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Superstring theory and other supersymmetric theories predict the existence of relatively light, weakly

interacting scalar particles, called moduli, with a universal form of coupling to matter. Such particles can

be emitted from cusps of cosmic strings, where extremely large Lorentz factors are achieved momentarily.

Highly boosted modulus bursts emanating from cusps subsequently decay into gluons; they generate

parton cascades which in turn produce large numbers of pions and then neutrinos. Because of very large

Lorentz factors, extremely high energy neutrinos, up to the Planck scale and above, are produced.

For some model parameters, the predicted flux of neutrinos with energies * 1021 eV is observable by

JEM-EUSO and by the future large radio detectors LOFAR and SKA.
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I. INTRODUCTION

Cosmic strings could be formed as topological defects in
the early universe. They are predicted in a wide class of
particle physics models and can produce a variety of ob-
servational effects. These include gravitational lensing,
linear discontinuities in the cosmic microwave back-
ground, and gravitational radiation, both in the form of a
stochastic background and localized bursts. (For a review
of cosmic strings, see, e.g., [1,2].)

Strings predicted in many grand unified models respond
to external electromagnetic fields as thin superconducting
wires [3]. As they move through cosmic magnetic fields,
such strings develop electric currents. Oscillating loops of
current-carrying string emit highly boosted charged parti-
cles from cusps—short segments where the string velocity
momentarily gets very close to the speed of light. The
emitted particles and their decay products can then be
observed as high-energy cosmic rays [4] and gamma-ray
bursts [5–7].

A phenomenon closely related to string superconductiv-
ity is the development of a bosonic condensate around the
string core [3]. For example, a condensate of standard
model Higgs particles could form around strings in some
models. The Higgses would then be copiously produced at
cusps, and their decay products could reach the Earth as
cosmic rays [8].

Here we shall discuss an alternative mechanism of cos-
mic ray production, which does not assume string super-
conductivity or Higgs condensates. It relies on the
existence of moduli—relatively light, weakly coupled sca-
lar fields, predicted in supersymmetric particle theories,
including string theory. Moduli would be copiously radi-
ated by oscillating loops of string at early cosmic times,

when the loops are smaller than the modulus Compton
wavelength, L < 1=m, and their frequency of oscillation
is greater than the modulus mass. The emitted moduli may
affect the big bang nucleosynthesis as they decay into
photons and baryons, and contribute to dark matter and to
diffuse gamma-ray background, resulting in stringent con-
straints on both the cosmic string tension and the modulus
mass, when moduli are assumed to have gravitational-
strength couplings to matter [9–12]. However, the cou-
plings may in fact be much stronger, in which case the
constraints from moduli radiation may be significantly
relaxed [12]. Such strongly coupled moduli appear to be
quite generic in string theory landscape [13–18], and this
case is of particular interest for production of extremely
high energy (EHE) cosmic rays and neutrinos.
At later times, moduli can only be emitted from cusps,

resulting in sharp bursts of high-energy moduli. Eventually
moduli decay into standard model particles, and their
decay products can be observed as cosmic rays with
energies above 1021 eV.
The great interest of cosmic strings, and more generi-

cally topological defects, in high-energy neutrino astron-
omy is based on tremendous energies of neutrinos
accessible for these sources. While astrophysical sources
can accelerate particles to energies 1021–1022 eV at most,
topological defects can produce particles, including neu-
trinos, up to the Planck scale and above. Many observa-
tional methods of neutrino detection, in particular, radio
observations and observation of fluorescent light from
space, are possible only above �1020 eV. Detection of
such high-energy neutrinos can by itself be considered as
a signature of neutrinos from topological defects or other
top-down scenarios. The production of EHE particles is a
very generic property of topological defects, cosmic
strings, in particular, but large fluxes of such particles are
produced only in exceptional cases [4,19–22].
In this paper, we shall treat the modulus mass and

coupling constant and the string tension as free parameters.
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We shall estimate the EHE neutrino flux resulting from
modulus decays and indicate some values of the parame-
ters that can yield observable fluxes. The paper is organ-
ized as follows. In Sec. II, we review modulus emission
from cosmic string cusps (a more detailed derivation is
given in the Appendix). In Sec. III, we discuss modulus
decay, EHE neutrino production, including beaming, and
propagation in the universe. In Sec. IV, we review the size
distribution of cosmic string loops and calculate the rate of
bursts and the diffuse flux of EHE neutrinos. We also
discuss here the upper bound on the neutrino flux, resulting
from the diffuse gamma-ray background observations. At
the end of that section we give two illustrative examples
of neutrino fluxes for different values of the model para-
meters. Finally, we discuss EHE neutrino detection.
Conclusions are presented in Sec. V.

II. MODULUS RADIATION FROM STRINGS

The effective action for a modulus field � interacting
with a cosmic string of tension � is given by [9]

S ¼ �
Z

d4x

�
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2
ðr�Þ2 þ 1

2
m2�2 þ

ffiffiffiffiffiffiffi
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where � is the determinant of the induced world sheet
metric �ab ¼ g��X

�
;aX�

;b, X�ð�; �Þ is the string world

sheet, T�
� is the trace of the energy momentum tensor of

the string, � is the modulus coupling constant, m is the
modulus mass, and mp is the Planck mass. For �� 1, the

modulus coupling to matter is suppressed by the Planck
scale. Here, we treat � as a free parameter and are mainly
interested in � � 1. Then, the mass scale characterizing
the modulus interactions is�mp=� � mp. Values as large

as �� 1015 have been discussed in the literature [17].
The modulus field equation has the form
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with
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� ðxÞ ¼ �2�
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	4ðx� � X�ð�; �ÞÞ: (3)

The power spectrum of modulus radiation from an os-
cillating loop of string can be decomposed in Fourier
modes as [9]

dPn

d�
¼ G�2

2�
!nkjTðk; !nÞj2; (4)

where G is the Newton’s constant, !n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
¼

4�n=L, L is the length of the loop,

Tðk; !nÞ ¼ � 4�

L

Z
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	4ðx� � X�ð�; �ÞÞeik�X�ð�;�Þ;

(5)

and k� ¼ ð!n;kÞ.
We shall be interested in the modulus emission from

large loops of string, having length L � m�1. In this case,
the characteristic frequency of loop oscillation is
!� 1=L � m, so modulus production is suppressed, ex-
cept in the vicinity of cusps, where extremely high fre-
quencies can be reached in a localized portion of the loop
for a brief period of time. Lorentz factors greater than1 �
are reached in a fraction of the loop of invariant length
�L� L=�.
The spectrum of resulting particle bursts can be found by

expanding X�ð�; �Þ near a cusp [8,10].2 One finds that the
number of moduli emitted in a single burst with momenta k
in the interval dk (in the center of mass frame of the loop)
is given by

dNðkÞ � �2G�2L2=3k�7=3dk: (6)

This distribution applies for k > kc, where

kc � 1

4
m

ffiffiffiffiffiffiffiffi
mL

p
: (7)

At smaller k the distribution is strongly suppressed,
dN � 0.
The dominant contribution to the modulus emission

comes from the lower momentum cutoff kmin � kc, so the
total number of moduli per burst is

N � �2G�2

m2
: (8)

The particles come from a portion of the loop that
reaches Lorentz factors in excess of

�c � kc=m� 1

4

ffiffiffiffiffiffiffiffi
mL

p
; (9)

and are emitted into a narrow opening angle #c around the
direction of the string velocity v at the cusp,

#c � ��1
c � 4ðmLÞ�1=2: (10)

The total power of modulus radiation can be similarly
calculated as

Pm � �2G�2L�1=3k�1=3
c � �2G�2ffiffiffiffiffiffiffiffi

mL
p : (11)

1From here on, and until Appendix, we use the notation � only
for the Lorentz factor.

