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We consider two-dimensional large N gauge theory with D adjoint scalars on a torus, which is obtained

from a Dþ 2-dimensional pure Yang-Mills theory on TDþ2 with D small radii. The two-dimensional

model has various phases characterized by the holonomy of the gauge field around noncontractible cycles

of the 2-torus. We determine the phase boundaries and derive the order of the phase transitions using a

method developed in an earlier work (hep-th/0910.4526), which is nonperturbative in the ’t Hooft coupling

and uses a 1=D expansion. We embed our phase diagram in the more extensive phase structure of the

Dþ 2-dimensional Yang-Mills theory and match with the picture of a cascade of phase transitions found

earlier in lattice calculations [4]. We also propose a dual gravity system based on a Scherk-Schwarz

compactification of a D2 brane wrapped on a 3-torus and find a phase structure which is similar to the

phase diagram found in the gauge theory calculation.
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I. INTRODUCTION AND SUMMARY

Gauge theories on spaces with compact directions have
been studied for a long time. As a prototypical example, dþ
1-dimensional Yang-Mills theory at a finite temperature T
corresponds to a compactification of the (Euclidean) time
direction on a circle of length � ¼ 1=T. It is obviously
important to study such a compactification to understand
the physics of confinement/deconfinement transitions [1].
More generally, one can consider Yang-Mills theory on a
compact space�. If thevolumeof� is finite, there is no sharp
phase transition, but for anSUðNÞ gauge theory in the largeN
limit, there are sharply demarcated phases depending on the
shape and size parameters of�. In case the compact space is a
torus, the phase diagram as a function of various radii (and
coupling) reveals a rich phase structure [2,3], including a
cascade of phase transitions in which the ‘‘Polyakov’’ loops
along various noncontractible cycles become nonzero in
succession as the radii are reduced [4,5]. Most of these
studies are numerical (in the lattice or in the continuum) or,
in some cases, based on holography (see Sec. VI for refer-
ences andmoredetails).One of themotivations of the present
paper is to investigate these questions analytically in a simple
situation, as explained below, by using and extending the
‘‘large-D’’ technique developed in [6].

To elaborate further, let us consider a Euclidean dþ
D-dimensional gauge theory1 on a dþD-dimensional
torus with radii L�

2

S ¼
Z �

0
dt

� YDþd�1

M¼1

Z LM

0
dxM

�
1

4g2dþD

TrF2
��: (1)

Here, the length of the temporal circle is denoted as L0 ¼
� and the rest are denoted as LM;M ¼ 1; . . . ; dþD� 1.
The phases of (1) are characterized by Wilson lines around
the dþD noncontractible cycles of the torus:

W� ¼ TrU� � 1

N
TrP

�
exp

�
i
Z L�

0
A�dx

�

��
; (2)

where no sum over � is intended. These Wilson loops
transform nontrivially under the center symmetry.3 For
sufficiently large radii L�, all W� vanish, signifying un-

broken center symmetry. In this phase, local gauge-
invariant observables are independent of L� in the strict

large N limit [9–11]. Since W0 can be interpreted as
exp½�Sq�, where Sq is the action for a static quark, the

phase with hW0i ¼ 0 exhibits confinement. As is well-
known, as � is reduced (i.e. the temperature is increased),
below a certain critical value �c, hW0i becomes nonzero,
signaling a deconfinement transition together with a break-
ing of the center symmetry ZdþD

N ! ZdþD�1
N . In this phase,

the observables can depend on � but are still independent
of Li [10]. It has been argued from lattice studies (see [4]

*email: mandal@theory.tifr.res.in,
†takeshi@physics.uoc.gr
1In this paper, wewill not consider the contribution of the� term.
2Our notation for spacetime coordinates is fx0 � t; xMg, M ¼

1; . . . ; dþD� 1. We will further split the dþD� 1 coordi-
nates into d ‘‘large’’ dimensions fx0; xig, i ¼ 1; . . . ; d� 1 and D
‘‘small’’ dimensions xI, I ¼ 1; 2; . . .D (the meaning of ‘‘large’’
and ‘‘small’’ is explained below).

3‘‘Center symmetry’’[7,8] is generated by quasiperiodic
‘‘gauge transformations’’ �ðx�Þ ¼ exp½2�iðn�x�=L�ÞA�,
where A ¼ diag½1=N; 1=N; . . . ; 1=N; ð1� NÞ=N�. The quasi-
periodicity is up to phases h� ¼ exp½2�in�=N�, � ¼
0; 1; . . . ; dþD� 1 which parametrize dþD copies of the
center of SUðNÞ, ZdþD

N . The �ðx�Þ are valid gauge transforma-
tions locally, and leave local color-singlets, e.g. trF2

�� invariant;
in particular, they commute with the Hamiltonian. However,
under the �-transformations, W� ! h�W�. A nonzero value
of hW�i implies spontaneous symmetry breaking of the center
symmetry in the �-direction.
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and Sec. VI for a review) that as the other radii are succes-
sively reduced, one has a cascade of analogous symmetry
breaking transitions ZdþD�1

N ! ZdþD�2
N ! . . . ! 1.

While it would be fascinating to study all the above
phases analytically, in this paper we will be able to study
the phases of a Dþ 2-dimensional pure Yang-Mills theory
on TDþ2 (i.e. (1) with d ¼ 2) in which a D-dimensional
torus (with radii LI=ð2�Þ; I ¼ 1; 2; . . . ; D) is taken as small
(ensuring broken ZN symmetries in those directions), leav-
ing the remaining d ¼ 2 directions (including time) of
variable size. Such a theory is given by a Kaluza-Klein
reduction4 of (1) on the small TD, and is described by the
following action:

S ¼
Z �

0
dt

Z L

0
dxTr

�
1

2g2
F2
01 þ

XD
I¼1

1

2
ðD�Y

IÞ2 þm2

2
ðYIÞ2

�X
I;J

g02

4
½YI; YJ�½YI; YJ�

�
: (3)

Here, YI comes from the gauge field components AIþ1 and
the covariant derivative is defined as D� ¼ @� � i½A�; �.
A naive KK reduction leads to massless YI’s and g ¼ g0;
however, a mass m for the adjoint scalars as well as
radiative splitting between g and g0 is induced from loops
of KKmodes (see Appendix A and Sec. II, respectively, for
more details).

We should remark that (3) can either be regarded as a
step towards understanding the full phase diagram of the
dþD-dimensional theory (1), or be understood as a two-
dimensional gauge theory in its own right. The spirit of the
latter approach is to provide an example of an analytically
solvable low-dimensional gauge theory in the limit of a
large number of adjoint scalars (the d ¼ 1 theory was
discussed in [6]). Equation (3), from this viewpoint,
provides a bosonic counterpart of the Gross-Neveu
model [13], where D plays the role of Nf, and the

SOðDÞ-invariant bilinear
P

D
I¼1 Y

I
aY

I
b of Sec. II A plays

the role of SUðNfÞ-invariant fermion bilinears such asPNf

i¼1
�c ic i of the Gross-Neveu model.

Note that in this second point of view, where we regard
the action (3) as an independent theory in its own right, the
mass m can be taken to be arbitrary. In particular, if
the mass is sufficiently large (m2 � g2ND, g02ND), the
phase structure can be determined perturbatively [3,14].

However, as we will see in Appendix A, if we regard (3)
as a KK reduction of (1) on TD, then the mass m of the
adjoint scalars is much lower than the scales mentioned
above and the theory is not amenable to such perturbative
methods. One of the goals of the present work is to
provide a nonperturbative5 analysis of (3) valid for any
value of mass (including m ¼ 0), based on the ‘‘large-D’’
method developed in the previous work [6].
A few additional comments are in order:
(i) KK gauge theories have important applications to

phenomenology [15–18]. Theories such as (3) pro-
vide important toy models in this context. In particu-
lar, issues such as different running of gauge
couplings in the compactified and decompactified
theories can be examined in such models. We will
encounter some of these issues in Sec. II.

(ii) Gauge theories on compact spaces can sometimes
have gravity duals. The deconfinement transition in
N ¼ 4 super Yang-Mills theory on S3 � S1 [19,20]
is a weak coupling continuation of the gravitational
Hawking-Page transition [21,22]. Similar corre-
spondences for two-dimensional supersymmetric
gauge theories on tori were analyzed in [3,23].6 In
this paper, we will obtain (3) with D ¼ 8 from a
Scherk-Schwarz compactification of a three-
dimensional super Yang-Mills theory with 16 super-
charges, which corresponds to the world volume
theory of D2 branes. The latter theory has an AdS/
CFT dual [24], which leads to the construction of a
gravity dual for (3) in a sense defined in Sec. V.7 As
we will see, the gravity analysis will complement
our knowledge of the phase structure from the gauge
theory analysis.

(iii) Large N two-dimensional gauge theories them-
selves are interesting objects in the context of string
theory and QCD. For instance, confinement/decon-
finement type transitions [28] have been analyti-
cally found in 2D QCD with heavy adjoint scalars
[14]. In addition, stringy excitations and glueball
spectra have been obtained in 2D models in
[29–33]. Thus, these models are good laboratories
for real QCD. Our study, in fact, has a direct
relevance for [32]; we hope to return to the issue
of glueball spectrum discussed in this reference.

The principal result in this paper is the determination of
some parts of the phase diagram of the two-dimensional
theory (3) at weak coupling. The result is summarized in
Fig. 4. The second result is the gravity analysis which4The Kaluza-Klein reduction is tricky for gauge theories

[3,11], since in the confined phase the KK modes can have
energies�1=ðNLÞ, which become arbitrarily low at large N. The
fractional modes, equivalent to the ‘‘long string’’ modes of [12],
can be understood as arising from mode shifts of charged fields
in the presence of Wilson lines whose eigenvalues are uniformly
distributed along a circle (see Sec. II for an explicit verification
for this statement). In the deconfined phase, however, the KK
modes have energies �1=L, like in ordinary field theories, and
KK reduction proceeds as usual.

5in the ’t Hooft coupling.
6For an extensive list of correspondences between low-dimen-

sional gauge theories and gravitational systems, see [24–26].
7One of the motivations for this work was to construct a gauge

theory dual to a dynamical Gregory-Laflamme transition. We
will discuss this issue in a forthcoming publication [27].
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complements the phase diagram at strong coupling, which
is presented in Fig. 5.

The plan of the paper is as follows. In Sec.s II, III, and
IV, we analyze the model (3) at weak coupling by using
the 1=D expansion [34] developed in [6]. We find that the
nature and the order of the confinement/deconfinement
type transition depends on whether the size L of the
spatial circle is large or small. For large L (which corre-
sponds to the TrV ¼ 0 phase), we find (see Sec. II) a
single first-order transition, thus providing analytical evi-
dence for earlier lattice studies (see Sec. VIA for further
details). On the other hand, for small L (corresponding to
the TrV � 0 phase), the analysis in [6] is valid and, as
detailed in Sec. III, the transition consists of two higher
order phase transitions. The phase diagram is summarized
in Sec. IV in Fig. 4 and is in agreement with those from
the lattice studies of [2,4,5]. We compare our results with
these lattice studies and with [3] in Sec. VI.

To supplement our 1=D analysis of the gauge theory,
we consider in Sec. V a dual gravity theory, obtained from
D2 branes wrapped on a 3-torus with a Scherk-Schwarz
circle. Although the gravity results pertain to thermody-
namics in the strongly coupled regime, we observe that
the phase structure is qualitatively similar to that of the
weak coupling gauge theory. This allows us to arrive at a
conjectured phase diagram in Fig. 5, which suggests a
particular way of connecting the phase boundaries of
Fig. 4.

