. As the other partial amplitudes will be related to that
by ratios of momentum invariants, however, our interme-
diary stages would be a little more complicated. Rather we
choose an Ansatz involving two amplitudes Atree

4 ða; b; c; dÞ
and Atree

4 ða; c; b; dÞ that span the color-ordered amplitude
space without the need to put any sab in denominators.
Recognizing that

sacA
tree
4 ða; c; b; dÞ ¼ sabA

tree
4 ða; b; c; dÞ

and that the sum of the Mandelstam invariants vanish,
our simplest Ansatz satisfying the dimensionality require-
ments is

FIG. 2. The four-point cubic diagram. It appears with three
distinct labelings of external legs ða; b; c; dÞ, corresponding to
the s-channel diagram: (1, 2, 3, 4), the t-channel diagram: (2, 3,
4, 1), and the u-channel diagram: (3, 1, 4, 2).
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nða; b; c; dÞ ¼ �sabA
tree
4 ða; b; c; dÞ þ �sadA

tree
4 ða; b; c; dÞ

þ �sadA
tree
4 ða; c; b; dÞ; (3.8)

where �, �, � are scalars that should satisfy the constraints
of Eqs. (3.5), (3.6), and (3.8). Carrying out the calculation
one finds the parameters to be completely fixed to
� ¼ 1=3, � ¼ 0, � ¼ �1=3 giving a symmetric, BCJ,
amplitude-encoded representation.

Replacing Atree
4 ða; c; b; dÞ ¼ Atree

4 ða; b; c; dÞsab=sac in
our solution, we find something quite striking:

nða;b;c;dÞ¼Atree
4 ða;b;c;dÞ

sac

1

3
sabðsac�sbcÞ

¼½sabsbcAtree
4 ða;b;c;dÞ�

sabsbcsac

1

3
sabðsac�sbcÞ: (3.9)

Themost notable thing about this form is that the numerator
of the first fraction (in the square brackets) is the universal
prefactorK4 [44] of the four-point multiloopN ¼ 4 sYM
amplitudes used to encode all external-state information. It
is invariant under permutations between leg labels, as is the
denominator of that fraction. This means that all the anti-
symmetry properties of the numerator must be satisfied by
the function ofmomentum invariants. Indeed sabðsac � sbcÞ
is the simplest function of momentum invariants that sat-
isfies the symmetry properties of Eq. (3.8), and could, in
principle, be guessed ahead of time. The denominator
sabsbcsac is proportional to the Gram determinant G4 rele-
vant to four-point interaction, i.e. Gm � detðki � kjÞ, where
for m ¼ 4, i and j run from 1 to 3.

The form in Eq. (3.9) is evocative as a starting point for
the types of expressions that might generalize to symmetric

higher points. Recalling that Gm goes as sðm�1Þ, and there
are ðm� 3Þ propagators in any cubic tree diagram, we can
arrive at the idea that the D-dimensional m-point half-
ladder may be schematically of the form

nm;hl /
X

�

�
sm�1

Gm

Atree
m sm�3

�
; (3.10)

where the sum will be over all ðm� 2Þ! Kleiss-Kuijf
independent color-ordered partial tree amplitudes as well
as all independent s2m�4-order products of momentum
invariants sij, and the � represent parameters to be con-

strained by the relevant symmetries, Jacobi identities, and
amplitude equations.

One can see that using Eq. (3.10) as an Ansatz for
actually solving the functional relations is prohibitive. As
it grows quickly in the number of external particles, is not
particularly practical even at five points. Fortunately, we
can begin our exploration at five points with the simpler
type of polynomial Ansatz we started with at four points,
and see where we need to enlarge to include rational
terms so as to relate to the recent higher-loop results of
Ref. [30].

IV. FIVE-POINT TREE

A. First representation

Considering now five points, there is again only one
graph topology, the half-ladder depicted in Fig. 3. For
this topology, there are 15 distinct labelings under vertex
antisymmetry. Similar to our approach with four points we
may start with an Ansatz comprised of color-ordered partial
scattering amplitudes with two powers of momentum in-
variants sij to cancel the two propagators in the cubic

graphs. Since there are only five independent sij for mass-

less five-point amplitudes and only six linearly indepen-
dent Kleiss-Kuijf independent amplitudes, this Ansatz is
quite manageable. We solve using the constraints of the
symmetry and Jacobi relations. It is worth noting that only
a single color-ordered tree-level cubic-graph decomposi-
tion is required as a functional constraint, e.g.,