2A detailed analysis of particle emission from cusps is given in
the Appendix, confirming the results obtained in [8,10].
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The loops also radiate gravitational waves with the
power

Pg � �G�2; (12)

where � � 50 [1]. Pg � Pm when L� L� which is given

by

L� � ��2�4m�1: (13)

The lifetime of a loop which mainly radiates gravitation-
ally is

�g ��L

Pg

� L

�G�
; (14)

which implies that the characteristic size of the smallest
(and most numerous) loops surviving at time t is

Lg
min � �G�t: (15)

On the other hand, modulus radiation dominates when
Pg & Pm and the loop lifetime is given by

�m ��L

Pm

� L3=2m1=2

�2G�
: (16)

The corresponding minimum loop size at time t is

Lm
min � �4=3ðG�Þ2=3m�1=3t2=3: (17)

The transition between the two regimes occurs at

t� � �4

�3G�m
: (18)

Therefore, the minimum loop length is given by (15) for
t * t� and by (17) for t & t�. The redshift corresponding to
t� is given by

z� � �2��8=3ðG�Þ2=3ðmt0Þ2=3; (19)

numerically

z� � 400m2=3
5 ��8=3

7 �2=3
�20; (20)

where

m5¼m=105 GeV; �7¼�=107; ��20¼G�=10�20;

(21)

and the fiducial values have been chosen anticipating the
results in Sec. IV.

III. NEUTRINO PRODUCTION AND
PROPAGATION

In this section we address some problems in neutrino
physics relevant for future consideration, namely, the neu-
trino horizon, the energy spectrum of neutrinos produced
by a modulus decay, the boost of this spectrum by the cusp
Lorentz factor, and some others.

We start with a note about accuracy of our calculations.

The main purpose of our work is a discussion of the
principle features of the phenomenon, i.e., EHE neutrino
production by moduli from cosmic strings, not an accurate
numerical evaluation of the neutrino fluxes and their de-
tection rates. In particular, our aim is to express the results
in the form of analytical formulas, so that the dependence
on input parameters can be easily seen. For this purpose we
make the following simplifying assumptions.
We use the cold dark matter cosmological model with

� ¼ 0 and �m þ�r ¼ 1 and use H0 ¼ 72 km=sMpc,
t0 ¼ 4:3� 1017 s, teq ¼ 2:4� 1012 s, 1þ zeq ¼ 3200,

the scale factor in the radiation- and matter-dominated

eras are arðtÞ / t1=2 and amðtÞ / t2=3. The corresponding

time-redshift relations are, respectively, given by ðt=t0Þ ¼
ð1þ zeqÞ1=2ð1þ zÞ�2 and ðt=t0Þ ¼ ð1þ zÞ�ð3=2Þ.
For convenience of calculations we assume that at the

decay of a modulus at rest the neutrino spectrum is / E�2,
while in reality this spectrum is not power law and is
approximately proportional to E�1:9 only for a very large
mass of the decaying particle.

A. Neutrino horizon

As they propagate through the universe, the ultrahigh-
energy (UHE) neutrinos �i (or antineutrino ��i) with i ¼ e,
�, � are absorbed or lose energy in the following three
reactions [23]:

ðiÞ ��i þ �i ! q� þ �q�; ðiiÞ �i þ ��i ! lþ �l;

ðiiiÞ �i þ ��j ! �i þ ��j; (22)

where q ¼ u�, d�, s�, c�, b� are quarks with � ¼ 1, 2, 3
being color indices and l ¼ e, �, � are lepton flavors.
Reactions (i) include only s channel and (ii) may include
both s and t channels. For a rough estimate we can use the
following approximation for the cross section,

�ðsÞ �
( ðN=�ÞG2

Fs at s < m2
W

ðN=�ÞG2
Fm

2
W at s > m2

W;
(23)

where GF ¼ 1:17� 10�5 GeV�2 is the Fermi constant,
sðzÞ ¼ 2E�m�ð1þ zÞ is the center of mass energy squared
at redshift z, E� is the neutrino energy at the present epoch,
m� � 0:1� 0:2 eV is the assumed neutrino mass, and
N � 10� 15.
UHE neutrinos are absorbed or lose energy in collisions

with relic background neutrinos whose space number
density is n� ¼ 56ð1þ zÞ3 cm�3 and kinetic energy is

� ¼ 3:15Tð1þ zÞ ¼ 5:29� 10�4ð1þ zÞ eV.
The neutrino horizon, i.e., the maximum redshift z�,

from which a neutrino with the observed energy E� can
arrive, is calculated asZ z�

z¼0
dt��ðzÞn�ðzÞ ¼ 1; (24)

where
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dt ¼ 3

2
t0ð1þ zÞ�5=2dz: (25)

At the highest neutrino energies, when �� �max �
ðN=�ÞG2

Fm
2
W , z� � 1:5� 102. At energies below

2� 1011 GeV,

z� � 2:5� 102ðE=1011 GeVÞ�2=5: (26)

For energies of interest in this paper we shall use z� � 200
at E� * 1020 eV. Detectable UHE and EHE neutrinos are
produced in the matter-dominated epoch.

It is interesting to note that the modulus-string model
allows us to probe the earliest universe with the help of
EHE neutrinos; e.g., for superconducting strings [4] the
maximum redshift is zmax � 3.

B. Modulus decay and neutrino spectrum

The rate of decay of a modulus into the standard model
(SM) gauge bosons can be estimated as

�0 � nSM

�
�

mp

�
2
m3; (27)

where nSM ¼ 12 is the total number of spin degrees of
freedom for all SM gauge bosons, m is the modulus mass,
and we assume interaction of the form [14]

L int � �

mp

�F��F
��: (28)

The mean lifetime of the modulus in its rest frame is then

�0 � 8:1� 10�17m�3
5 ��2

7 s: (29)

For a wide range of parameters m5 and �, the lifetimes of
moduli are short even after a large Lorentz boost. In our
main scenario, the neutrino-producing moduli are born
within the neutrino horizon and decay almost momentarily
there.

However, in principle the redshifts z > z� can also con-
tribute to the neutrino flux at z ¼ 0, if the lifetime of
boosted moduli is long and they can decay at z < z�. In
the analysis below we argue that such a scenario is
disfavored.

The lifetimes of moduli emitted from cusps are boosted
by large Lorentz factors. A modulus emitted with a Lorentz
factor �0 ¼ k=m at redshift z and decaying at redshift zd
has a lifetime

�ðzÞ � �0�0

1þ zd
1þ z

: (30)

In order for neutrinos to reach the Earth, they should be
produced within the neutrino horizon at redshifts zd & z�.
Moduli emitted from cusps at z > z� can therefore yield
observable events only if they have large enough lifetime,
allowing them to survive until they reach z�. This gives the
condition

�ðzÞ � �0�0

1þ z�
1þ z

* tðz�Þ � t0ð1þ z�Þ�3=2; (31)

where in the last step we used the fact that in the energy
range of interest z� & zeq.