In Sec. VI C, we comment on the dependence of the
order of phase transition on the topology of the compact
space. In Appendix A, we discuss the masses of the adjoint
scalars which appear from integration of the KK modes at
the one-loop level. In Appendix B, we fill in some details
needed in Sec. II for integrating out the adjoint scalars. In
Appendix C, we discuss the influence of the mass term in
(3) on the phase diagram. In Appendix D, we provide
important details of our gravity analysis.

II. CONFINEMENT/DECONFINEMENT TYPE
TRANSITION IN LARGE RADIUS TORUS

In this section, we will analyze the confinement/
deconfinement type transition in (3) for large L. First, (in
Sec. II A) we will integrate out the adjoint scalars YI in a
1=D expansion, in a manner similar to [6], leading to the
effective Hamiltonian (23) in the large L limit. Next, (in
Sec. II B) we use, at L ! 1, the results of [14,35,36], who
studied this effective action in slightly different contexts, to
determine the phase structure of our theory (3) at large L.
The justification for extrapolating their result to finite L, as
detailed below, comes from the phenomenon of large N
volume independence [9–11] which is valid as long as L is
large enough to ensure TrV ¼ 0.

To keep the analysis simple, in this section we consider
(3) with m ¼ 0, and defer the case of nonzero mass to
Appendix C. As we will find there, the inclusion of the

mass term does not change the qualitative structure of the
different phases.

A. Large-D saddle point

In this section, we will generalize the analysis of the
0þ 1-dimensional gauge theory [6] to the d ¼ 2 model
(3) and show that if we consider the number D of adjoint
scalars to be large, the theory can be considered to be in
the vicinity of a large-D saddle point8 and various quan-
tities such as the free energy and the mass gap etc. can be
computed around the saddle point in a 1=D expansion.
As mentioned above, in this section we will consider (3)

with m ¼ 0. Introducing an auxiliary field Bab, the path-
integral of the gauge theory can be rewritten as

Z ¼ N
Z

DBDA�DYIe�SðB;A;YÞ;

SðB; A; YÞ ¼
Z �

0
dt

Z L

0
dx

�
1

2g2
Fa2
01 þ

1

2
ðD�Y

I
aÞ2

� i
1

2
BabY

I
aY

I
b þ

1

4g02
BabM

�1
ab;cdBcd

�
; (4)

where N is a constant factor and we have used the
following matrix,

Mab;cd ¼ � 1

4
fTr½�a; �c�½�b; �d� þ ða $ bÞ

þ ðc $ dÞ þ ða $ b; c $ dÞg; (5)

�a (a ¼ 1; � � � ; N2 � 1) being the generators of SUðNÞ.
Our approach, similar to the one-dimensional case, will be
as follows. We will integrate out the YI’s to obtain an
effective action for A� and Bab, and find a saddle-point

solution for Bab (for given A�) in a large-D limit. The

effective action for A� will be essentially obtained by

substituting the saddle-point value of Bab in this effective
action.
As in [6], it is convenient to decompose Bab as the sum

of a trace piece (independent of x, t) and an orthogonal
part:

BabðtÞ ¼ i�2�ab þ g0babðt; xÞ; (6)

where bab satisfies
R
dt

R
dxbaa ¼ 0. Such a decomposi-

tion, into a large diagonal piece and a small off-diagonal
fluctuation, will be a posteriori justified by finding a saddle
point for Bab of the form hBabi ¼ i�2

0�ab, where �0 is a

real constant (depending only on the ’t Hooft coupling).

8Although the saddle point arises in a manner similar to that in
four-fermion models such as Gross-Neveu or Nambu Jona-
Lasinio, the saddle point is complex. See [6] for details.
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With this decomposition, the action reduces to

S0 ¼ ��LN�4

8g02
;

S1 ¼
Z �

0
dt

Z L

0
dx

�
1

2g2
Fa2
01 þ 1

4babM
�1
ab;cdbcd

þ 1
2ðD�Y

I
aÞ2 þ 1

2�
2YI2

a

�
;

Sint ¼ �
Z �

0
dt

Z L

0
dx

�
ig0

2
babY

I
aY

I
b

�
; (7)

where we have used M�1
ab;cd�cd ¼ �ab=2N [6]. Let us now

take a large-D limit,

g; g0 ! 0; N;D ! 1 s:t:

~� � g2DN; ~�0 � g02DN fixed:
(8)

To the leading order of this expansion, we can ignore the
interaction term Sint.

9 In that case, the integration of bab
will contribute just a numerical factor and wewill ignore it.
Integrating over the YI’s in S1, we then get the following
leading result for the partition function

Z ¼
Z

DAD�e�Seff ½A;��;

Seff½A;�� ¼ ��LN�4

8g02
þ

Z �

0
dt

Z L

0
dx

1

2g2
Fa2
01 þ �Seff ;

(9)

where �Seff is the 1-loop contribution from the
YI-integration:

�Seff½A;�� ¼ D

2
logdetð�D2

� þ�2Þ: (10)

It is difficult to evaluate this last quantity in general.
However, using arguments similar to [3], we will find that:

(a) If �2 � ~� � g2DN (this assumption will be justi-
fied in (19)), terms in �Seff involving derivatives of
A�, e.g. terms involving the gauge field strength and

its covariant derivatives are suppressed.
(b) If L� � 1,10 we can approximately treat A0 and A1

as commuting matrices.
The argument for assertion (a) can be sketched briefly as

follows. Consider the simplest of the 1-loop diagrams
(Fig. 1) which contribute to (10) and has only two external
gauge field insertions: For large�, the YI-propagator in the

loop carrying momentum p can be expanded in powers of
p2=�2. The first term in that expansion goes as
NDðk�k� � k2g��Þ=�2 (in the Feynman gauge), where

the factors of N and D come from the YI-loop, and k is
the external momentum going into the loop. This term
amounts to a correction, to the F2

01=g
2 term, of the form

½1þOð~�=�2Þ�, as claimed above. We will ensure below

that ~�=�2 � 1.
The argument for assertion (b) will follow a posteriori

after we proceed with the assumption that A� are constant

commuting matrices. Under this assumption, as detailed in
Appendix B, the one-loop term becomes

�Seff ¼ D�L

8�2

�
N2ð���2 þ �ð�2 þ�2Þ logð�2 þ �2Þ

� ��2 log�2Þ � X
ðk;lÞ�ð0;0Þ

jTrðUkVlÞj2

� 4��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�kÞ2 þ ðLlÞ2p K1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�kÞ2 þ ðLlÞ2

q ��
: (11)

Here, we have used a momentum cutoff � to regulate
the determinant,11 and used the notations U ¼ ei�A0 and
V ¼ eiLA1 . K1 is the modified Bessel function of the

second kind. Using the asymptotic expansion K1ðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
�=2z

p
e�z þ � � � for large z ( justified below) and omit-

ting some irrelevant divergent terms, we get

�Seff ¼ DN2�L

8�

�
ð�2 þ�2Þ log

�
1þ�2

�2

�

þ �2 log

�
�2

�2

��
� Dffiffiffiffiffiffiffi

2�
p

0
@L

ffiffiffiffi
�

�

s
e���jTrUj2

þ �

ffiffiffiffi
�

L

s
e��LjTrVj2

1
Aþ � � � ; (12)

where the � � � terms represent higher order terms in
e���, e��L. Since we are interested in large L, it is
obvious why higher order terms in e��L should be
ignored. We now have an a posteriori justification for
having ignored terms involving commutators ½U;V�; the
smallest gauge-invariant such term would have at least

FIG. 1. A simple Feynman diagram contributing to (10).

9In the one-dimensional model (d ¼ 1), the next order of the
1=D expansion has been evaluated in [6]. There, such 1=D
corrections do not change the nature of the phase structure.
We can expect that the same thing will happen in our two-
dimensional gauge theory also. Hence, we do not evaluate the
1=D corrections in this article.
10This assumption will be justified later in what we will define
as the ‘‘large L regime’’ L * Lc (see (33) and (32)), since Lc�
will turn out be large, using (19).

11The cutoff � should be smaller than MKK, which is the
inverse length scale of theD-dimensional compactification torus.
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two Us and two Vs and hence are expected to be of the
same order as the U2V2 term in (11), and hence can be
ignored [3]. Higher order terms in e��� are ignored
because they will be small in the region of parameter
space in which interesting phase structures will appear.
We will ensure this at the end of Sec. II B [see comment
(a) below (32)].

In the L ! 1 limit, we can ignore the term in (12)
involving V. Let us integrate � from (9) under this as-
sumption and derive the effective action for theU-variable.
The saddle-point equation with respect to �2 reads as

� �L�2

2~�0 þ �L

4�
log

�
1þ�2

�2

�

þ Lffiffiffiffiffiffiffi
2�

p
ffiffiffiffi
�

�

s
e���

�
1� 1

2��

���������1

N
TrU

��������2þ� � � ¼ 0:

(13)

In the TrU ¼ 0 phase (which is realized for sufficiently
large �), � ¼ �0 is determined implicitly from the
equation

~� 0 ¼ 2��2
0

logð1þ �2

�2
0

Þ : (14)

This equation can be viewed as a renormalization condi-

tion which assigns a �-dependence to ~�0 such that the
physical mass scale �0 is held fixed. Here, �0 plays a role
analogous to �QCD and its choice specifies the theory. We

will, in fact, choose it in such a way as to ensure the
condition12

~�� ~�0 at � ¼ MKK: (15)

As � decreases, TrU eventually becomes nonzero.
However, near criticality,�� � 1 (this is justified because
of (19) and (32)). Therefore, we can solve (13) for � in the
form �0 þOðexp½���0�Þ. We will write the explicit
solution only for � � �:

� ¼ �0 þ 1

2��2
0=

~�0 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffi
2��0

�

s
e��0�

��������1

N
TrU

��������2þ� � � ;
(16)

where

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�0

2�
W

�
2��2

~�0

�s
; (17)

and WðzÞ is the Lambert’s W function defined implicitly

by the equation z ¼ WðzÞeWðzÞ. Note that, by using an
expansion WðzÞ ¼ logz� logðlogzÞ þ � � � for large z, we
obtain

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�0

2�
log

�
2��2

~�0

�s
þ � � � : (18)

Imposing the renormalization condition (15), we then
obtain a relation13

�2
0=

~�� 1

2�
log

�
2�M2

KK

~�

�
� 1: (19)

Thus, we confirmed that the assertion (a) above is sat-
isfied. Substituting (16) in Seff in (9) and ignoring the
term involving TrV, we get the following effective action
for A�:

SðAÞ
DN2

¼ Cð~�0;�0Þ þ
Z �

0
dt

Z L

0
dx

�
1

2 ~�N
Fa2
01

� 1ffiffiffiffiffiffiffi
2�

p
ffiffiffiffiffiffi
�0

�3

s
e��0�

��������1

N
TrU

��������2
�
þ � � � ; (20)

Cð~�0;�0Þ ¼ �L�2
0

8�

�
1þ ��2

0

~�0

�
; (21)

where the terms � � � are higher order in the same sense
as in (12). We have used

R
dxdtjTrUj2 ¼ L�jTrUj2

which is correct up to derivatives of U which occur at

Oð~�=�2Þ and are small, as argued above.
In the limit of L ! 1,14 we can choose the gauge

A1 ¼ 0. Solving the Gauss’s law condition in this gauge,
we get A0 ¼ ðg2=@2xÞ%, where % � � i

2 ½YI; @tY
I� is the

charge density; in the large-D saddle point, especially
for large enough �0, the condensate is static and temporal
fluctuations of %, and consequently, of A0, are suppressed.
As a result, we can writeZ

dxdtTrF2
01 ¼ �

Z
dxTrð@xA0Þ2

¼ ��1
Z

dxTrj@xUj2;

where
12This follows from the fact that the distinction between g and
g0 in (3) vanishes in the original pure YM theory (1). In order to
fix the precise coefficient of the renormalization condition (15),
we need to evaluate the contribution of the mass (C3) and the
running of g and g0 for scales larger than MKK. The value of
mass and the running of the couplings depend on the details of
the higher-dimensional theory. If we are interested in the two-
dimensional gauge theory (3) itself as in the comment (iii) in the
introduction, the renormalization condition that replaces (15) is
arbitrary. However, even in that case, the qualitative nature of
the phase structures in this paper does not change as long as
ð�2

0 þm2Þ=~� � 1 is satisfied.