Atree
5 ð1; 2; 3; 4; 5Þ ¼ 1

s12s45
n5ð1; 2; 3; 4; 5Þ

þ 1

s23s15
n5ð2; 3; 4; 5; 1Þ

þ 1

s34s12
n5ð3; 4; 5; 1; 2Þ

þ 1

s45s23
n5ð4; 5; 1; 2; 3Þ

þ 1

s15s34
n5ð5; 1; 2; 3; 4Þ: (4.1)

The numerator function must obey the following graph
symmetry relations:

n5ða; b; c; d; eÞ ¼ �n5ðb; a; c; d; eÞ ¼ �n5ða; b; c; e; dÞ
¼ �n5ðe; d; c; b; aÞ; (4.2)

and the following two Jacobi identities

n5ða; b; c; d; eÞ ¼ n5ðd; e; a; b; cÞ þ n5ðd; e; b; c; aÞ
n5ða; b; c; d; eÞ ¼ n5ða; b; e; d; cÞ þ n5ðe; c; d; a; bÞ: (4.3)

These constraints are sufficient to ensure a correct re-
production of the full amplitude. Solving these relations we
indeed find a D-dimensional solution with no additional
freedom left in the Ansätze. The form is flexible in the
sense that various color-ordered amplitudes are related to
each other under the relations discussed in Sec. II B—but
the result is unique. One nice expression of this numerator
function is as follows:

FIG. 3. The five-point half-ladder diagram. All contributions
in cubic-graph representations of five-loops involve this topol-
ogy or are related by antisymmetry around vertices.
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n5;1ða; b; c; d; eÞ ¼ 1
30ð½sabsdeðAabcde � Aabced � Abacde þ AbacedÞ�
þ ½sabðscd � sceÞðAadceb þ AaecdbÞ þ sdeðsac � sbcÞðAeacbd � AdacbeÞ�
þ ½ðsabscd � sabsceÞAadceb þ ðsabscd � sabsceÞAaecdb þ ð�saesbc � sbescdÞAadcbe

þ ðsadsbc þ sbdsceÞAaecbd þ ðsacsbd þ sadsceÞAdaceb þ ð�sacsbe � saescdÞAeacdb�Þ (4.4)

where we introduce the notation

Aabcde � Atree
5 ða; b; c; d; eÞ:

The solution Eq. (4.4) is not the most compact available
expression, but it makes the automorphism symmetries of
Eq. (4.2) quite manifest as we will discuss.

Indeed, a first guess as to the answer might be to make
use of the reflection properties of the partial amplitudes and
combine them in such a way so as to incorporate the other
constraints of Eq. (4.2). From there, we need only multiply
by a pair of momentum products, sabsde, invariant under
the antisymmetries, to arrive at

sabsdeðAabcde � Aabced � Abacde þ AbacedÞ: (4.5)

This simple expression, the first block of Eq. (4.4), while
satisfying all the symmetry constraints, fails to satisfy
Eq. (4.3), the functional Jacobi relations. A little more
thought about various ways of representing the antisym-
metry constraints may lead to each of the other two blocks
appearing in Eq. (4.4). Each of these independently satis-
fies the antisymmetry conditions. Combining all three with
the correct prefactor to solve Eq. (4.1) also solves the
Jacobi relations, and so Eq. (4.4) is the solution that sat-
isfies all of our desired virtues.

Using the D-dimensional relations allowing one to ex-
press every five-point color-ordered amplitude in terms of
Atree
5 ð1; 2; 3; 4; 5Þ and Atree

5 ð1; 2; 3; 5; 4Þ, and conservation of
momentum to relate the sij, it is straightforward to verify

that this respects all the constraints, and so generates a
D-dimensional representation,

A ð0Þ
5 ¼ g3YM

X
fq1;...;q5g2S5

1

8

cðqÞnðqÞ
pðqÞ ; (4.6)

where gYM is the gauge coupling constant, cðqÞ comes
from dressing the half-ladder with appropriate color factors
for the labels q, pðqÞ gives the product of the propagators
associated with that labeling, and we simply sum over all
permutations of external leg labels, dividing by an overall
symmetry factor, in this case 8. In this case we take n to be
n5;1. Given the satisfaction of the color-kinematic corre-

spondence (the first virtue) we can trivially write down the
known gravity amplitude in a manifestly crossing symmet-
ric representation:

M ð0Þ
5 ¼ i

�
�

2

�
3 X
fq1;...;q5g2S5

1

8

nðqÞnðqÞ
pðqÞ : (4.7)

These are fine amplitude representations that satisfy all
of our requirements. Familiar with the beautiful structure
relating four-point tree and multiloop corrections in
N ¼ 4 sYM, there is one additional property one may
desire from a five-point tree-level representation: that it be
manifestly constructed with the same building blocks that
appear in higher-loop same-multiplicity amplitudes. In
other words, it would be nice to relate to the multiloop
structure that appears in five-point N ¼ 4 sYM [30]. We
will take a brief detour to review this newly discovered
five-point multiloop structure, and go on to find a second,
entirely distinct, symmetric numerator function for the
tree-level five-point half-ladder.