For z > z� and using m5 * 1 and �7 * 1 (which is
necessary for detectable neutrino flux; see Sec. IV), we
obtain

�0 *
t0=�0

ð1þ zdÞð1þ z�Þ1=2
� 3:8� 1032

1þ zd
; (32)

which is too large at any zd.
In what follows we shall consider only cusp events

occurring at z < z� < zeq. There are no restrictions on the

modulus lifetime in this case, except that it should be short
enough for a sufficient fraction of moduli to decay before
they reach the Earth. This is always satisfied in the
parameter range of interest.
The decay channel relevant for the neutrino production

is the decay into gluons, via the modulus-gluon interaction
of the form (28). The primary gluons from the modulus
decay initiate the quark-gluon cascade, which turns into
hadrons, mostly in pions, and then to neutrinos.
To simplify calculations and analysis, we shall assume

the neutrino production spectrum dN=dE / E�2, close to
the power-law approximation E�1:9 obtained for a large
mass of the decaying particle using Monte Carlo simula-
tion and the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) method [24].
The neutrino spectrum from a modulus at rest is then

dN�
�

dE�
� ��

�ðE�; mÞ � 1

2
f�b�

m

E2�
; (33)

where m is modulus mass, E� is neutrino energy, b� is
given in terms of the ratio of maximum "max� � 0:1m and
minimum "min� neutrino energy,

b� ¼ ½lnð"max� ="min� Þ	�1; (34)

and f� � 1 and 1=2 are the fractions of energy transferred
from the modulus to pions and from pions to neutrinos,
respectively.
The spectrum of low-energy neutrinos is a model-

dependent feature, but generically suppression of this spec-
trum is provided by suppression of soft gluon emission due
to the coherence effect in the parton cascade. It results in
the Gaussian peak in the spectrum of pions, parents of
neutrinos. We describe effects of low-energy suppression
of the neutrino spectrum introducing formally the energy
"min� in Eq. (34), where the suppression starts, and refer to it
as ‘‘the minimal energy,’’ Determining the value of "min�
would require numerical calculations. Here, we shall
parametrize

" ¼ 
min� =1 GeV: (35)
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C. Lorentz boost and beaming

Emerging from a cusp segment, a modulus obtains very
large Lorentz factor � corresponding to the point of exit.
The typical Lorentz factor, as it is calculated below,
reaches �� 1012 � 1013. The neutrino energy E� in the
modulus rest system is boosted as

E ¼ �E�ð1þ � cos#�Þ; (36)

where � ¼ v=c, and #� is the angle between the directions
of neutrino motion and of the boost in the rest frame of the
modulus.

First of all we calculate how the neutrino spectrum (33)
changes under the transformation (36). For this we use the
conservation of the number of particles before and after the
Lorentz boost:

dN�ðE�; #�Þ ¼ 1

2
b�m

dE�
E2�

d��
4�

¼ dNðE; E�Þ: (37)

Using

d�� ¼ 2�d cos#� ¼ 2�
dE

��E�
; (38)

we obtain in terms of the new variables E and E�

d2N

dEdE�
¼ b�

m

4��E3�
: (39)

Integrating with respect to dE� we have

dN

dE
¼ b�

m

8��

1

E2
�minðEÞ

; (40)

where the minimum neutrino energy for a fixed E is

E�minðEÞ¼
�
E=½�ð1þ�Þ	 if E
�ð1þ�Þ"min�
"min� if E��ð1þ�Þ"min� ;

(41)

Finally, we obtain for � � 1 and for decay at epoch z

dN

dE
� ��ðE; k; zÞ ¼ 1

2

b�
1þ z

k

E2
; (42)

if the neutrino energy at the present epoch is E 
 �ð1þ
�Þ"min� . For E � �ð1þ �Þ"min� , dN=dE does not depend
on the neutrino energy E:

dN

dE
� ��ðE; k; zÞ ¼ 1

8

b�
1þ z

k

�2

1

ð"min� Þ2 : (43)

In both formulas above, k ¼ �m is the modulus energy.
We now briefly discuss the effect of beaming. Strong

beaming of the produced particles is a remarkable feature
of the cusp models, which provides interesting observatio-
nal consequences. For moduli with the range of masses
considered here the beaming is very strong (see Sec. II).
When gravitational radiation dominates, the Lorentz factor

at z ¼ 0 can be estimated as �c � 4:5� 1013m1=2
5 �1=2

�20.

When modulus radiation dominates, the Lorentz factor at

z� is �c ¼ �2=4� ¼ 5� 1011�2
7. As a typical Lorentz

factor for neutrino production one may consider that at

neutrino horizon z� � 200, �c ¼ 8:5� 1011m1=2
5 �1=2

�20.

In the frame where the modulus is at rest, neutrinos are
emitted isotropically. After a Lorentz boost, most of them
move within a narrow cone with # � 1=� in the direction
of the boost, with energies E� �E�. However, neutrinos
which are emitted in the rest frame within a narrow cone
with #0�c ¼ 1=� in the backward direction are moving after
the boost within a wide angle # � �=2 in the direction
opposite to the narrow high-energy jet and typically have
very low energies E� E�=�. The total number of these
neutrinos is 4�2 times smaller than that in the high-energy
jet, and they are undetectable because of their small num-
ber and low energies. The typical neutrino energies in high-
energy beam is E� �E�, but low-energy neutrinos with
E� E�=� are also present there.
Formally, the minimum neutrino energy is extremely

low, E� "min� =�, but the number of such neutrinos is very
small. However, when the neutrino spectrum is changing
fromE�2 at high energies to dN=dE / const, as in Eq. (43),
the detectability of neutrinos is sharply decreased, and thus
Emin � �ðzÞ
min� can be regarded as an effective low-energy
end of the spectrum at epoch z. To estimate the low-energy
spectrum cutoff for neutrinos generated at epoch z� � 200
and observed now, we use the parametrization (35) and our

estimate for the Lorentz factor at z� � 200, �c ¼
8:5� 1011m1=2

5 �1=2
�20. Taking into account the redshift

of the neutrino energy, we find Emin4:3�
109
m1=2

5 �1=2
�20 GeV. This estimate demonstrates the re-

markable feature of our model: the predominant generation
of the highest-energy neutrinos. Amore realistic estimate of
Emin for the diffuse neutrino flux will be made in Sec. IVC.
EHE neutrinos propagate as a jet in a cone with an

opening angle # � 1=�. The duration of the neutrino pulse
is very short, �� L=�3, and all neutrinos reach the detector
almost simultaneously, due to the smallness of the neutrino
mass. The effective area illuminated by arriving neutrinos is
much larger than the area controlled by the detector, but the
simultaneous appearance of two to three showers in the field
of view of a large detector is possible for some parameter
values (see [4] for discussion and calculations).
Beaming is a property of all particles emitted from a

cusp, in particular, gamma rays. In some models part of
observed gamma-ray bursts may be produced by cosmic
strings [6]. Since the total number of strings in the Milky
Way is tremendously large (N � 109), one may expect that
UHE gamma-ray bursts from the Milky Way may be ob-
servable. In fact, the rate of predicted bursts is too strongly
suppressed by the beaming factor �=4� ¼ 1=ð4�2Þ to be
detectable. The backward component is distributed within
a wide solid angle and is not suppressed by this factor, but
the total number of photons and their energies are too small
for detection.
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IV. NEUTRINO BURSTS FROM MODULI

A. Loop distribution

The predicted flux of EHE neutrinos depends on the
typical length of loops produced by the string network.
The typical loop sizes have been a subject of much recent
debate, with different simulations [25–32] and analytic
studies [33,34] yielding different answers. Here we shall
adopt the picture suggested by the largest and, in our view,
the most accurate string simulations performed to date
[32]. According to this picture, the characteristic length
of loops formed at cosmic time t is given by the scaling
relation

L� �t; (44)

with �� 0:1.
The number density of loops with lengths in the interval

from L to Lþ dL can be expressed as nðL; tÞdL. Of great-
est interest to us are the loops that formed during the
radiation era (t < teq) and still survive at t > teq. The

density of such loops is given by

nðL; tÞdL� p�1ð�teqÞ1=2t�2L�5=2dL; (45)

where p is the string reconnection probability and  � 16
is the parameter characterizing the density of infinite
strings with p ¼ 1, �1 ¼ �=t2.

The dependence of the loop density on p is somewhat
uncertain and can only be determined by large-scale nu-
merical simulations. Here we have adopted the p�1 depen-
dence suggested by simple arguments in, e.g., [35,36]. The
reconnection probability is p ¼ 1 for ordinary cosmic
strings. Its value for F- and D-strings of superstring theory
has been estimated as [37]

10�3 & p & 1: (46)

The distribution (45) applies for L in the range from the
minimum length Lmin to Lmax � �teq. The lower cutoff

Lmin depends on whether the energy dissipation of loops is
dominated by gravitational or by modulus radiation. It is
given by (15) for z < z� and by (17) for z� < z < zeq, with

z� from Eq. (20). For z� > zeq, the dominant energy loss is

gravitational radiation and Eq. (15) for Lmin applies in the
entire range of interest.