13The inequality follows from the condition ~�=M2
KK � 1, which

is necessary for a KK reduction. This condition implies that the
dimensionless ’t Hooft coupling is small: ~�Dþ2M

D�2
KK � 1.

14Although we are apparently taking L ! 1 here, as we
discuss at the end of the next subsection, we can extend these
results to finite L which is large enough to ensure vanishing ot
TrV. Note that if TrV � 0, the 1=D expansion does not work at
L ! 1 as argued in [37], where such a situation is discussed in
the presence of R-symmetry chemical potential.
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UðxÞ ¼ P exp

�
i
Z �

0
dtA0ðx; tÞ

�
¼ exp½i�A0ðxÞ�: (22)

By rescaling x ! x0 ¼ ~��x, we eventually get an effec-
tive action in terms of UðxÞ

S=DN2¼Cð~�0;�0Þþ
Z 1

�1
dx

�
1

2N
Trðj@xUj2Þ� 	

N2
jTrUj2

�
;

(23)

where

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0

2�~�2�3

s
e��0�: (24)

Note that 	 is a monotonically decreasing function of �.
Equations similar to (23) and (24) have earlier been

derived in [14] who consider a two-dimensional gauge
theory with heavy adjoint scalars of mass m. In their
equations, m appears in place of �0. We could have, in
fact, derived the above effective action (23) as follows: the
large-D saddle point generates a dynamical mass �0 for
the adjoint scalars which turns the theory into a massive
adjoint scalar QCD; once this is established, we can use the
method of [14] with m ¼ �0, to arrive at (23). The agree-
ment with the results of [14] provides an additional check
on our derivation. Adjoint scalar QCD with large scalar
mass has also been considered by [3] who have indepen-
dently derived equations analogous to (23) and (24); our
method of derivation follows their derivation closely, ex-
cept that our mass is dynamically generated, as mentioned
above. The discussion in Appendix C involving arbitrarym
relates the two extreme cases of large mass and zero mass.

B. The phase transition at large L

Phase transitions in the system (23) have been discussed
in [14,35,36]. We will adopt their result to infer about
phase transitions in our two-dimensional gauge theory (3)
at large L [the range of L is defined in (33)]. For complete-
ness, we will briefly review some of the results in these
papers.

If we regard the coordinate x in (23) as time, it becomes
the quantummechanics of a single unitary matrix, a subject
that has been extensively studied [38–44]. Phases of such a
model can be described by the behavior of the eigenvalue
density


ð�; xÞ ¼ 1

N

XN
i¼1

�½�� �iðxÞ�; (25)

where exp½i�iðxÞ� are the eigenvalues of (22).
The Hamiltonian of this system (regarding x as time) can

be written as [39–44]

H ¼
Z

d�

�
1

2

v2 þ �2

6

3

�
� 	ju1j2 � 1

24
; (26)

where we have ignored the constant term C in (23). Here,
v ¼ @��, and �ð�; xÞ is the canonical conjugate of

ð�; xÞ. We have also used the notation un ¼ 1

N TrUn,

u�n ¼ ðunÞ	. Note that unðxÞ are moments of the eigen-
value density (25):


ð�; xÞ ¼ 1

2�

X1
n¼�1

unðxÞe�in�: (27)

To study the various equilibrium phases of the system, we
study static solutions of (26), which [14,35,36] are given
by vð�Þ ¼ 0 and


ð�Þ ¼
ffiffiffi
2

p
�

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ 2	
1 cos�

p Þ; (28)

where 
1 ¼ u1 ¼ u	1 is the first moment (real in this
case), which must self-consistently satisfy [see (27)]Z 2�

0
d�
ð�Þ cos� ¼ 
1: (29)

The constant E is fixed by solving the normalization
condition Z 2�

0
d�
ð�Þ ¼ 1: (30)

Depending on the value of the constant 	 in (26), Eq. (30)
may not determine E uniquely. In general, we obtain three
branches Eð	Þ, depending on whether (28) describes a
uniform, nonuniform, or gapped eigenvalue distribution
(see Fig. 2). The value of Eð	Þ in these three cases is
different. The thermodynamic stability for the various
branches of the function Eð	Þ is analyzed [14,35,36] by
comparing the values of the Euclidean Hamiltonian (26)
which can also be regarded as the free energy. They can
be summarized as follows:

FIG. 2. Configurations of eigenvalue density 
ð�Þ in the unitary matrix model. The left plot is the uniform distribution [correspond-
ing to 
1 ¼ 0 in (28)], the middle one is the nonuniform distribution (jE=ð2	
1Þj 
 1), and the right one is the gapped distribution
(jE=ð2	
1Þj � 1).
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(i) Independent of the value of 	, the uniform solution
always exists. We call this phase as I.

(ii) For 	 < 	0 ¼ 0:227, only one solution (phase I)
exists and is stable.

(iii) At 	 ¼ 	0, there is nucleation of two gapped solu-
tions. One is unstable (phase II) and another is
meta-stable (phase III).

(iv) At 	 ¼ 	1 ¼ 0:23125, a GWW type phase transi-
tion [38,45] occurs in phase II and the gapped
solution becomes a solution with nonuniform dis-
tribution (Phase IV).

(v) At 	 ¼ 	2 ¼ 0:237, there is a first order phase
transition between the phases I and III. Above 	2,
the phase III is stable and the phase I is metastable.

(vi) At	 ¼ 	3 ¼ 1=4, phase IVmerges into phase I, and
the uniform solution becomes unstable beyond 	3.

These are summarized in Fig. 3.
Using (24), we can read off the critical temperatures

corresponding to these transition points:

�m � �ð	mÞ ¼ 3

2�0

W

�
2

3ð2�	2
mÞ1=3

�
�2

0

~�

�
2=3

�

� 1

�0

�
log

�
�2

0

~�

�
� 1:53� log	m

�
;

m ¼ 0; 1; 2; 3: (31)

Here, Lambert’s W function is employed again. In the

second step, we have assumed �2
0=

~� � 1 and 	m ¼ Oð1Þ.
As we come down from � ¼ 1 (go up in temperature),

there is a first-order phase transition at �2 from the center
symmetric phase (TrU ¼ 0) to the broken symmetry phase
(TrU � 0) at an inverse temperature

�cr � �2 � 1

�0

log

�
�2

0

~�

�
: (32)

Several comments are in order here:

(a) The assumption, used in Sec. II A, that e��� is
small, is correct in the parameter region we are
interested in. The interesting phase structures appear

in the regime 	�Oð1Þ. Thus, since ~�=�2
0 � 1 [see

(19)], e��� � e��0� � 1 from (31). Therefore,
the terms in (11) involving Un, n ¼ 2; 3; . . . are
suppressed.

(b) The Euclidean model (3) is symmetric under the
interchange of ðt; �Þ $ ðx; LÞ. Hence, similarly to
(32), we can deduce a phase transition in L from the
TrV ¼ 0 phase to TrV � 0 (at large enough �) at a
critical length Lcr ¼ �cr.

(c) The existence of a finite Lcr above confirms that the
transition which we found at L ! 1 and � ¼ �cr

between TrU ¼ 0 and TrU � 0 indeed happens in
the TrV ¼ 0 phase. Therefore, the expression for
�cr is valid even at finite L as long as TrV ¼ 0,
since large N volume independence [9,10] ensures
that gauge-invariant quantities like the free energy
and the vacuum expectation value (vev) of Wilson
loop operators do not depend on L in the TrV ¼ 0
phase. Thus, the correct definition of ‘‘large L’’ in
this section is

L � Lcr ¼ �cr; (33)

which ensures that we are in the TrV ¼ 0 phase. �cr

is defined in (32).
(d) By considering the interchange � $ L, we can

claim that, if there is no direct transition from
TrU ¼ TrV ¼ 0 phase to TrU � 0 TrV � 0 phase,
the two transition line � ¼ �cr and L ¼ Lcr meet at
� ¼ L ¼ �cr. See Fig. 4.

15

(e) As we discuss in Appendix C, the nonzero mass in
(3) does not change the qualitative nature of the
phase structure.

III. PHASE TRANSITIONS AT SMALL L

In this section, we discuss the phase structure for small L
(L � Lcr). In this case, we can dimensionally reduce the
theory (see footnote 4) to obtain the action (B1) with
d ¼ 1. Hence, we can use the analysis in [6]16 where the
phase structure has been studied by using the 1=D expan-
sion. The phases are characterized by the eigenvalue
density (27). Here, we summarize the results of [6],

0.23 0.24 0.25 0.26

-0.003

-0.002

-0.001

0.001

FIG. 3. Free energy (26) vs 	 in the four phases. The gapped
and nonuniform solutions here are numerically evaluated.
Since 	 is a monotonically increasing function of temperature
[see (24)], the uniform distribution (Phase I) is stable at low
temperatures and the gapped distribution (Phase III) is stable at
higher temperature. A first-order phase transition between these
two phases happens at 	2.

15Note that a transition line between TrU ¼ TrV ¼ 0 phase
and TrU � 0 TrV � 0 phase, if it exists (e.g. as in the third
circled option in Fig. 4), could depend on L and �. However, the
gravity analysis in Sec. V suggests that there is no such transition
in our model, consistent with the ‘‘cascade picture’’ reviewed in
Sec. VI. In this case, as represented by the second joining option
in Fig. 4, (33) can be relaxed to L> Lcr.
16In [6], we had considered massless adjoint scalars. We gen-
eralize the results to nonzero mass in Appendix C.
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(i) �>�c1: The stable solution is given by un ¼ 0
(n 
 1). The eigenvalues of A0 are distributed
uniformly.

(ii) �c1 >�>�c2: The stable solution is given by
u1 � 0, un ¼ 0 (n 
 2). The eigenvalue distribu-
tion is nonuniform and gapless.

(iii) �c2 >�: The stable solution is given by un � 0
(n 
 1). The eigenvalue distribution is gapped.

(iv) The phase transition at � ¼ �c1 is of second order
and the transition at � ¼ �c2 is a third order
(GWW type) transition.