B. Multiloop structure and second representation

It was recently shown [30] that the five-point one- and
two-loop amplitudes in N ¼ 4 sYM possess a very com-
pact structure if written in a symmetric BCJ representation,
where the external legs are in four dimensions, but all the
loopmomenta are allowed to run inD dimensions. The one-
loop master numerator (labeled with consecutively increas-
ing legs) has the following cyclically symmetric form:

nð1Þpentagon ¼ �12345 � �ð8ÞðQÞ ½12�½23�½34�½45�½51�
4"ð1; 2; 3; 4Þ ; (4.8)

where the external states are packaged in the usual

Grassman delta function �ð8ÞðQÞ. The denominator is the
Levi-Civita invariant, "ð1; 2; 3; 4Þ � "�	
�k

�
1 k

	
2k



3k

�
4 . For

compactness the authors of Ref. [30] also introduce the
following functions:

�ðijklmÞ � �ðijklmÞ � �ðjiklmÞ; (4.9)

which are antisymmetric in ij, but symmetric in klm,
such that the last three arguments can be suppressed �ij ¼
�ðijklmÞ. These� functions encode all five-point external-
state information through two loops, and are conjectured to
extend to all loops. The remaining components of the
numerator factors are constrained to be monomials in
Lorentz products of the appropriate engineering-dimension
weight. In fact, in [30] it was suggested that the tree-level
numerators could be expressed in the following functional
form:

nð0Þ �X
�ð␣Þ=s␣; (4.10)

i.e. some linear combination of the� functions divided by a
momentum invariant sab. This is not the representation
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found in Eq. (4.4). In order to make this clearer, we can
rewrite � as follows:

�ð1;2;3;4;5Þ¼�iAtree
5 ð1;2;3;4;5Þs12s23s34s45s51"ð1;2;3;4Þ4G5

;

(4.11)

where we have used the Parke-Taylor representation
of the superamplitude to absorb the spinor-products and
Grassmann delta function. Furthermore we multiplied the
numerator and the denominator by " in order to introduce
G5 ¼ �"2, the Gram determinant relevant to five-point
massless interaction. This expression diverges when the
momenta are restricted to a three-dimensional subspace.
Thus there is no way to describe � in terms of linear
combinations of n5;1,

8 �: �ð1; 2; 3; 4; 5Þ � X
fq1;...;q5g2S5

�qn5;1ðqÞÞ: (4.12)

Does this mean that the tree-level numerator cannot be
described by something of the form eEq. (4.10)? Not at
all. This simply means that the representations given in
Eq. (4.4) and suggested in Eq. (4.10) are distinct.

Naturally we now consider an Ansatz of the form
Eq. (4.10). Using again, symmetry, the Jacobi relations,
and the single graph decomposition Eq. (4.1), we find that
such an Ansatz can, independent of n5;1, also satisfy all

constraints. Given the form of � these verifications must
be performed explicitly in four dimensions, and are most
easily done numerically. The form of this numerator func-
tion is completely constrained (other than trivial relations
between� functions with differently permuted arguments),

n5;2ða;b;c;d;eÞ¼ 1

10

���
1

scd
� 1

sce

�
�ab

�
þ
��

1

sac
� 1

sbc

�
�ed

�

�
�
�edcba

sae
þ�decab

sbd
��edcab

sbe
��decba

sad

��
:

(4.13)

Thus we have found an entirely different representation of
the five-point tree-level amplitude that is at least as virtuous
as the first.