The string motion is overdamped at early cosmic times,
as a result of friction due to particle scattering on moving
strings. The overdamped epoch ends at [1]

tdamp � ðG�Þ�2tp; (47)

where tp is the Planck time. In the above analysis we have

assumed that loops of interest to us are formed at t > tdamp.

The corresponding condition is

LminðtÞ * �tdamp: (48)

This bound assumes that the strings have non-negligible
interactions with the standard model particles, so it may

not apply to F- or D-strings of superstring theory. In any
case, we have verified that (48) is satisfied for parameter
values that give a detectable flux of neutrinos.

B. Gravity- and moduli-dominated regimes:
Restrictions imposed by z�

The value of z� given by Eq. (20) marks the boundary
between two regimes of string evolution. In the first re-
gime, at z < z�, the string energy loss is dominated by
gravitational radiation. This includes the entire relevant
range of z for z� > z� and the range 0 � z � z� for
z� < z�. We shall call it the gravity-dominated regime.
The second regime is dominated by the modulus radia-

tion; we shall call it the moduli-dominated regime. It
corresponds to the redshift interval z� � z � z� and exists
only when z� < z�.
It is often convenient to perform the calculations for the

fixed value of z�, considering it as a free parameter. In this
case the space of three physical parameters �7, m5, and �

is restricted by Eq. (20) as 400��8=3
7 m2=3

5 �2=3
�20 ¼ z�, which

we will use in the form

��20 ¼ ðz�=400Þ3=2�4
7m

�1
5 : (49)

Then our calculated quantities, such as neutrino fluxes and
characteristic energies, will depend on two parameters, �7

and m5, and the fixed value of z�.
The value of fixed z� characterizes ‘‘the model.’’ One

should distinguish two major classes of models: with high
z� > z�, which corresponds to the gravity-dominated re-
gime, and with low z� < z�, which includes both
the gravity-dominated regime at 0 � z � z� and the
moduli-dominated regime at z� � z � z�.

C. Neutrino flux

As we argued in Sec. III B, the neutrino-producing
moduli are born and decay within the neutrino horizon
at z � z�. We shall first consider the high z� models with
z� > z� (gravity-dominated regime) and then study the
case z� < z�, which includes both the moduli-dominated
regime at z� � z � z� and the gravity-dominated regime
at 0 � z � z�.
The neutrino flux can be most generally calculated as

J�ðE; zÞ ¼ 1

4�

Z dVðzÞ
1þ z

d _NbdN
b
XðkÞ

�k

4�

1

�kr
2ðzÞ��ðE; z; kÞ;

(50)

where the proper volume for the matter-dominated epoch is

dVðzÞ ¼ 54�t30½ð1þ zÞ1=2 � 1	2ð1þ zÞ�11=2dz; (51)

the rate of bursts is d _Nb ¼ nðLÞdL=ðL=2Þ with nðLÞdL
being the number density of loops with length L in the
interval dL [see Eq. (45)], the number of moduli dNb

X

emitted in a burst with momenta k in the interval dk is
given by Eq. (6),�k=4� is the probability that a randomly
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oriented burst is directed to the observer, �kr
2ðzÞ is the

area of the irradiated spot at the observer’s location, and
��ðE; z; kÞ is the spectrum of neutrinos from decay of a
modulus with momentum k, given by Eqs. (42) and (43).

Integration in Eq. (50) goes over k, L, and z. For inte-
gration over k and L only lower limits are essential, and

they are given by kmin ¼ m
ffiffiffiffiffiffiffiffi
mL

p
and Lmin from Eq. (15) or

Eq. (17) for the gravity-dominated and moduli-dominated
regimes, respectively. In the case z� > z�, we have zmax ¼
z�, while zmin is determined by the rate of bursts or by
minimum energy of neutrino EminðzÞ at epoch z as ex-
plained below.

Consider first the limit zmin imposed by the rate of bursts.
The average rate of bursts _Nbð<zÞ that occur in the redshift
interval between 0 and z is a growing function of z, and we
can define zb as the redshift at which this rate is a few bursts
per year. No bursts will be detected from z � zb, so we
should introduce a lower cutoff of z integration at zmin ¼ zb.
The rate of burst _Nb is calculated in Sec. IVD and zb is
found to be small in the parameter range that we are con-
sidering here. Hence, the condition z > zb does not yield a
significant constraint for the z integration in Eq. (50).

Another constraint to consider is that the energy
E of neutrinos should be above the minimal energy,

E> EminðzÞ ¼ �cðzÞ"min� =ð1þ zÞ, where �cðzÞ ¼ 1
4 �

½mLminðzÞ	1=2 is the characteristic Lorentz factor for loops
of minimal length LminðzÞ at epoch z. For the gravity-
dominated regime we are considering here

�cðzÞ ¼ 4:5� 1013m1=2
5 �1=2

�20ð1þ zÞ�3=4: (52)

To proceed, it will be convenient to use z� in place of the
string tension � as a free parameter. With the aid of
Eq. (49) we have

EminðzÞ ¼ E0�
2
7ðz�=z�Þ3=4ð1þ zÞ�7=4; (53)

where

E0 ¼ 2:7� 1013" GeV; (54)

and " is the parametrization factor introduced in Eq. (35).
The lower bound of z integration zmin can now be found as
the value of z for which EminðzÞ ¼ E,

1þ zminðEÞ ¼ ðE0=EÞ4=7�8=7
7 ðz�=z�Þ3=7: (55)

Integrating Eq. (50) over z from zminðEÞ to z�, since we
assumed above z� > z�, we obtain

E2J�ðEÞ¼2:5�10�9p�1�2
7m

�1=2
5

�
z�
200

�
1=2

�
�
1�

�
1þzminðEÞ

1þz�

�
1=2

�
GeV=cm2ssr: (56)

The calculated flux for a ‘‘normalizing’’ set of parame-
ters p ¼ 1 (ordinary strings) and �7 ¼ m5 ¼ z�=z� ¼ 1 is
shown in Fig. 1 by curve ‘‘theor. 3.’’ This flux is low and
detectable only by SKA. The largest flux in Fig. 1 is

presented by curve ‘‘theor. 1’’ for the parameters p ¼ 1,
�7 ¼ 2, m5 ¼ 0:1, z�=z� ¼ 1. It is close to the upper limit
shown by curve ‘‘E�2 cascade,’’ and is detectable by JEM-
EUSO, LOFAR, and SKA. Here and everywhere below we
assume " ¼ 1.
The maximum energy of neutrinos is determined by

Emax � 2�
max� at generation and can be extremely large,
but the flux of these neutrinos is suppressed as E�2.
We shall now consider the low z� models with z� � z�,

and calculate first the neutrino flux generated in the
redshift interval z� � z � z�, where energy losses are
moduli-dominated. Then we calculate flux in the interval
0 � z � z�, where the gravitational radiation dominates.
For the interval z� � z � z� and fixed z�, the neutrino

flux is calculated using Eq. (50) and the parameter restric-

tion in the form �2=3
�20 ¼ ðz�=400Þ�8=3

7 m�2=3
5 . As a result

we have

FIG. 1 (color online). Calculated neutrino fluxes compared
with existing upper limits, the Antarctic Impulse Transient
Antenna–II (ANITA-II), Radio Ice Cerenkov Experiment
(RICE), ANITA 08, and with sensitivities of projects, Japanese
Experiment Module–Extreme Universe Space Observatory
(JEM-EUSO), Low Frequency Array (LOFAR), and Square
Kilometer Array (SKA). Line ‘‘E�2 cascade’’ presents the upper
limit for cosmogenic neutrinos [40]. Curve ‘‘theor. 3’’ gives the
predicted neutrino flux for the gravity-dominated regime with a
normalizing set of parameters p ¼ 1 (ordinary strings), and
�7 ¼ m5 ¼ z�=z� ¼ 1. This flux is detectable only by SKA.
Curve ‘‘theor. 2’’ corresponds to the superstring-motivated ex-
ample in the gravity-dominated regime (see Sec. IV F) with p ¼
1, z�=z� ¼ 1, �7 ¼ 3, and m5 ¼ 4. This flux is detectable by