The critical temperatures are calculated up to Oð1=DÞ
in [6]17 as

�c1
~�1=3
1 ¼ log ~D

�
1þ 1

~D

�
203

160
�

ffiffiffi
5

p
3

��
; (34)

�c2
~�1=3
1 � �c1

~�1=3
1

¼ log ~D
~D

�
� 1

6
þ 1

~D

��
� 499073

460800
þ 203

ffiffiffi
5

p
480

�
log ~D

� 1127
ffiffiffi
5

p
1800

þ 85051

76800

��
; (35)

where ~D ¼ Dþ 1 and ~�1 ¼ ðg0Þ2NðDþ 1Þ=L. In the

�-L plane, the transition lines appear as curves � /
L1=3 passing through the origin. Since our analysis is
valid only for L � Lcr, we should trust these transition
lines only in that region, as we have depicted in Fig. 4.
By using the � $ L reflection symmetry, we can also
infer phase transition lines for � � �cr described by

L / �1=3, as shown in Fig. 4.
Contrary to the case of large L, an intermediate nonuni-

form phase exists at small L. A similar feature in the
context of higher order confinement/deconfinement type
phase transitions has been seen in [20].
We should mention that considerations in this section are

valid up to ~�0 & �max where �max ¼ L=�3 for � � �cr,
and �max ¼ �=L3 for L � Lcr [6], which can be large
close to the origin (See footnote 34 also.). We will come
back to this point in Sec. V.

IV. PHASES OF 2D GAUGE THEORY ON T2

In the last two sections, we have studied confinement/
deconfinement type transitions in the model (3) for large
and small values of the spatial size L.
We have found that the nature of the transition depends

on L. We can summarize these results in Fig. 4, where we
supplemented our calculations with the reflection symme-
try � $ L of the model.
Weak coupling in the above diagram (Fig. 4), for large L

(or large �), is defined by ~�=�2 � 1 [see assumption (a)
below (10)]. In case the 2d gauge theory is obtained from a
KK reduction, the above notion of weak coupling trans-

lates to ~� � M2
KK (see (19) and footnote 12). For small L

(or �), the coupling should satisfy ~�0 & �=L3 (or L=�3) to
validate the additional KK reduction to one dimension; as

remarked at the end of Sec. III, this limit on ~�0 can be quite
large close to the origin of Fig. 4.
As mentioned in the Introduction, our model (3) can

be regarded as a dimensional reduction of a Dþ
2-dimensional pure Yang-Mills theory compactified on a
small TD. For the dimensional reduction to work (see
footnote 4), WI ¼ TrUI (I ¼ d; � � � ; dþD� 1) must be
nonzero (which is ensured by a sufficiently small size of
the D-dimensional torus). Therefore, we can regard the
phase structure in Fig. 4 as a part of theDþ 2-dimensional
pure Yang-Mills theory in theWI � 0 phase. Such a Yang-
Mills theory on T3 and T4 have been studied in lattice
gauge theory and we will compare our results with those
studies in Sec. VI.
Since our phase structure is derived through the 1=D

expansion, it is not a priori obvious whether the result
should be valid for small D. However, at least for small L,
the comparison with numerical studies [46–48], as ex-
plained in [6], turns out to be remarkably good even for
small D. For example, for D ¼ 2 the 1=D expansion,
performed up to an accuracy of Oð1=DÞ2 reproduces

FIG. 4. Phase structure of the 2d gauge theory at weak coupling
(defined below). There are essentially four phases characterized by
nonzerovalues of variousWilson lines. The inner region,with both
Wilson lines nonzero, includes two additional phases in which the
eigenvalue distribution is gapless but nonuniform. The orders of
the phase transitions (1st, 2nd, 3rd) are indicated.Our analysis does
not apply to the region enclosed by the dotted lines. Possible
connections between the phase boundaries across this region are
suggested in the inset (whereboundaries of the intermediate phases
are omitted for simplicity). A similar diagram is proposed in [3] for
the model (3) with large mass for the adjoint scalars (see Sec. VIB
for details). As wewill see in Fig. 5, the gravity analysis conforms
to the second pattern. We will see in Sec. VIA that the second
pattern is also supported by lattice studies.

17Eqs. (34) and (35) are calculated form ¼ 0. The massive case
is discussed in Appendix C. Note that the mass from the KK
modes for d ¼ 1 is proportional to

ffiffiffiffiffiffiffiffiffi
�1L

p
as in (A6). Thus, the

mass correction is small for small L.
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numerical results within the expected 25%. Thus, we be-
lieve that the phase structure in the large L region also
should be qualitatively correct for small D (D 
 2).

V. THE PHASE STRUCTURE FROM GRAVITY

In the previous sections, we evaluated the phase struc-
ture of the bosonic gauge theory (3) at weak coupling. In
this analysis, it was difficult to figure out the phase struc-
ture of the middle region, namely, where both� and L have
intermediate values. In particular, it was not clear how the
various phase boundaries in Fig. 4 are connected.

In this section, we attempt to construct a gravitational
dual of our system along the lines of Witten’s realization of
the 4d pure Yang-Mills theory [22]. We consider IIA
supergravity on R7 � T3 (T3 ¼ S1� � S1L � S1L2

) and put

N D2 branes on the T3. The AdS/CFT duality in this
context is discussed in [24] and more details are provided
in Appendix D. The dual gauge theory is three-dimensional
N ¼ 8 SUðNÞ super Yang-Mills on T3, with the identi-
fications ðt; x1; x2Þ ¼ ðtþ �; x1 þ L; x2 þ L2Þ. In order to
complete the definition of the theory, we need to choose a
boundary condition of the fermions along each compact
direction. Let us impose an antiperiodic boundary condi-
tion on the fermions on the x2 cycle. If L2 is sufficiently
small (1=L2 � �3 ¼ g23N

18), we can use a dimensional

reduction to the two-dimensional torus S1� � S1L: owing to

the antiperiodic boundary condition along L2, all fermions
would acquire a mass proportional to 1=L2 and we can
ignore them.19

One would, thus, expect the gravitational system, for
small L2, to describe a dual of (3) with D ¼ 8.
Unfortunately, however, the gravity solutions are not valid
in the small L2 region (L2 � 1=�3) since stringy correc-
tions become important (see Appendix D 1 b).20 In case of
L2 � 1=�3, since the fermions are not decoupled, the D2
brane theory will depend on the boundary conditions of
fermions along the t and x1 directions. There are four

choices of boundary conditions: (AP,AP), (AP,P), (P,AP),
(P,P), where P denotes the periodic boundary condition and
AP denotes the antiperiodic one.21 Phase diagrams of the
gravity theories for different spin structures are worked out
in Appendix D and presented in Figs. 5, 7, and 8. The
salient features are:
(i) The phase structures in the gravity analysis depend

on the boundary conditions.
(ii) Only the gravity analysis with (P,P) boundary con-

dition is reliable as a prediction for gauge theory
through the arguments in Appendix D 4. The phase
structure in this case is shown in Fig. 5. It predicts
the second joining pattern in Fig. 4.

(iii) The phase transitions in the gravity description in
Fig. 5 are Gregory-Laflamme (type) transitions
[49–51] and are expected to be of the first order,
at least for large L2 [5,23].

(iv) The gravity analysis for small � and L is not
reliable.

Comparing Figs. 4 and 5, we can see that both diagrams
share some common features. Both have four phases in
similar parameter regions. In particular, the behavior of the
transition lines for large� and large L is the same. The line
BC in Fig. 5 is independent of L. This is consistent with
large N volume independence [9,10,52], since TrV ¼ 0 on
both sides of BC. Similar remarks apply to the line AB
as well.

FIG. 5. Conjectured phase structure of the gauge theory from
the gravity analysis. We used a large L2 and the (P,P,AP) spin
structure of the fermions on the three-dimensional torus (with
AP boundary condition on the Scherk-Schwarz (SS) circle). TrW
is the Polyakov loop operator along the SS circle (D16). The
gravity analysis is reliable only in the region above the dotted
line. The transitions in this diagram are predicted to be first order
phase transitions. (See Appendix D 4).

18This implies 1=L2 �
ffiffiffiffiffiffi
�2

p
.

19In fact, even the scalars would acquire a mass at one-loop, as
in [22]. However, unlike in [22], the scalar mass does not
become infinite as L2 ! 0. From the 2d gauge theory perspec-
tive, the scalar mass renormalization due to fermion loops
schematically goes as m2

Y ¼ g22N
R
d2p 1

ðmÞðpþmÞ ¼ �2
1
m� ¼ �2,

where we have used a fermion mass m ¼ 1=L2 and an uv cutoff
for the 2d theory � ¼ 1=L2. For a more precise calculation, see
Appendix A. Since the scalars remain light compared to the KK
scale, we must keep them in the Lagrangian as in (3).
20This is a common problem in the construction of holographic
duals of nonsupersymmetric gauge theories. Since the gauge
theory coupling constant �3 is greater than the KK scale (1=L2)
in the region of validity of gravity, the gravity description has
been likened (cf. [26], p. 196–197) to strong coupling lattice
gauge theory, the small L2 limit being regarded as analogous to
the continuum limit. Interesting results, including the qualitative
predictions in [22], and results in AdS/QCD, have been obtained
using this philosophy. We will use the small L2 extrapolation of
our gravity results in this spirit.

21The gravity calculation with � ¼ L in the (P,P) case has been
studied in [5,25].
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In the small �, L region too, the two phase diagrams
share similarities. In Fig. 5, two phase transition lines
emanate from the point D towards low values of �, L.
However, it is not clear from the gravity analysis how to
continue towards the origin. On the other hand, in Fig. 4 the
region near the origin O can be computed reliably and the
two (double) lines OD1 and OD2 can be identified as a
continuation of the two phase transition lines mentioned
above. We should note that the phase structure in the small
�, L region of Fig. 4 can be calculated from gauge theory

even at strong coupling, up to ~�0 & �max where �max ¼
L=�3 for � � �cr, and �max ¼ �=L3 for L � Lcr; as �
grows stronger, the calculable region becomes narrower.

In addition to the above similarities, various details of
the phases in Fig. 4 and 5 are also similar. Recall that
the phases in the gauge theory are characterized by
three solutions: uniform, nonuniform and gapped.
Correspondingly, three solutions (uniform black string,
nonuniform black string and localized black hole) play a
key role in the discussion of Gregory-Laflamme transi-
tions in gravity. For large L, the free energy of these
solutions in the gauge theory are related as shown in
Fig. 3. A similar relation has been found in gravity [53],
in the case where the GL transition is of first order. On the
other hand, if the GL transitions are of higher order, it
consists of two transitions: a transition between a uniform
black string and a nonuniform one, and another transition
between the nonuniform black string and a localized black
hole [50]. This is precisely similar to the higher order
phase transitions in the gauge theory, which we have
observed in the small L case.

An important consequence of the gravity analysis is
that we can guess how the phase transitions in Fig. 4 are
connected. In particular, it indicates that there is no
direct transition between TrU ¼ TrV ¼ 0 and TrU � 0,
TrV � 0 phase. In [5], it was pointed out that this property
has also been observed in large N pure Yang-Mills theories
on four- and three-dimensional tori in the lattice calcula-
tions of [2,54,55]. Thus, the gravity analysis is in agree-
ment with the lattice calculation. More details of the lattice
calculation are presented in Sec. VI.

In summary, the full phase diagram of the two-
dimensional gauge theory (3) may be obtained by combin-
ing the results from gauge theory and gravity. The result
would be given by Fig. 4 with the second joining
possibility.22

VI. RELATION TO OTHER WORKS

In this section, we detail some of the remarks made in
the Introduction regarding previous works.

A. Comparison with lattice studies

Large N Yang-Mills theories on tori have been studied
using lattice methods in [2,4,54,55], in d ¼ 3 and four
dimensions. Reference [4] contains a nice summary of
these works. We describe some of the salient features
below (see also Fig. 6).