Now, as both solutions accurately describe the five-point
color-ordered trees (one can check that the divergence in �
for dimensionally restricted subspace cancels between the
numerators), one can solve for �ð1; 2; 3; 4; 5Þ entirely in
dimension-agnostic terms:

�Dð1;2;3;4;5Þ� s12s23s34s45s51
16G5

½ðs15s34þs14s35�s13s45Þ
�Atreeð1;2;3;4;5Þ
þ2s14s35A

treeð1;2;3;5;4Þ�: (4.14)

This is a particularly appealing form, as state-sums involv-
ing 5-point amplitudes of any loop level have significant
generalized unitarity-cut ramifications, and this reduces

the question to state-sums involving five-point trees,
known in the maximally supersymmetric case from the
three-particle cut of the four-point two-loop amplitude
given in Ref. [7].
Taking � ! �D in Eq. (4.13), we have checked that n5;2

satisfies all the D-dimensional constraints, i.e. that under
the D-dimensional relations algebraically relating all
color-ordered tree amplitudes to a basis of ð5� 3Þ! ¼ 2
color-ordered amplitudes, and conservation of momentum,
it correctly reproduces all color-ordered partial tree ampli-
tudes decomposed into cubic graphs. As such Eq. (4.13)
generates another D-dimensional BCJ, amplitude-
encoded, symmetric five-point representation of Yang-
Mills and gravity, when used in Eqs. (4.6) and (4.7),
respectively. As n5;1 and n5;2 are distinct, one can parame-

terize the gauge freedom with a single complex parameter,

n5 � �n5;1 þ ð1� �Þn5;2: (4.15)

This is consistent with the known single-parameter gauge-
freedom of the symmetric, BCJ (non-amplitude-encoded)
representation found in Ref. [4].
It is worth highlighting that the form of n5;2 in Eq. (4.13)

is a manifestation of the type of expression sketched in
Eq. (3.10). Attempting to directly fit Eq. (3.10) to the data
even at five points would have been somewhat laborious.
The functional building block, �, was instead arrived at by
looking at the maximal cut of the five-point one-loop
amplitude in N ¼ 4 sYM.

V. SIX-POINT MHV TREE IN FOUR DIMENSIONS

In this section we introduce a four-dimensional symmet-
ric, amplitude-encoded, BCJ representation of the six-
point tree diagram. Contrary to the lower-point trees, there
are two distinct topologies contributing to the six-point tree
amplitudes; in addition to the half-ladder we now have
trimerous graphs (as depicted in Fig. 4). As mentioned
earlier, we can express the second topology in terms of
the first via

n6;triða; b; c; d; e; fÞ ¼ n6;hlða; b; c; d; e; fÞ
� n6;hlða; b; d; c; e; fÞ; (5.1)

so we need only concern ourselves with finding n6;hl.
Beyond five points, even Ansätze merely polynomial in
momenta invariants grow rapidly in size. Furthermore, it is
not so clear whether such a form is sufficient to capture the
behavior that generalizes to higher loops. As seen at five
points, functions which generalize to loops can involve
rational functions of momentum invariants and not just
polynomials.
For this work, we have not carried out the exploration of

n6;hl systematically. Rather, we guessed at a form using a

small number of color-ordered partial amplitudes, suffi-
cient to allow a naı̈ve symmetry encoding, multiplied
by the denominators that appear in their cubic-graph
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expansion. We fit this ad-hoc Ansatz to the Jacobi relations,
the symmetry constraints, and the cubic-graph decompo-
sition of the partial amplitude. Such an intuitive approach
yielded a valid expression but with some—perhaps not so
surprising—limitations. The following compact expression
for n6hl only holds in four dimensions, and only holds for

MHV and MHV amplitudes as it relies on special four-
dimensional identities,

n6;hlða; b; c; d; e; fÞ ¼ sab
15

ð�sdcsefAabdcef þ sdcsfeAabdcfe

� sdfsecAabecdf � scfsedAabedcf

� scdsefAabefcd þ sdesfcAabfcde

þ scesfdAabfdce þ scdsfeAabfecdÞ;
(5.2)

where Aabcdef � Atree
6 ða; b; c; d; e; fÞ.

Under those limitations it does generate the appropriate
symmetric, BCJ, amplitude-encoded representations of
Yang-Mills and gravity theories, respectively,

Að0Þ
6 ¼ g4

X
q2S6

�
1

8

chlðqÞn6;hlðqÞ
phlðqÞ þ 1

48

ctriðqÞntriðqÞ
ptriðqÞ

�
; (5.3)

M ð0Þ
6 ¼ i

�
�

2

�
4 X
q2S6

�
1

8

ðn6;hlðqÞÞ2
phlðqÞ þ 1

48

ðntriðqÞÞ2
ptriðqÞ

�
: (5.4)

The factors of 8 and 48 are the symmetry factors of
the half-ladder and trimerous graphs. One sees that, as
before, the gravity amplitude is manifestly permutation
symmetric.