SKA and LOFAR. Increasing further the product �2
7m

�1=2
5 the

flux can be made detectable by JEM-EUSO, though increasing
of �7 should be limited, because of increasing of Emin due to this
factor. The curve ‘‘theor. 1’’ with parameters p ¼ z�=z� ¼ 1,
�7 ¼ 2, and m5 ¼ 0:1 gives the flux detectable by all three
future instruments SKA, LOFAR, and JEM-EUSO. In the case
of the moduli-dominated regime with parameters considered in
Sec. IVG as �7 ¼ 2, m5 ¼ 0:1, and z� ¼ 100, neutrino flux
is observable by all three detectors, SKA, LOFAR, and
JEM-EUSO.
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E2J�ðEÞ ¼ 1

2
Kp�1�2

7m
�1=2
5 ð1þ z�Þ

Z z�

zminðEÞ
dzð1þ zÞ�3=2;

(57)

with K ¼ 1:8� 10�10 GeV=cm2 s sr.
The lower limit of integration in Eq. (57) is obtained as

above from EminðzÞ ¼ �cðzÞ"min=ð1þ zÞ. Using the condi-
tion E 
 EminðzÞ and zmin 
 z� one obtains

zminðEÞ ¼

8>>>><
>>>>:
z� at E 
 ~Emin

ðE=E0Þ�2=3�4=3
7 z1=3� at Emin � E � ~Emin

z� at E � Emin;

(58)

with Emin ¼ 1:3� 1018"�2
7ðz�=50Þ1=2 eV, ~Emin ¼

1� 1019"�2
7ð50=z�Þ2 eV, and E0 ¼ 5� 1020" eV.

Finally we have

E2J�ðEÞ ¼ Kp�1�2
7m

�1=2
5

1þ z�
ð1þ z�Þ1=2

��
1þ z�
1þ zmin

�
1=2 � 1

�
:

(59)

Using in Eq. (59) zminðEÞ ¼ z� at E 
 ~Emin [see Eq. (58)]
one finds the high-energy (HE) asymptotic of the flux in the
moduli-dominated regime

E2J�ðEÞ¼1:8�10�10p�1�2
7m

�1=2
5 ð1þz�Þ1=2

�
�
1�

�
1þz�
1þz�

�
1=2

�
GeVcm�2 s�1 sr�1; (60)

valid at E * ~Emin.
We have to add also the neutrino flux generated in the

interval 0 � z � z� where the gravitational energy losses
dominate. In this case Lmin is given by Eq. (15). For the HE
asymptotic one finds

E2J�ðEÞ ¼ 1:8� 10�10p�1�2
7m

�1=2
5 ð1þ z�Þ1=2

� GeV cm�2 s�1 sr�1: (61)

For an easily understandable reason, the HE asymptotic

here is ðz�=z�Þ1=2 lower than in the case z� > z� given by
Eq. (56). Less trivial is the coincidence of the HE asymp-
totic in the gravitational regime ð0; z�Þ given by Eq. (61)
and in the moduli-dominated regime ðz�; z�Þ given by
Eq. (60). It is explained by the fact that dominant contri-
butions in both cases are given by epochs with redshift z�.
The general conclusion about neutrino production is there-
fore increasing the flux with growth of z� until it reaches
z�. Thus, the high z� models predict the largest neutrino
fluxes.

Apart from this, more efficient neutrino detection in high
z� models, follows from a lower cutoff energy Emin.
Indeed, the minimal energy of neutrinos for both regimes
ð0; z�Þ and ðz�; z�Þ is determined by the same expression

Eminðz�Þ ¼ �cðz�Þ
1þ z�

"min� ¼ 1

4

�2

�

"min�
1þ z�

; (62)

while for the gravity-dominated regime with z� > z� it is
determined by z� as

Eminðz�Þ ¼ �cðz�Þ
1þ z�

"min� : (63)

Increasing z� in Eq. (62) we decrease Emin, which is
favorable for detection by JEM-EUSO.
One may also see that the moduli-dominated regime

gives a subdominant effect as compared with the gravity-
dominated one at z� > z�.

D. The rate of bursts

The rate of bursts is not a physically measured quantity,
but it can serve as an indicator of detectability of the burst
radiation.
The rate of cusp bursts with their cones of radiation

directed to the observer is given by

_N b ¼
Z dVðzÞ

1þ z

nðL; zÞ
L=2

dL
�

4�
; (64)

where dVðzÞ and nðLÞdL are the same as in Eq. (50). The
quantity �=4� gives the probability for the observer to be
located within the cone of the cusp radiation. Such a
location does not guarantee detection of this radiation,
because the area of irradiated spot �r2 is much bigger
than the size of the solar system, but a too low rate of bursts
means that the signal is undetectable. To calculate � �
�#2 we use # � ðkcLÞ�1=3 [see the discussion above
Eq. (A23) in the Appendix for details].
We calculate the rate of bursts for z < z�, when gravi-

tational radiation dominates. The rate integrated from
z ¼ 0 up to redshift z is given by

_Nbð� zÞ ¼ 54�

7
24=3p�1�1=2

ðteq=t0Þ
ð�G�Þ7=2

1

mt20

IðzÞ ¼ 1:1� 107��7=2
�20 m�1

5 IðzÞ yr�1; (65)

where

IðzÞ ¼
Z z

0
dz0½ð1þ z0Þ1=2 � 1	2ð1þ z0Þ7=4: (66)

Numerical values of IðzÞ are shown in Table I.
In Sec. IVC zmin � zb is defined from condition _Nbð�

zbÞ as a few per year. From Table I and Eq. (65) one can see
that the rate of bursts is large enough even at redshift as

TABLE I. Numerical values of integral IðzÞ.
z 0.1 0.5 1.0 2.0

IðzÞ 9:12� 10�5 0.015 0.165 1.99
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small as 0.1, and thus the condition z > zb does not impose a
significant constraint for the integration of Eq. (50) over z.

E. Cascade upper bound

An upper bound on the neutrino flux follows from the
observed diffuse HE gamma-ray background, since neu-
trino production via pion/kaon decays is accompanied by
high-energy electron and photon production. These elec-
trons and photons, interacting with CMB and extragalactic
background light photons, produce an electromagnetic
cascade, whose energy density !cas must not exceed that
of the observed diffuse gamma radiation. This results in the
upper limit on the diffuse neutrino flux [38]. With the
assumption of the E�2 generation spectrum of neutrinos
the cascade upper limit can be written as

E2J�ðEÞ � c

4�

!max
cas

lnðEmax=EminÞ ; (67)

where Emax and Emin are the maximum and minimum
neutrino energies, respectively, and !max

cas is the maximum
cascade energy density allowed by observation of the iso-
tropic diffuse gamma radiation.

According to recent Fermi–Large Area Telescope ob-
servations [39] this energy density is !max

cas ¼ 5:8�
10�7 eV=cm3, as it follows from the analysis [40,41].
This limit results from a comparison of the cascade spec-
trum at 100 GeV with the Fermi data, while the lower
energies give a weaker limit. For our case we assume that
cosmological epochs with redshifts z 
 zcas, when gamma
rays with E� > 30 GeV are absorbed, make a negligible

contribution to the obtained upper limit. One can estimate
zcas in the following way. At z ¼ 0 a very sharp absorption
of gamma rays on CMB occurs at Eabs

� ð0Þ � 100 TeV. At

epoch z this energy is (1þ z) lower. Taking into account

the redshift of these photons, we estimate zcas as zcas �
ðEabs

� =E�Þ1=2 � 60.