(a) If we start from d ¼ 4 pure Yang-Mills theory on a
Euclidean torus T4 with L3 < L2 < L1 < L0,

23 then
for all radii large enough the center symmetry Z4

N

(see footnote 3) is unbroken and all the Wilson loops
W� vanish. This phase is called the 0c phase. In this

completely unbroken phase, the thermodynamics in
the large N limit does not depend on any one of the
lengths L� [9–11].

(b) As L3 is decreased, below a certain value Lc
3 there is

a phase transition to a new phase where the center
symmetry is broken to Z3

N and W3 develops a non-
zero expectation value. The other Wilson loops W0,
W1 and W2 still vanish. This phase is called the 1c
phase in which there is no dependence on the
lengths L�, � ¼ 0, 1, 2 which characterize the

directions of unbroken center symmetry.
(c) If L2 is now decreased, maintaining L2 > L3, a new

phase 2c appears below Lc
2 (which is a function of

L3) where W2 becomes nonzero. The center sym-
metry is broken to Z2

N , with nonzero values of W2,
W3 while W0, W1 still vanish.

(d) Proceeding similarly, a phase 3c is reached when L1

is reduced below a critical value Lc
1ðL2; L3Þ, and the

phase 4c are reached when, finally, L0 is reduced
below Lc

0ðL1; L2; L3Þ.
(e) Thus, d ¼ 4 pure YM theory (with L3 < L2 <

L1 < L0) exhibits a cascade of transitions

0c ! 1c ! 2c ! 3c ! 4c:

(f) In the case of d ¼ 3 pure Yang-Mills theory (with
L2 < L1 < L0), the sequence of transitions works
similarly, leading to a cascade

0c ! 1c ! 2c ! 3c:

(g) It was found in [2,54] that the cascade of transitions
persists even when all radii are the same. For ex-
ample, in case of the system in (f) with L1 ¼ L2 ¼
L3 ¼ L, for high enough L all W� ¼ 0; as L is

reduced below a certain critical value Lc, only
one of the W�’s picks up a nonzero value [2],

and the 3D cubic symmetry group spontaneously

22The extrapolation involved in this conclusion has additional
support from the lattice calculations mentioned above.

23Since all directions are equivalent in the Euclidean space, the
ordering chosen here is arbitrary and all arguments below can be
repeated with any other ordering.
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breaks down to the symmetry group appropriate to
a square lattice.

(h) Generally speaking, it was found in these works that
the Wilson lines W� change from zero to nonzero

one by one; two or more Wilson lines never simul-
taneously change from zero to nonzero values.

(i) Order of phase transitions:24 There is ample evi-
dence that the first of the cascade of transitions
ZdþD
N ! ZdþD�1

N is first order. In the case of
0c ! 1c transitions in four-dimensional Yang-Mills
theories on T4, such evidences are presented directly
in [56] and indirectly, assuming large N volume
independence, in [57–59]. Evidences for the first
order nature of the 0c ! 1c and 1c ! 2c phase tran-
sitions have been presented for Yang-Mills theory on
T3 in [60], which indicates that the first two transi-
tions ZdþD

N ! ZdþD�1
N ! ZdþD�2

N are also first or-
der. Our gauge theory analysis presents analytic
evidence that the first order nature continues till the
transition Z2

N ! Z1
N (which is 2c ! 3c in the nota-

tion of pure Yang-Mills theory on T4), whereas the
last transition ZN ! 1 in which the center symmetry
is completely broken, occurs (in the parameter re-
gion of Sec. III25) in two steps through a second and
a third order phase transitions. The last statement,
first derived in [6], is corroborated by the numerical
work in [46].

Let us compare the above with the phase diagram in
Fig. 4, which describes phases of the theory (3). Note that
the theory (3) with D ¼ 226 is precisely the one obtained
after the steps (a)-(b) described above, in which we reduce
a d ¼ 4, D ¼ 0 theory (pure YM theory in four dimen-
sions) on two small circles of length L2, L3. To make

the correspondence more explicit, we identify L1 ¼ L,
L0 ¼ �, W1 ¼ TrV, W0 ¼ TrU. It is easy to see that the
phase transitions in the L< � region of Fig. 4 precisely
correspond to the phase transitions described in (c)-(d)
above.27 The top right part of Fig. 4 (above AB1B2C)
represents the 2c phase. The region above the line
OD1B2A (or its mirror image: the region to the right of
the line OD2B2C) corresponds to the 3c phase. The en-
closed region OD1D2O corresponds to the 4c phase. The
phase transition across AB1 from right to left corresponds
to the transition 2c ! 3c; the phase transition acrossOD1

28

from above corresponds to 3c ! 4c (see Fig. 6).
The comments (g)-(h) above have a direct bearing on the

possible joining pattern in Fig. 4. Out of the three possible
joining patters shown in the insets, the first and the third
patterns allow a direct transition 2c ! 4c and are, hence,
inconsistent with the comment (h). Thus, consistency with
the lattice results described in this subsection uniquely pick
up the second joining pattern. As we showed in Sec. V, the
same joining pattern is also picked up uniquely in Fig. 5
through the analysis of the gravity dual.
A more quantitative comparison of our work with the

above lattice studies is left for the future.
We should mention another important lattice study [61]

which deals with super Yang-Mills theories in d ¼ 2 and is
closely related to the work presented here and in [6]. In
parameter ranges where the two theories coincide, our
phase diagrams agree (see Sec. 5 of [61]). See also related
numerical works about the center symmetry breaking in
super Yang-Mills [62,63].

B. Comparison with earlier analytical studies with
massive adjoint scalars

Reference [3] considers the theory (3) in the limit

m � �1=2
2 . Our Fig. 4 is similar to Fig. 13 of [3], except

FIG. 6. Cascade of phase transitions for pure Yang-Mills theory on a T4 (adapted from [4]; see the points (a)-(e) above for more
details). Our results in this paper, for the theory (3) with D ¼ 2, describe the indicated phases 2c, 3c and 4c. The 0c ! 1c transition is
found to be first order from lattice studies in [56]; the 2c ! 3c transition is found to be first order from our analysis; the 3c ! 4c
transition for an asymmetric torus is found in our analysis to be a double (2nd orderþ 3rd order) transition for an appropriate
parameter regime (see Fig. 4), although, it can be a single first-order transition at other regimes [6,60].

24We thank Rajamani Narayanan for pointing out some refer-
ences in this paragraph.
25In other parameter regions, 3c ! 4c can be a single first order
phase transition [6,60].
26We will assume that the essential features of the large-D
calculation which led to this phase diagram remain valid for
D ¼ 2. This was certainly true in the d ¼ 1 case discussed in [6].

27The �< L region is the mirror image; it corresponds to the
sequence similar to (c)-(d) resulting from an ordering L0 <L1.
28We are treating the nonuniform phase as part of the 4c phase
here.
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that our figure is obtained for any mass (including m ¼ 0)
where their figure is for the large mass limit. The reason for
the agreement is the appearance of a dynamical mass � for
the adjoint scalars in our model, as we have explained
above.

In Fig. 14 of [3], an interpolation between small and
large radii is proposed on the basis of some analytical
estimates for the intermediate radii. Our Fig. 5, although
similar to this figure, differs in one crucial respect. The
phase transition line BC in our figure is horizontal through-
out, as it must be according to large N volume indepen-
dence arguments [9,10]. Since the line BC is entirely in the
TrV ¼ 0 phase, the transition temperature �c cannot de-
pend on L; hence BC must be horizontal. This property is
violated by the corresponding line (the intermediate radius
segment) of Fig. 14 in [3], which should have been hori-
zontal according to the above argument.

C. Comparison with Yang-Mills theories
on different topologies

We have found that the nature (in particular, order) of
the confinement/deconfinement type transition at �c in the
two-dimensional gauge theory (3) at a fixed radius L
depends on the value of L. Since this theory can be ob-
tained from a pure Yang-Mills theory on a small
TD � S1L � S1�, it is interesting to compare this result

with Yang-Mills theories on compact spaces with other
topologies. We present such a comparison in Table I.29

Because of the difficulty of the analysis of Yang-Mills
theory, only weakly coupled Yang-Mills theories on S2 and
S3 [64,65] have been studied. In these cases, all the spatial
components of the gauge field have a mass proportional
to 1=R, where R is the radius of the sphere. These
massive gauge fields can be integrated out perturbatively
if the radius is sufficiently small (R�QCD � 1).
References [64,65] derived effective potentials for A0 up
to three-loop order and found the transition in the S3 case to
be first order [64]. On the other hand, the transition in the S2

case consists of second and third order transitions as we
found in the small TD case [65]. Note that the higher order
transitions for small S2 is expected to change to a first order
transition in a strong coupling regime according to lattice
studies [66].

Thus, the nature of the transition depends not only on the
size but also on the topology of the compact space. It would
be interesting to understand the origin of these differences.

VII. CONCLUSIONS

In this work, we have computed the phase diagram of
two-dimensional Yang-Mills theory with adjoint scalars
(3), which can be obtained from a KK reduction of a

higher-dimensional pure Yang-Mills theory. We treated
the case of massless adjoint scalars in detail, outlining
the generalization to arbitrary nonzero mass in
Appendix C, and found the phase diagram in Fig. 4. At
large spatial radius, there is a first order confinement/
deconfinement phase transition, whereas at small spatial
radius, there are two closely spaced phase transitions: (a) a
second order phase transition from the ‘‘confined’’ phase to
a ‘‘nonuniform’’ phase (nonuniform eigenvalues of the
Polyakov line), followed by (b) a third order phase tran-
sition from the ‘‘nonuniform’’ phase to a ‘‘gapped’’ phase.
Our calculations, based on the large-Dmethod [6], provide
an analytical derivation of the dependence of the thermo-
dynamic behavior on the size of the spatial box, which is
anticipated on the basis of lattice studies and gauge/gravity
duality.
We have also considered the phase transitions in the

gauge theory from the viewpoint of a gravity dual, based
on a scaling limit of Scherk-Schwarz compactification of a
D2 brane on a 3-torus. Although there is no overlapping
region of validity of the gauge theory and gravity descrip-
tions, the analysis of the gravity dual leads us to conjecture
a certain specific completion of the phase diagram in the
gauge theory, as in Fig. 5. In performing this analysis, we
encountered an inherent problem with the holographic
analysis, namely, a dependence of the physics on the
fermion boundary conditions, which was absent in the
gauge theory description (see Appendix D). Indeed, this
problem is related to a more general problem in the holo-
graphic description of QCD [67]. We discuss this problem
further in [68].
We matched our findings from gauge theory regarding

the order of various phase transitions with those from a
gravity analysis in Sec. V and with those from lattice
studies in Sec. VI.
Note that the method of integrating out the adjoint

scalars using a 1=D expansion works equally well in
higher-dimensional (d 
 3) gauge theories (B1), leading
to an effective action for the gauge field as shown in (B7).
However, it is difficult to evaluate the dynamics of this
model because of the existence of dynamical gluons. This
is a crucial difference from the lower-dimensional cases
(d ¼ 0, 1, 2). In addition, the d-dimensional model (B1)

TABLE I. Confinement/deconfinement type transitions in pure
Yang-Mills theories on S1� �M. Here, ‘‘small S1’’ and ‘‘small

TD’’ refer to sizes small enough to ensure (a) that the ZN

symmetries in the S1 and TD directions, respectively, are broken,
and (b) that all the KK modes can be integrated out. ‘‘Large S1’’
ensures that the ZN symmetry along the S1 is not broken.