It should be stressed that the limitations of this repre-
sentation does not reflect any tension between BCJ
representations and non-MHV amplitudes. Indeed, the
all-multiplicity amplitude-encoded BCJ representations
in the literature hold in any dimensions, independent of
external states. The struggle is to find an Ansatz general
enough to allow for the solution of the functional con-
straints, and at the same time being computationally trac-
table. It is easy to believe that a form of the type Eq. (3.10)
may work in D dimensions, independent of external states,

but the most direct path to reveal it seems to await a better
understanding of the structures involved.

VI. CONCLUSIONS

After we worked out the four-point BCJ, amplitude-
encoded, symmetric numerator in explicit detail, we
presented two independent five-point D-dimensional rep-
resentations, one of which is related to the structure re-
cently uncovered at multiloop five point in the maximally
supersymmetric theory. Exploring the consequences of
these two representations, we rendered, en passant, the
five-point multiloop amplitudes as virtuous as the four-
point multiloop amplitudes by finding an amplitude-
encoded form of the � function, Eq. (4.14). In effect, this
relates, in the maximally supersymmetric theory, the state
sum of all three-particle cuts involving two five-point
subamplitudes, to the known three-particle cut of the
four-point two-loop amplitude. We also presented a
slightly less virtuous six-point representation.
An obvious goal is to identify a constructive principle

for virtuous representations. The underlying kinematic
algebra responsible for the color-kinematic correspon-
dence, however, is unknown beyond certain sectors in
four dimensions [26]. The existence of such an algebra is
suggested in general, not only by the kinematic Jacobi
relations, but additionally by a trace basis identified by
Bern and Dennen in Ref. [45]. They present an alternative
amplitude representation based on swapping the role of
color and kinematics in the traditional color-trace decom-
position of Eq. (2.4). The partial amplitudes in their rep-
resentation involve the color factors as numerators, and
they introduce kinematic ‘‘traces’’ �ðq1 . . . qmÞ in place of
the trace over color generators. It is perhaps worth noting
that the numerator functions presented here, for five and six
points, each lead to a symmetric �, i.e. a single function
that takes any labeling to the appropriate kinematic
contribution.
The appeal of BCJ representations at loop level resides

in the ability to propagate a minimal amount of informa-
tion from the theory into the full amplitude [5,8,30], as well
as the ability to trivially generate loop-level gravity ampli-
tudes. At tree level, where representations are already
known for both Yang-Mills and gravity theories, the appeal

FIG. 4 (color online). Illustration of the kinematic Jacobi relation associated with the indicated edge, as given in Eq. (5.1), which
expresses the numerator of the trimerous topology on the left in terms of the difference between the two half-ladders on the right.
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is more subtle. Namely, it resides in the relations satisfied
by the numerators. Expansion of tree-level numerators in
terms of color-ordered partial amplitudes might arguably
seem to import to Yang-Mills the aesthetics of Kawai,
Lewellen, and Tye gravity representations rather than
vice versa. Here, however, we show that these (less than
compact) expressions do manage to serve an aesthetic
ideal; they make kinematic symmetries manifest in con-
cordance with the color-factor symmetries. The introduc-
tion of combinations of partial trees that satisfy these
symmetry properties [like the separate symmetry-
respecting blocks in Eqs. (4.4) and (4.13)] lead to quite
naturalD-dimensional expressions. It is to be hoped that by
studying the different possible representations that exist at
tree level, one may discover novel ways of moving be-
tween representations that generalize to loop level.

We see that the tree-level requirement of symmetric BCJ
representations involves the solution of nontrivial func-
tional relations analogous to the operations necessary for
finding loop-level BCJ representations. In Eq. (3.10) we
sketched an Ansatz for numerators based upon the types of
tree-level structures that generalize to higher loops for the
known multiloop BCJ representations in N ¼ 4 sYM at
four and five points. It is clear that there are ways of
packaging color-orderd partial amplitudes that are more
natural from a higher-loop perspective, such as the �
function of Ref. [30] used in Eq. (4.13). In the absence of
more constructive methods, mining multiloop data may be

the most efficient way to currently identify symmetric
representations at tree level. The ultimate hope, however,
would be to find a constructive solution of these types of
functional relations at any loop level without relying on the
introduction of a spanning Ansätze. It seems that finding
tree-level representations may be an ideal proving ground
for such techniques, where in some sense all the necessary
data is available in conveniently packaged forms (color-
ordered partial amplitudes and propagators), yet where the
challenges share many quantitative features with finding
loop-level representations.
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