The energy density for the electromagnetic cascade
radiation resulting from modulus decays can be expressed
as

!cas ¼ 1

2
f�

Z dt

ð1þ zÞ4
nðL; zÞdL

L=2
NðkÞkdk; (68)

where f� � 1 and 1=2 are the fractions of energy trans-
ferred from the modulus to pions and from pions to elec-
trons and photons, respectively, dt is given by Eq. (25), the
density of the loops nðLÞ is given by Eq. (45), and the
number of moduli emitted per burst NðkÞ is given by
Eq. (6). The limits of integration in Eq. (68) are as follows:

zmin ¼ 0, zmax ¼ zcas � 60, kmin ¼ ð1=4Þm ffiffiffiffiffiffiffiffi
mL

p
, and Lmin

is given by Eqs. (15) and (17) for the cases z� > zcas and
z� < zcas, respectively.

Consider first the case z� > zcas, when gravitational
radiation dominates. Performing the integration we obtain

!cas¼9�2�1=3p�1�1=2��2
ðteq=t0Þ1=2
ðt0mÞ1=2 �2m

2
Pl

t20
ð1þzcasÞ1=2

¼5:8�10�9p�1�2
7m

�1=2
5 ðzcas=60Þ1=2 eV=cm3: (69)

For z� < zcas we have to integrate over the interval
0 � z � z�, where gravitational radiation dominates, and
over interval z� � z � zcas, where moduli radiation
prevails. For the first case (gravity-dominated regime at
0 � z � z�) one obtains

!cas ¼ 4:7� 10�9p�1�2
7m

�1=2
5 ðz�=40Þ1=2 eV=cm3: (70)

For the second case (moduli-dominated regime at z� �
z � zcas) we have using Eq. (49)

!cas ¼ 4:7� 10�9p�1�2
7m

�1=2
5 ðz�=40Þ1=2

� ½1� ðz�=zcasÞ1=2	 eV=cm3: (71)

Note that this is the same as (70), apart from the last factor.
The reason is that in both cases the main contribution to z
integration comes from z� z�, like in case already dis-
cussed for neutrino fluxes.
For reasonable values of z�, all three!cas given by (69)–

(71) are less than maximally allowed !max
cas ¼ 5:8�

10�7 eV=cm3.
Two remarks about the cascade limit for our model are

now in order.
This limit is not strictly enforced because cascade pro-

duction occurs at very large redshifts, while !cas is con-
strained mainly due to the highest-energy cascade photons
with E � 100 GeV (see Fig. 1 in [40]). These photons are
absorbed by the extragalactic background light at earlier
cosmological epochs, and therefore in cosmic string mod-
els, where the main part of the cascade energy density is
produced at large redshifts, the constraint on!cas is weaker
and values higher than 5:8� 10�7 eV=cm3 are allowed.
Therefore, neutrino fluxes above the E�2 cascade upper
limit taken from [40] and shown in Fig. 1 are not neces-
sarily excluded.
One may also expect that beaming of cascades may

reduce the efficiency of the cascade limit. The calculation
of beam widening in the ambient magnetic field shows that
narrow beaming survives only for very weak magnetic
fields of order 10�15 G.

F. Superstring-motivated example
for high z� model with z� > z�

Because of the simplifying assumptions adopted in this
paper, we cannot reliably determine the domain in the
parameter space of �, m, and G�, which yields detectable
fluxes of EHE neutrinos.
Instead, we shall discuss some illustrative examples of

parameter choices, for which neutrino detection in future
experiments is possible. Among such projects we shall
consider detectors aimed at the highest-energy neutrinos
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above 1020 eV: JEM-EUSO [42], Anita-II [43], LOFAR
[44,45], SKA [44,46], and the Lunar Orbit Radio Detector
(LORD) [47]. JEM-EUSO is based on space detection of
fluorescent light from the showers in the atmosphere. All
others are based on radio detection of the showers due to
the Askarian effect [48]. The sensitivities of three of these
experiments, JEM-EUSO (expected to be launched in
2015), LOFAR, and SKA, are shown in Fig. 1.

First we shall consider a superstring-motivated example
for cosmic strings evolving in the gravity-dominated re-
gime, assuming that z� > z�. We fix plausible parameters,
both for strings and for particle physics. Specifically, we
consider the large volume string compactification model
[13], which is characterized by an intermediate string scale
ms � 1011 GeV and a TeV-scale supersymmetry breaking.
The hierarchy between the Planck and supersymmetry
breaking scales in this model is due to an exponentially
large volume of the compact extra dimensions, Vcomp �
V l6s , where V � 1015 and ls �m�1

s is the string length
scale.

Apart from the volume modulus, which has
gravitational-strength couplings to ordinary matter, the
other Kahler moduli have large couplings of the order [14]

��
ffiffiffiffiffiffi
V

p
: (72)

With V � 1015, we have �� 107:5.
The modulus masses are given by [14]

m� lnV

V
mp: (73)

It is useful to parametrize m in terms of �. Since we are
interested in �� 3� 107, the factor lnV can be replaced
by 35. Hence, we obtain for the mass

m� 35mp�
�2: (74)

For �� 3� 107 we have m� 4� 105 GeV, and we fix
��20 � 10, to ensure z� > z�. The last condition means
choosing the basic cosmic string parameter, the symmetry
breaking string scale � ¼ ffiffiffiffi

�
p � 3:9� 109 GeV, i.e.,

G�� 1� 10�19. With this choice of parameters, z�
from Eq. (20) is given by z� � 250; i.e it is larger than
zmax
cas � 60 and than the neutrino horizon z� � 200. For this
case, the neutrino flux is given by Eq. (56) and the cascade
energy density by Eq. (69). With the parameters �7 andm5

as indicated above, the neutrino flux is E2JðEÞ ¼ 1:3�
10�8p�1 GeV=cm2 s sr and the cascade energy density is
!cas � 2:6� 10�8p�1 eV=cm3.

This neutrino flux is shown in Fig. 1 by the curve
‘‘theor. 2’’. It is detectable by LOFAR and SKA, but
not by JEM-EUSO.

We can modify this model choosing parameters provid-
ing a larger neutrino flux. For this we fix �7 ¼ 2,m5 ¼ 0:1
and keep z� ¼ 250, i.e., ��20 � 80 and � � 1�
1010 GeV. The cascade energy density, !cas ¼
7:3� 10�8p�1 eV=cm3, is safely below!max

cas . This model

satisfies the restrictions obtained in [12], and in fact we can
further increase the flux by decreasing m5. At the high-
energy limit the calculated neutrino flux is given by
E2J�ðEÞ � 3:2� 10�8p�1 GeV=cm2 s sr. This flux is
shown in Fig. 1 by curve theor. 1; it is detectable by
JEM-EUSO, LOFAR, and SKA.