M Type of phase transition

Small TD� small S1 2ndþ 3rd
Small TD� large S1 1st

Small S2 2ndþ 3rd
Small S3 1st

29In order to apply 1=D expansion, we need D 
 1 in the small
TD� small S1 case and D 
 2 in the small TD � large S1 case.
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typically appears through a KK reduction of a dþ
D-dimensional (super) Yang-Mills theory, but for d 
 3
the mass of the adjoint scalars induced from loops of KK
modes is large (see Appendix A); hence, the contribution
of the adjoint scalars may be not relevant for d 
 3.

The investigations in the present paper were partly mo-
tivated by a desire to understand a gauge theory dual to a
dynamical Gregory-Laflamme transition. The considera-
tions in this paper provide a step towards understanding
this issue; details of this will appear elsewhere [27].
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APPENDIX A: MASS FOR YI FROM ONE-LOOP
OF THE KK MODES

If we consider a dþD-dimensional Yang-Mills on
TdþD (1) and consider a dimensional reduction by taking
the radii of TD to be small, we will classically obtain a
d-dimensional gauge theory coupled to D massless adjoint
scalars. However, if we consider quantum effects, the
action would be modified. One of the relevant corrections
is that the adjoint scalars would acquire mass as in (B1). In
this appendix, we evaluate the mass at a one-loop level.30

Starting from the dþD-dimensional action (1), we can
derive a one-loop effective action for the constant diagonal
components of A� ¼ ða�1 ; � � � ; a�NÞ by integrating out all

the other modes [1,3,69],

Seff ¼ �
� YdþD�1

�¼0

L�

�
dþD� 2

2

�½ðdþDÞ=2�
�ðdþDÞ=2

�X
i;j

X
fk�g�f0g

exp½iP
�
k�L�ða�i � a�j Þ�

ðP
�
k2�L

2
�ÞðdþDÞ=2 : (A1)

Here, the sum
P

fk�g�f0g includes all integers k� except

k0 ¼ � � � ¼ kdþD�1 ¼ 0. Let us now take L� (� ¼
0; � � � ; d� 1) large and LI (I ¼ d; � � � ; dþD� 1) small
and derive a low-energy effective theory by using this
expression. Gauge invariance implies that the effective
action in this situation will be given by

Sd ¼
Z �

0
dt

Yd�1

i¼1

Z Li

0
dxi Tr

�
1

4g2d
F2
�� þ

XD
I¼1

1

2
ðD�Y

IÞ2

�X
I;J

g02d
4
½YI; YJ�½YI; YJ�

�

�
Z �

0
dt

Yd�1

i¼1

Z Li

0
dxi

�YD
I¼1

lI

�
dþD� 2

2

� �ððdþDÞ=2Þ
�ðdþDÞ=2

X
fkIg�f0g

jTre
igd
P
J

kJlJY
J

j2
ðP
J
k2Jl

2
JÞðdþDÞ=2 : (A2)

Here, we have rewritten AdþI�1 ¼ gdYI and LdþI�1 ¼ lI.
gd and g0d are the same as g and g0 of (3); they satisfy

g2dþD=
Q

D
I¼1 lI ¼ g2d ¼ g02d at a physical scale � � 1=lI

(cf. (15)).
If lI are small and the long string modes are suppressed

(see footnote 4), we can treat YI perturbatively. Then we
can expand the exponentials in (A2) and obtain a quadratic
term in Y as

g2dN

�YD
I¼1

lI

�
ðdþD� 2Þ�½ðdþDÞ=2�

�ðdþDÞ=2

� X
fkIg�f0g

k2I l
2
I

ðP
J
k2Jl

2
JÞðdþDÞ=2

TrðYIÞ2
2

: (A3)

Other interaction terms from the exponential would be
suppressed by small lI. If we take all the lI to have a
common value lKK ¼ 1=MKK, we obtain a mass for YI as

m2 ¼ g2dNMd�2
KK ðdþD� 2Þ�½ðdþDÞ=2�

�ðdþDÞ=2

� X
fkIg�f0g

1

D

1

ðk21 þ � � � þ k2DÞðdþDÞ=2�1
: (A4)

This sum would diverge for d � 2 and hence needs to be

regulated, e.g. by using a prescription ð ~kÞ2 � k21 þ � � � þ
k2D � ð�UV=MKKÞ2, where �UV is a cutoff scale.31 This
would imply a nontrivial RG flow of the mass. Let us
first consider the case of d ¼ 2. For �UV � MKK, the
regulated sum (A4) approximately gives m2ð�uvÞ ¼
Ag22N logð�uv=MKKÞ, where A is a numerical constant.

30We do not use the large-D limit in this appendix.

31An ultraviolet cutoff typically breaks gauge symmetry. The
calculation discussed here can be repeated avoiding such prob-
lems, by using dimensional regularization [7].
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Let us choose a renormalization scale � * OðMKKÞ. We
can then define a renormalized mass at the scale � as

�m 2 � m2ð�uvÞ � Ag22N logð�uv=�Þ ¼ A0�2; (A5)

where A0 ¼ A logð�=MKKÞ, �2 ¼ g22N. Note that the run-
ning of the mass will stop below �<MKK.

For d ¼ 1, a similar analysis gives

�m 2 � �3=MKK: (A6)

For d 
 3, the sum in (A4) is convergent, leading to

m� �1=2
d Mðd�2Þ=2

KK which is much larger than the typical

QCD scale, e.g. for d ¼ 3 the QCD scale is Oð�3Þ whereas
the adjoint mass is Oð�1=2

3 M1=2
KKÞ. Thus, ifMKK is large, the

adjoint scalars will not contribute to the QCD dynamics. It
means that only the d-dimensional gauge field dominates
the dynamics.32

So far, we have considered the mass correction from the
KK modes in pure Yang-Mills theory. We can extend this
calculation to the KK reduction of supersymmetric theories
with a Scherk-Schwarz compactification, e.g. to the deri-
vation of (3) with D ¼ 8 from the D2 theory. In this case,
we need to evaluate the contribution of loops of adjoint
scalars as well as fermions. However, it can be shown that

we obtain a similar mass �Oð�1=2
d Mðd�2Þ=2

KK Þ even in this

case [3].

APPENDIX B: DERIVATION OF EFFECTIVE
POTENTIAL (10)

In this appendix, we show the derivation of the effective
action (11) from (10)with the assumptions (a) and (b) below

(10).We can evaluate (10) in a generald-dimensional gauge
theory, described by the action

S ¼
Z �

0
dt

Yd�1

i¼1

Z Li

0
dxi Tr

�
1

4g2
F2
�� þ

XD
I¼1

1

2
ðD�Y

IÞ2

þm2

2
YI2 �X

I;J

g02

4
ðYI; YJÞðYI; YJÞ

�
: (B1)

This model can be identified with (A2) if we take LI small
and choose the mass and couplings appropriately. We will
first discuss the general d-dimensional case and apply the
results to d ¼ 2 later.
Let us first set m ¼ 0. Then, through a similar calcula-

tion as in Sec. II A, we obtain a generalization of (10) (the
calculation closely follows [3]). In this section, we will use
the more general notation ðL0; L1Þ for ð�;LÞ.

�S½A;��¼D

2
logdetð�D2

�þ�2Þ

¼D

2
Tr
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�Xd�1
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X
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Pfk�gð�;fL�gÞe
i
P
�

k�L�A�

;

(B2)

where Pfk�g is

Pfk�gð�; fL�gÞ ¼
Z 2�=L0

0
da0 � � �

Z 2�=Ld�1

0
dad�1

X
fn�g

log

�Xd�1

�¼0

�
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e
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¼ X
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n0

da0 � � �
Z nd�1þ2�=Ld�1

nd�1

dad�1 log

�Xd�1

�¼0
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e
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P
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k�L�a�
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Z 1

�1
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Z 1
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dad�1 log

�Xd�1

�¼0

a2� þ�2

�
e
�i
P
�

k�L�a�

: (B3)

Let us now evaluate Pfk�g in the fk�g ¼ f0g and fk�g � f0g cases separately. In the fk�g � f0g case, Pfk�gð�; fL�gÞ
becomes,

32For d ¼ 2, the mass of the adjoint scalar from the KK modes is finite (Oð�2Þ) but the dynamical mass � is (logarithmically) larger
than �2 [see (19)]. Hence, one may naively think that the adjoint scalar would be irrelevant as for d 
 3. However, this is not correct
[3], since the phase structure of the 2d pure Yang-Mills on T2 is trivial and is always confined. Therefore, the contribution of the
(logarithmically) heavy adjoint scalars is important in the two-dimensional gauge theory (3).
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where Kd=2 is the modified Bessel function of the second
kind and we have used KaðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
�=2z

p
e�z þ � � � for large

z in the last equation.
For fk�g ¼ f0g, we find

Pf0gð�; fL�gÞ ¼
Z 1

�1
da0 � � �

Z 1

�1
dad�1 log

�Xd�1

�¼0

a2� þ�2

�

¼
Z �

0
da�da

d�1 logða2 þ�2Þ; (B5)

where �d ¼ 2�d=2=�ðd=2Þ is the surface area of the
d-dimensional unit sphere and � is a cutoff.

Finally, we turn on the mass term. In this case, we can

obtain the results by replacing� !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
in (B4) and

(B5). Note that the assumption (a) and (b) below (10)
should be modified accordingly.

1. Effective action for d ¼ 2

We now consider the special case of d ¼ 2. In this case,
we can evaluate Pf0g as

Pf0gð�; �; LÞ ¼ 2�
Z �

0
daa logða2 þ�2Þ

¼ ���2 þ �ð�2 þ�2Þ logð�2 þ �2Þ
� ��2 log�2: (B6)

By using this result and (B4) to (B2), we obtain the

effective action (11). Note that Tradje
iðk�A0þlLA1Þ in (B2)

becomes jTrðUkVlÞj2 by using the assumption (b).

2. Effective potential for higher-dimensional models

It is easy to generalize the derivation of the effective
potential (20) for the two-dimensional gauge theory in
Sec. IIA to the d-dimensional gauge theory (B1) for large
L�.

33 By using the results in the previous section, we obtain
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Here,�0 is defined as a solution of the saddle-point equation

�2

2~�0 ¼
�d

ð2�Þd
Z �

0
da

ad�1

a2 þ �2 þm2
: (B8)

Note that we can always find a unique positive solution �0

from this equation.

APPENDIX C: THE PHASE STRUCTURE OF
MASSIVE MODEL.

In this appendix, we study the two-dimensional gauge
theory (3) with a mass term for the adjoint scalars. As
we mentioned in the introduction and elaborated in
Appendix A, such a mass term generically arises from
KK loops. We discuss here how the results of the massless
case in Secs. II and III are modified. We will show that the
mass does not change the qualitative nature of the phase
structure.

1. Large L case

By using the results in B 2, we generalize the effective
action for TrU (23) to the massive case. The resulting
effective action is again given by (23) with different values
of 	 and C:

	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þm2
q
2�~�2�3

vuuut e��
ffiffiffiffiffiffiffiffiffiffiffiffi
�2

0
þm2

p
; (C1)33The 1=D expansion in the d-dimensional gauge theory (B1)

in a high temperature region is considered in [37] also.
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The dynamical mass �0 is a solution of

~� 0 ¼ 2��2
0

logð1þ �2
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: (C3)

For large �, �0 becomes

�0 ¼
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s
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Therefore, we can use the same analysis as in Sec. II B and
obtain the same phase structure with the following modi-
fied transition temperatures

�m ¼ 3

2
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0 þm2
q W

�
2

3ð2�	2
mÞ1=3

�
�2

0 þm2

~�

�
2=3

�
: (C5)

Although the mass changes the explicit values of the
transition temperatures and some other physical quantities,
the qualitative nature of the phase structure is not modified,
as we have mentioned.

Note that (C3) implies that �0 becomes smaller as m

increases for fixed ~�0 and �. Therefore, for heavy mass,
we can ignore the dynamical mass �0 compared to m and
our calculations reproduce the heavy mass QCD results
in [3,14].

2. Small L case

If L is small enough in (3), we can integrate out all the
nonzero momentum modes in the L direction (see foot-
note 4) and obtain a one-dimensional model (B1) with
d ¼ 1. In this case, the mass of the adjoint scalars in-
duced at one-loop from the KK modes is proportional to

ð~�1LÞ1=2 [see (A6)]. Hence, we can ignore it for small
enough L and the results in [6] shown in Sec. III would
still be valid. Although the contribution from the mass
would be small, it may be valuable to confirm that the
results in [6] are not modified qualitatively.

Starting from (B1) with d ¼ 1, we obtain an effective
potential through a similar calculation as in B 2,34,

Seffð�;fungÞ=DN2¼���4

8~�1

þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

p

2

þX1
n¼1

�
1

D
�e�n�

ffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

p �junj2
n

: (C6)

Here, the third term is a contribution of the Vandermonde
determinant [6]. Then, the saddle-point equation for �2

becomes

�2

~�1

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p þ 2
X1
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þm2
p e�n�

ffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

p �
junj2:

(C7)

The solution of this equation at low temperatures

(e��
ffiffiffiffiffiffiffiffiffiffiffiffi
�2þm2

p
� 1) is

�2 ¼ �2
0 þ

4~�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þm2
q

3�2
0 þ 2m2

e��
ffiffiffiffiffiffiffiffiffiffiffiffi
�2

0
þm2

p
ju1j2 þ � � � ; (C8)

where

�2
0 ¼

m2

3
ðfðmÞ þ fðmÞ�1 � 1Þ;

fðmÞ ¼ 1

21=3m2

�
27~�2

1 � 2m6 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27~�2

1ð27~�2
1 � 4m6Þ

q �
1=3

:

(C9)

Note that, although fðmÞ is a complex for m6 
 27~�2
1=4,

�2
0 is always real and positive. By substituting this solution

to (C6), we obtain an effective action for un,

SeffðfungÞ=DN2 ¼ ���4
0

8~�1

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þm2
q

2

þ aju1j2 þ bju1j4 þ � � � ; (C10)

where

a ¼
�
1

D
� e��

ffiffiffiffiffiffiffiffiffiffiffiffi
�2

0
þm2

p �
;

b ¼ �~�1

3�2
0 þ 2m2

e�2�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2

0
þm2

p
:

(C11)

One important fact is that b is always positive. It has been
shown that, in this case, the confinement/deconfinement
type transition always consists of the two transitions
(2ndþ 3rd) as in the massless case [6,20]. These critical
temperatures are given by the solutions of a ¼ 0 and
a=ð2bÞ ¼ �1=4, respectively, and evaluated as

�c1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þm2
q logD;

�c2 ¼ �c1 �
~�1

2D

logD

3�2
0 þ 2m2

:

(C12)34Contrary to the d 
 2 case, the condition (a) and (b) below
(10) are not required for a derivation of the effective action in the
d ¼ 1 case. Thus, the 1=D analysis would be valid as long as the
effective dimensionless coupling ~�1�

3 does not scale with D.
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Therefore, as in the large L case, the qualitative nature of
the phase transition is not modified by the mass term.35

Although we have evaluated only the leading order of
the 1=D expansion in this section, the result does not
change even if we include the next order.

APPENDIX D: PHASE STRUCTURE OF D2
BRANES ON A 3-TORUS

In this appendix, we consider the gravitational system of
Sec. V in detail. We first review some generalities for Dp
branes with arbitrary p.

1. Dp branes wrapped on pþ 1-Torus

a. The solutions

The geometry of a black Dp brane on a p-torus xi 2
ð0; LiÞ, (i ¼ 1; � � � ; p) in the Maldacena limit (assuming
Euclidean time t 2 ð0; �Þ) [24] is given by

ds2 ¼ �0
�
FðuÞ

�
fðuÞdt2 þXp

i¼1

dxidxiÞ
�
þ du2

FðuÞfðuÞ

þGðuÞd�2
8�p

�

e
 ¼ ð2�Þ2�p�pþ1

N
½FðuÞ�ðp�3Þ=2; FðuÞ ¼ uð7�pÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dp�pþ1

p ;

GðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp�pþ1

q
uðp�3Þ=2; fðuÞ ¼ 1�

�
u0
u

�
7�p

;

dp ¼ 27�2p�ð9�3pÞ=2�
�
7� p

2

�
; �pþ1 ¼ g2pþ1N;

(D1)

where g2pþ1 is the pþ 1-dimensional YM coupling, which,

in the bulk theory, can be regarded as specifying a bound-
ary condition for the dilaton field. The dimensionless YM
coupling, defined by

g2eff ¼ ðg2pþ1NÞup�3 ¼ ðe
NÞ2=ð7�pÞ; (D2)

is given directly in terms of the dilaton; its dependence on
u for p � 3 reflects the running of the gauge coupling. The
scalar curvature is given by

�0R ¼ 1=geff : (D3)

Since time is Euclidean, u 2 ðu0;1Þ. The smoothness
condition at u ¼ u0 relates the inverse temperature � to
u0 as follows:

�

2�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp�pþ1

p
7� p

uðp�5Þ=2
0 : (D4)

The classical action of the black Dp brane is [5,23,24]

S=N2 ¼ Cp�
ðp�3Þ=ð5�pÞ
pþ1 L1 � � �Lp�ð���ð2ð7�pÞ=ð5�pÞÞ

þHregðUÞÞ;
Cp ¼ 5� p

211�2p�ð13�3pÞ=2�ðð9� pÞ=2Þa2ð7�pÞ=ð5�pÞ
p

;

ap ¼ 7� p

4�d1=2p

;

dp ¼ 27�2p�ð9�3pÞ=2�
�
7� p

2

�
HregðUÞ

¼
�

2apffiffiffiffiffiffiffiffiffiffiffi
�pþ1

p �
2ð7�pÞ=ð5�pÞ

U7�p; (D5)

which is evaluated by expressing the on-shell action
as a regularized integral of

ffiffiffi
g

p
e�2
R over the range

u0 � u � U.
In the following, we will also be interested in AdS

solitons [22,70] which can be obtained from (D1) by
moving the coefficient fðuÞ from dt2 to one of the xi’s,
say to dx2p:

ds2 ¼ �0
�
FðuÞ

�
fðuÞdx2p þ dt2 þ Xp�1

i¼1

dxidxi

��

þ du2

FðuÞfðuÞ þGðuÞd�2
8�p

�
: (D6)

The smoothness condition at u ¼ u0 now gives a condition
analogous to (D4) where � is replaced by Lp. Thus, this

solution has a contractible xp-cycle (which wraps around a

so-called ‘‘cigar’’ geometry on the ðxp; uÞ plane) along

which the fermions must obey the antiperiodic (AP)
boundary condition.
The regularized classical action evaluated on such a

classical configuration is given by

S=N2 ¼ Cp�
ðp�3Þ=ð5�pÞ
pþ1 L1 � � �Lp�

�
�L�ð2ð7�pÞ=ð5�pÞÞ

p

þHregðUÞ
�
; (D7)

where the notations are the same as before.
In a toroidal, Euclidean, spacetime, the time direction is

on a similar footing as any other direction. Thus, the
difference between the black brane and the solitonic

35Note that our results based on the 1=D expansion disagree
with the results in [3]. Reference [3] studied the same model
(C6) by using a large mass approximation, which is supposed to
be valid if ~�1=m

3 � 1, up to three-loop order and concluded that
the confinement/deconfinement transition in this model would be
a single first-order transition. The difference would presumably
arise from the fact that the 1=D expansion employed here
evaluates the model in a nontrivial vacuum characterized by
the nonzero �, whereas the large mass analysis of [3] is per-
formed as a perturbation around the trivial vacuum. Numerical
studies analogous to [46] but performed for massive adjoint
scalars [47] should be able to provide further insight into this
issue.

PHASES OF A TWO-DIMENSIONAL LARGE-N GAUGE . . . PHYSICAL REVIEW D 84, 085007 (2011)

085007-17



solution is only in the labeling of the contractible cycle
(location of the ‘‘cigar’’ geometry). Hence, we will some-
times refer to both black branes as well as AdS solitons as
just Dp solutions. In the following sections, we will
consider different Dp solutions (with p ¼ 0, 1, 2) which
wrap on (are localized along) various cycles and, in order
to distinguish them, we will use the following notation:

DpL0ðL1;...;LpÞ denotes a Dp solution which (i) has a

contractible L0 cycle (that winds around the ‘‘cigar’’) and
(ii) wraps on the L1; . . . ; Lp cycles; this is a black brane.

Similarly, DpLpðL0;L1...;Lp�1Þ denotes an AdS soliton in

which the roles of t and xp are flipped, as in (D6).

b. Validity of supergravity

The solutions described in the previous section are
leading-order supergravity solutions. When we consider a
black Dp brane solution (D1), the gravity analysis is reli-
able, if the parameters satisfy the following conditions [51]:

(1) The typical length scale of the black Dp brane

near the horizon [see, e.g. (D3)] is given by l ¼
ð�0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dp�pþ1

p
uðp�3Þ=2
0 Þ1=2. In order to suppress stringy

excitations, we should satisfy l � ffiffiffiffiffi
�0p
. From (D4),

this condition is equivalent to

�pþ1�
3�p � 1 ðp � 5Þ: (D8)

(2) The mass of the winding mode along an Li cycle is

given by Mwi ¼ ð�0uð7�pÞ=2
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp�pþ1

p Þ1=2Li=�
0. In

order to suppress the winding mode, we must have
Mwil � 1. This condition gives

�1=2
pþ1L

ð5�pÞ=2
i � � ðp � 5Þ: (D9)

If this condition is violated and if the fermion on
the brane satisfies the periodic (P) boundary con-
dition along the Li cycle, we can perform a
T-duality along this direction and reassess the
validity of supergravity in the dual frame.36 After
the T-duality, the black Dp solution becomes a
smeared black Dðp� 1Þ brane solution, which is
composed of uniformly distributed Dðp� 1Þ
branes on the dual Li cycle [23,71,72]. Then, the
condition (D9) is replaced by ~Mwil � 1, where
~Mwi � ð�0uð7�pÞ=2

0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp�pþ1

p Þ�1=2ð2�Þ2=Li is the

mass of the winding mode on the dual cycle.
This condition gives

Li � �: (D10)

Note that the first condition (D8) does not change
under the T-duality (the value of the classical
action is also invariant).

If, instead of a black Dp brane, we consider a solitonic
solution which is obtained from the black brane by flipping
t $ xi, then the conditions for the validity of supergravity
are simply obtained by replacing � and Li in the above
conditions.
We will discuss these criteria below in some detail in the

parameter regime of interest.