G. An illustrative example for low z� model with z� < z�

Let us now assume that z� < z�. Then, in the redshift
interval z� � z � z� the modulus radiation dominates. In
the remaining interval 0 � z � z� the gravitational energy
losses are dominant. The total neutrino flux is given by the
sum of fluxes generated from both intervals. A value of z�
fixes a model. Here we try to find a model with a detectable
neutrino flux.
The neutrino flux from the moduli-dominated interval

ðz�; z�Þ, in the HE asymptotic regime, is given by Eq. (60).
This equation becomes valid just above the low-energy
steepening, i.e., at

E 
 ~Emin ¼ 1� 1019�2
7ð50=z�Þ2 eV: (75)

For the flux from the gravity-dominated interval ð0; z�Þ,
the HE asymptotic is given by Eq. (61), with a low-energy
cutoff approximately at the same energy as above.
Summing up both components, we obtain

E2J�ðEÞ¼1:8�10�10p�1�2
7m

�1=2
5 ð1þz�Þ1=2

�
�
2�

�
1þz�
1þz�

�
1=2

�
GeVcm�2 s�1 sr�1: (76)

To maximize the flux without strongly increasing the
low-energy steepening threshold ~Emin given by Eq. (75),
one can use the parameters �7 ¼ 2, m5 ¼ 0:1, and z� ¼
100. As a result we obtain ~Emin ¼ 1� 1019 eV and
E2J� ¼ 2:9� 10�8 GeV cm�2 s�1 sr�1, close to the upper
limit ‘‘E�2 cascade’’ in Fig. 1. This flux is detectable by
JEM-EUSO, LOFAR, and SKA. The cascade energy den-
sity does not exceed !max

cas .
For cosmic F- and D-strings, the p�1 factor alone can

increase the flux and !cas to and above the ‘‘E�2 cascade
limit’’, keeping Emin unchanged.

H. EHE neutrino detection

The calculated EHE neutrino fluxes are shown in Fig. 1,
together with the existing upper limits from ANITA 08
[43], ANITA-II [43], and RICE [49], and with the sensi-
tivity of the proposed experiments—JEM-EUSO [42] (to
be launched in 2015), LOFAR [45], and SKA [46]. The
predicted fluxes are presented for the gravity-dominated
regime with z� > z�. As is discussed in Sec. IVG in the
moduli-dominated regime the neutrino fluxes can be also
detectable. The characteristic feature of all models is very
high minimal energy of neutrinos in spectrum Emin.
Because of this, neutrino fluxes in some models are un-
detectable by JEM-EUSO.
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In all cases neutrino fluxes and cascade energy density

are scaled by factor p�1�2
7m

�1=2
5 . The quantity �2

7m
�1=2
5

alone can be increased by factor 10–30. In our models
neutrinos are produced at large redshifts, while !max

cas ¼
5:8� 10�7 eV=cm3 is obtained mainly due to observation
of 100 GeV photons [40], which have a local origin.
Increasing the value of �7 is limited since Emin is usually
proportional to �2

7 and these high-energy neutrinos be-
come undetectable by JEM-EUSO. The quantity p�1 can
be easily increased by factor 103 for cosmic F- and
D-strings. This factor is limited by !cas only; Emin does
not depend on p�1.

The characteristic feature of our model is the production
of EHE neutrinos due to tremendously large Lorentz fac-
tors. The neutrino-induced gigantic showers in the air or
lunar regolith produce a strong signal reliably detectable in
optical and radio emissions. The signature of EHEneutrinos
with energies above 1021–1022 eV is given by this energy
scale, which is inaccessible for astrophysical sources.

This model has another signature, already discussed in
[4]: the simultaneous appearance of a few showers in the
field of view of a detector. It is due to neutrino propagation
in the form of a very narrow jet and to the absence of time
delay in neutrino arrival, because of the tremendously large
neutrino Lorentz factors �� ¼ E�=m�. Compared to the
case of superconducting strings in [4], the rate of multiple
showers is strongly suppressed by higher energies of neu-
trinos, being partly compensated by the greater target mass
of gigantic radio detectors. We present some brief esti-
mates below.

The number of detected neutrinos from a jet in the
detector target is given by

Ndet
� ð>EÞ ¼ ��Nð>EÞ

mN

MdetF�ð>EÞ; (77)

where ��Nð>EÞ is the neutrino-nucleon cross section for
neutrinos with energies greater than E, Mdet is the target
mass for the largest radio detectors, and F�ð>EÞ is the
fluence of neutrinos with energy greater than E in a jet
from a source at redshift z. The fluence is calculated as

F�ð>EÞ ¼
Z

dkNb
XðkÞ

��ðk; z;>EminÞ
�kr

2
; (78)

where Emin is the minimum neutrino energy for a source
at redshift z. In numerical estimates we shall use ��N �
1� 10�31 cm2 and Mdet � 1021 g.

For the gravity-dominated regime, standard calculations
give the following expression for the neutrino fluence from
a loop of length Lmin at redshift z:

F�ð>EÞ ¼ �2

3�25=3
f�
b�

�3=2ðG�Þ7=2
ðt0mÞ1=2

� 1

½ð1þ zÞ1=2 � 1	2ð1þ zÞ9=4
m

Emin

m2
Pl; (79)

where for z < 1 Emin ¼ 4:5� 1022m1=2
5 ��20" eV.

Estimating fluence for the illustrative case parameters � ¼
3� 107, m ¼ 4� 105 GeV, ��20 ¼ 10, and using z� 1
and Emin � 1013 GeV, we obtain F� � 3� 10�18 cm�2.
The number of neutrinos detected per burst is calculated
asNdet

� � 2� 10�4�3
�19. The fact thatN

det
� � 1 shows that

practically all detected neutrinos are single. This ismostly due
to the large value of Emin in the gravity-dominated regime.
The situation is different for the moduli-dominated re-

gime at z� � z � z�. The fluence from a loop with
L� Lmin at redshift z� is given by

F�ð>EÞ ¼ 2�2=3

6�

f�
b�

ðG�Þ3

� 1

ð1þ z�Þ3=2½ð1þ z�Þ1=2 � 1	2 �
4 m

2
Pl

Et0
: (80)

For the model with �7 ¼ 10, m5 ¼ 1, and z� ¼ 40, which
yields the electromagnetic cascade flux at the energy den-
sity bound !max

cas , and assuming the neutrino energy E ¼
1� 1020 eV, we obtain numerically F�ð>EÞ ¼
6:2� 10�15 cm�2, and the mean number of neutrinos
detected in a burst is �Ndet

� � 0:4. The Poisson probability
to detect simultaneously n ¼ 2 neutrinos at average �N ¼
0:4 is 0.054.

V. CONCLUSIONS

Production of high-energy particles is a natural feature
and one of the signatures of topological defects, including
cosmic strings. It provides a method of searching for, e.g.,
cosmic strings, which complements other methods, based
on the gravitational effects of strings, such as structure
formation, CMB data, gravitational radiation, gravitational
lensing, and others. The strongest current bounds on strings
with a symmetry breaking energy scale � ¼ ffiffiffiffi

�
p

are given

by G� & 10�7 due to lensing effect [50] and G� & 4�
10�9, due to the millisecond pulsar observations [51]. With
more advanced gravitational wave detectors, the bound is
expected to improve to G�� 10�12 [35,52]. On the other
hand, UHE particles can be detected from strings with G�
values as small as �10�20.
Cosmic strings can arise from a symmetry breaking

phase transition in the early universe. Fundamental strings
of superstring theory can also play the role of cosmic
strings in some models.
A characteristic feature of the string dynamics is the

periodic appearance of cusps, where very large Lorentz
factors are reached for brief periods of time. Particle emis-
sion from a cusp segment results in extremely high particle
energies. Astrophysical sources, at the present level of
knowledge, cannot accelerate particles to energies above
1021–1022 eV, with the maximum neutrino energy an order
of magnitude lower. Thus, detection of neutrinos with E *
1021 eVwould be a signature of top-down models, with the
string-cusp model as a plausible candidate. An additional
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signature of this model is neutrino emission in the form of a
narrow jet with simultaneous detection of two or more
neutrinos possible in the field of view of the detector.
However, this possibility exists only for some values of
model parameters and only for large detectors.

EHE neutrino astronomy with E * 1021 eV can probe
high-energy processes in the universe up to redshifts z� �
200. At the same time these neutrinos have a large inter-
action cross section with nucleons, ��N � 1� 10�31 cm2,
favorable for detection.