2. Phase transitions of the Dp solutions

Using the on-shell classical actions (D5) and (D7), we
can determine various phase transitions [5,25,26], as we
will show now.

a. GL transition

The Gregory-Laflamme (GL) transition [49–51] was
originally found in the context of black rings in D 
 5
which were found to be unstable unless wrapped on a
sufficiently small circle. In the context of black p-branes,
the GL instability shows up as follows [23,71,72]. Suppose
a black p-brane is wrapped on a circle of length L1, along
which the fermion satisfies the periodic boundary condi-
tion. If L1 is so small that it violates (D9), we need the
T-dualized description in terms of a uniformly smeared
black (p� 1)-brane on the dual circle of length L0

1 ¼ð2�Þ2=L1. If L0
1 is large enough, the smeared black

(p� 1)-brane undergoes a GL transition leading to a black
p� 1 brane localized on the dual cycle. The transition can
be studied dynamically, as well as thermodynamically. To
study the latter, let us interpret (D5) without the regulator
term (see Eq. (9) of [24]) as the Euclidean action (above
extremality) of the smeared black (p� 1)-brane:

Sp=N
2 ¼ �Cp�

ðp�3Þ=ð5�pÞ
pþ1 L1 � � �Lp��

�½2ð7�pÞ=ð5�pÞ�:

(D11)

Here, the action is evaluated in the Dp-frame (recall that
the action is invariant under T-duality).
The value of the Euclidean action (above extremality)

for the localized black p� 1 brane solution is approxi-
mately (see below) given by37

Sp�1=N
2 ¼ �Cp�1�

ðp�4Þ=ð6�pÞ
p L2 � � �Lp��

�½2ð8�pÞ=ð6�pÞ�:
(D12)

For small enough L1 (large enough L
0
1), this is smaller than

(D11). The transition between the uniform and localized
p� 1 branes happens when (D11) equals (D12):

�

L1

¼
�
Cp

Cp�1

�ð5�pÞð6�pÞ=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pþ1L

3�p
1

q
: (D13)

36If the fermion satisfies an antiperiodic (AP) boundary condi-
tion along the Li cycle, the theory is mapped to a type 0 theory
through the T-duality. Then, the bulk theory involves a tachyon
and how the holographic description of gauge theory works in
this frame is unclear. We thank Shiraz Minwalla for pointing this
out. 37Improvements to this approximation are discussed in [71].
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Here, we have used �p ¼ �pþ1=L1. In (D12), one has used

the approximation that the horizon size is much smaller
than 1=Lp. Since this is strictly not true near the phase

transition point (where the horizon size is of the order of
1=L1), the estimate (D13) is approximate. See [5] for some
details of this approximation.

Note that there are several arguments that this transition
would be first order [5,23,51].

b. GL-type transition in the soliton sector

For bosonic theories in Euclidean spacetimes, the
� $ Lp interchange is a symmetry, provided all other radii

are left unchanged. This is a symmetry of fermionic theo-
ries as well, provided the spin structures along t and xp

respect this symmetry. Thus, if there is a GL transition
given by (D13), there must be a GL-type transition be-
tween a uniformly distributed solitonic (p� 1) brane to a
localized solitonic (p� 1) brane when 1=L1 becomes too
large. The transition is given by (D13) with a � $ Lp

interchange:

Lp

L1

¼
�
Cp

Cp�1

�ð5�pÞð6�pÞ=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pþ1L

3�p
1

q
: (D14)

c. The Scherk-Schwarz (SS) transition

This is a transition between the black p brane configu-
ration (D1) and its solitonic counterpart (D6). If we use the
same large U regulator for both the solutions, then (D5)
and (D7) can easily be compared. The regulator term is the
same in both the actions and can be ignored while compar-
ing the two. Equating the two Euclidean actions, we get the
transition temperature

� ¼ Lp: (D15)

Similarly, we can consider another solitonic solution by
replacing Lp $ Lk, if Lk is also an AP circle. Then, further

transitions will happen at � ¼ Lk and Lp ¼ Lk.

Note that this transition is also expected to be first
order [26].

3. D2 branes for various spin structures: generalities

In this section, we apply the general properties of theDp
solutions studied in the previous sections to the D2 brane
on the 3-torus: ðt; x1; x2Þ ¼ ðtþ �; x1 þ L1; x2 þ L2Þ38
and make a prediction for the phase structure of the two-
dimensional gauge theory (3). As mentioned in Sec. V, we
fix AP boundary condition for fermions along the x2 circle.
Then, there are four choices of boundary conditions for
the fermions along the t and x1 directions: (AP,AP), (AP,P),

(P,AP), (P,P), where P denotes the periodic boundary con-
dition andAPdenotes the antiperiodic one.Wewill evaluate
the phase structure of the gravitational system with these
four boundary conditions. (Since the result in the (P,AP)
case can be obtained from (AP,P) by exchanging � $ L1,
we will show the results in the (AP,P) case only.)
The order parameters of this theory are the Wilson loop

operators winding around each cycle:

TrU ¼ 1

N
TrP exp

�
i
Z �

0
A0dt

�
;

TrV ¼ 1

N
TrP exp

�
i
Z L1

0
A1dx1

�
;

TrW ¼ 1

N
TrP exp

�
i
Z L2

0
A2dx2

�
:

(D16)

If the gravity solution has a contractible cycle (i.e. it wraps
around a ‘‘cigar’’), the expectation value of the correspond-
ing Wilson loop operator is nonzero. If the solution is
localized on a cycle, then also the expectation value of
the corresponding Wilson loop operator is nonzero.
However, if the solution wraps around a noncontractible
cycle, the expectation value of the corresponding Wilson
loop operator vanishes [23].
In order to derive the phase structure corresponding to

Fig. 4, we will evaluate the phase structure of supergravity
for each boundary condition by changing � and L1 with a
fixed L2, which is related to a cutoff scale of the two-
dimensional gauge theory (3) (see footnote 20).
From now on, we use units such that �3 ¼ 1.

a. D2 on (AP,AP,AP) torus

We consider the phase structure of D2 branes on a
3-torus with (AP,AP,AP) boundary conditions. In this
case, three solutions appear: D2�ðL1;L2Þ, D2L1ð�;L2Þ and

D2L2ð�;L1Þ. (Recall the notation at the end of Sec. D 1 a.)

In this case, the theory does not have the P circle and only
the SS transition (D15) happens. The phase structure is
shown in Fig. 7.
As we have argued in Appendix D 1 b, we need to check

the validity of the gravity solutions. Let us consider the
solitonic solution D2L2ð�;L1Þ. From (D8), L2 � 1 is re-

quired (in units where �3 ¼ 1) to suppress the stringy
excitations around the tip of the cigar. We need to check
the condition related to the winding modes also. In order to

suppress the winding modes, L3=2
1 , �3=2 � L2 are required

from (D9). The phase boundary AB and BC are given by
L1 ¼ L2 and � ¼ L2, and these conditions are satisfied on
these boundaries in the large L2 case. Thus, the D2L2ð�;L1Þ
phase is always reliable, if L2 is large.
Next, we consider the black brane solution D2�ðL1;L2Þ.

From (D8), � � 1 is required. Thus, this solution is not
reliable when ��Oð1Þ. We can see that the condition
(D9) for the winding modes is satisfied in the region
surrounded by the phase boundaries and � � 1.

38The notation L1 in this section represents what is called L in
the main text.
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Therefore, the D2�ðL1;L2Þ solution is reliable in the region

indicated in Fig. 7. Similarly, the solitonic solution
D2L1ð�;L2Þ is reliable in the region indicated in Fig. 7.

Summing up these tests for the validity of the gravity
analysis, the phase structure is reliable if L2 is large and �
and L1 are above the dotted line in Fig. 7. This is, of course,
a problem, since we are interested in the results in the
L2 ! 0 limit as we mentioned in Sec. V. We will discuss
this problem in Appendix D 4.

b. D2 on (AP,P,AP) torus

In this case, four solutions appear:D2�ðL1;L2Þ,D2L2ð�;L1Þ,
D1L2ð�Þ and D1�ðL2Þ. The phase structure for large L2 is

shown in Fig. 8. The phase boundaries are given as

AB: L1 ¼
�
C1

C2

�
2
L2=3
2 ; EC: � ¼ L2;

BO: � ¼
�
C2

C1

�
3
L3=2
1 : (D17)

Note that AB is the GL-type transition (D14), BO is the GL
transition (D13) and EC is the SS transition (D15).
Through similar tests for the validity of gravity as be-

fore, we find that the gravity analysis is valid only in the
region above the dotted line in Fig. 8. (Again, the gravity
analysis in a small L2 is invalid.)

c. D2 on (P,P,AP) torus

In this case, four solutions appear: D2L2ð�;L1Þ, D1L2ð�Þ,
D1L2ðL1Þ and D0L2

. The phase structure for a large L2 is

shown in Fig. 5. The phase boundaries are given by

AB: L1 ¼
�
C1

C2

�
2
L2=3
2 ; BD: � ¼ L1;

DO: � ¼
�
C0

C1

�
5=2

L1=2
2 L1=4

1 :

(D18)

These are GL-type transitions (D15). Other lines can be
obtained by � $ L1. The gravity analysis is valid only in
the region above the dotted line in Fig. 5 for large L2.
We will adopt the phase structure in this boundary con-

clusion as a prediction for the gauge theory. The reason
will be explained in the next section.

4. Conjectured phase diagram of 2D bosonic
gauge theory

In the preceding subsections, we have obtained various
phase structures from gravity for different spin structures
(i.e., for different fermion boundary conditions). Since
these results are valid only for large L2, we need to ex-
trapolate them to small L2, where the bosonic gauge theory
should appear (see footnotes 20 and 22).
From the viewpoint of the two-dimensional bosonic

gauge theory, a holographic correspondence with the vari-
ous gravity phase diagrams described in this section is
problematic since the latter have a dependence on fermi-
onic boundary conditions, while no such dependence ob-
viously exists for the two-dimensional gauge theory (such
dependences, however, exist for the three-dimensional
SYM theory, which is more directly related to the gravity
description). Indeed one such problem was pointed out in
[67]. This argument is further developed in [68]. The argu-
ments presented in these papers indicate that the phase
transition in the bosonic gauge theory cannot be regarded
as a continuation of the SS transition of gravity. Thus, in
order to have a smooth continuation of phase boundaries
between the holographic description and the two-
dimensional gauge theory, we should avoid choosing the
(AP,AP,AP) and (AP,P,AP) boundary conditions, in which
the SS transition appear. For this reason, we choose the

FIG. 8. Phase structure of the D2 brane on T3 with (AP,P,AP)
boundary condition for large L2. The gravity analysis is reliable
only in the region above the dotted line.

FIG. 7. Phase structure of the D2 brane on T3 with (AP,AP,AP)
boundary condition for large L2. The gravity analysis is valid
above the dotted line.
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(P,P,AP) case to read off the predicted phase structure from
gravity.

Note that all the transitions in the (P,P,AP) case are of
the GL-type, and are supposed to be first order phase
transitions [5,23,51]. In this case, in addition to the
uniformly distributed solitonic (p� 1) brane and local-
ized solitonic (p� 1) brane discussed in D 2 b, nonun-
iformly distributed solitonic (p� 1) brane, which is

always unstable, appears. These three solutions would
correspond to the uniform, nonuniform and gapped dis-
tribution in the gauge theory (see Fig. 2). Indeed, the
free energies of these gravity solutions are expected to
satisfy a similar relation to those in the gauge theory
shown in Fig. 3 through numerical study in general
relativity [53]. This fact also supports our prediction
from the gravity analysis.
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