Moduli are produced near cusps of oscillating string
loops, where the characteristic frequency of string motion
exceeds the modulus mass m. These particles are emitted

from a string segment with a Lorentz factor �c �
ffiffiffiffiffiffiffiffi
mL

p
=4,

where L is the length of the loop. Moduli and the products
of their decays move as a jet with an opening angle #c �
��1
c . A modulus decays into two gluons, which initiate a

quark-gluon cascade, which turns into hadrons, mostly
pions, and then to neutrinos. We assume that the neutrino
spectrum in the rest frame of the modulus is / E�2� , where
E� is the neutrino energy in this frame. We adopted this
spectrum in order to simplify the analysis and to obtain
transparent analytic results. In fact the neutrino spectrum is
not power law, and has a flattening at a low energy 
min� ,
which we call the minimum energy. This spectrum is
Lorentz boosted, as described in Sec. III C, and the boosted
spectrum also has a flattening at energy Emin � �c


min� .
This energy can be considered as an effective low-energy
cutoff of the spectrum, because at E< Emin the detectabil-
ity of neutrinos is noticeably reduced.

Given the length distribution of loops at epoch z and the
spectrum of moduli emitted from a loop of a given length, it
is possible to calculate the neutrino flux E2J�ðEÞ, the cas-
cade energy density!cas, which provides an upper limit on
the neutrino flux (see Sec. IVE), and the cutoff energy Emin

in the neutrino spectrum. The results are given in terms of
three free parameters�7 ¼ �=107,m5 ¼ m=105 GeV, and
��20 ¼ G�=10�20. Another important parameter is the
redshift of the neutrino horizon, z� � 200.

The results of these calculations critically depend on the

redshift z� � 400��8=3
7 m2=3

5 �2=3
�20. This redshift separates

two regimes in the string evolution: the gravity-dominated
regime at z � z�, when gravitational energy losses are
dominant, and the moduli-dominated regime at z 
 z�,
when modulus radiation energy losses dominate.

Apart from this selective role, fixing the value of z� gives
a constraint in the parameter space (�7, m5, ��20), in the
form z�ð�7; m5; ��20Þ ¼ z0�, where z0� is the fixed z� value.
This reduces the number of free parameters to two (at the
fixed z�), which we choose as �7 and m5. As a result all
calculated fluxes E2J�ðEÞ and energy density!cas scale (at

fixed z�) as p�1�2
7m

�1=2
5 .

In our calculations the fixed value of z� plays the role of
the most important parameter, which determines what we
call ‘‘the model.’’ The high z� models, defined as z� > z�,

correspond to the gravity-dominated regime in the whole
allowed interval of redshifts ð0; z�Þ. The low z� models,
defined as z� < z�, are characterized by two regimes: the
gravity-dominated one at 0 � z � z� and the moduli-
dominated one at z� � z � z�, with approximately equal
neutrino fluxes. The total neutrino flux is increasing with
growth of z� until it reaches z�, and models with z� 
 z�
give the largest flux. This growth of flux with z� is accom-
panied by a decrease of Emin [see Eq. (62)], which is
favorable for neutrino detection by JEM-EUSO.
Three theoretical curves in Fig. 1 illustrate different

cases of neutrino detectability for the gravity-dominated
regime at z� 
 z�. The predicted flux is detectable by SKA
only in case of a normalizing parameter set p ¼ �7 ¼
m5 ¼ z�=z� ¼ 1 (curve ‘‘theor. 3’’). The flux is detectable
by LOFAR and SKA in case of p ¼ z�=z� ¼ 1, �7 ¼ 3,
andm5 ¼ 4 (curve ‘‘theor. 2’’). The flux is detectable by all
three detectors JEM-EUSO, LOFAR, and SKA if p ¼
z�=z� ¼ 1, �7 ¼ 2, and m5 ¼ 0:1 (curve ‘‘theor. 1’’).
We considered the above ‘‘ordinary’’ strings with p ¼ 1.

For cosmic superstrings with reconnection probability
p < 1, the neutrino flux increases by a factor p�1 without
increasing Emin, and is detectable for a wider range of
model parameters.
The cascade upper limit on neutrino flux in Fig. 1 (E�2

curve) is given for cosmogenic neutrinos from [40]. It is
based on maximum energy density !max

cas allowed by Fermi
data [39]. For the considered model with the dominant
contribution from large redshifts this upper limit is higher
because of 100-GeV-neutrino absorption. Therefore, al-
lowed neutrino fluxes can be further increased.
The remarkable feature of moduli-produced strings is

strong beaming. The Lorentz factor at z ¼ z� in the
gravity-dominated regime and at z� in the moduli-
dominated regime is �� 1012. The corresponding angle
of a beam is # � ��1 � 10�12. Neutrinos with these tre-
mendous energies arrive simultaneously at a detector and
can produce simultaneously two or more showers in the
field of view of the detector. The estimates made in
Sec. IVH show that such events are rare due to very high
energies of neutrinos.
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APPENDIX

In this section we shall derive the modulus radiation
spectrum in more detail. In a flat background, i.e., g�� ¼
��� ¼ diagð�1; 1; 1; 1Þ, the equation of motion for the

string world sheet X�ð�aÞ is
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@að ffiffiffiffiffiffiffiffi��
p

�abX
�
;bÞ ¼ 0: (A1)

Using the conformal gauge and �0 � �, �1 � � one
obtains

€X � � X00� ¼ 0; (A2)

and the gauge conditions are

_X �X0 ¼ 0; (A3)

_X 2 þX02 ¼ 1: (A4)

In this gauge, the world sheet coordinate � can be identified
with the Minkowski time coordinate t. The solution for
(A2) can bewritten in terms of the right moving and the left
moving waves as

X ð�; �Þ ¼ 1

2
½Xþð�þÞ þX�ð��Þ	; (A5)

where the light cone coordinates are defined as �þ � �þ
�, �� � �� �. The corresponding gauge conditions are
X02þ ¼ X02� ¼ 1, where primes denote derivatives with
respect to the light cone coordinates.

Using the light cone coordinates, Eq. (5) can be written
in the form

Tðk; !nÞ ¼ ��

L

Z L

�L
d�þ

Z L

�L
d��ð1þX0þ �X0�Þ

� ei=2½ð!n�þ�k�XþÞ�ð!n��þk�X�Þ	: (A6)

Since we shall be mainly interested in modulus bursts
from cusps, we use the expansion of the string world sheet
about a cusp, which we take to be at �þ ¼ �� ¼ 0. The
functions in the integrand of (A6) can be calculated from
the expansions as

1þX0þ �X0� � � 4�2s

L2
�þ��; (A7)

and

k �X � k

�
� � 2�2

3L2
�3

�
; (A8)

where s is an Oð1Þ parameter which depends on the loop
trajectory and k is assumed to be in the direction of the
string velocity at the cusp.

Equation (A6) can now be separated into two integrals as

Tðk; !nÞ ¼ 4�2�s

L3
IþI�; (A9)

where

I ¼
Z L

�L
d��ei½ð!n�k�=2Þþð�2k=3L2Þ�3

	: (A10)

After a change of variables, we obtain the integral

IðuÞ ¼ L2

2�2

�
!n

k
� 1

�Z 1

�1
dxxeið3=2Þu½xþð1=3Þx3	; (A11)

where

u � Lk

3
ffiffiffi
2

p
�

�
!n

k
� 1

�
3=2

; (A12)

and we have approximated the upper and lower limits of
integration as 1. The real part of the integral is zero
since it is an odd function of x. The imaginary part can be
expressed in terms of the modified Bessel function,

IðuÞ ¼ i
L2

2�2

�
!n

k
� 1

�
2ffiffiffi
3

p K2=3ðuÞ: (A13)

Then, (A9) can be calculated as

Tðk; !nÞ ¼ 4L�s

3�2

�
!n

k
� 1

�
2
K2

2=3ðuÞ; (A14)

and the power spectrum for the moduli radiation (4) from a
cusp is

dPn

d�
¼ 8L2�2s2G�2

9�5
!nk

�
!n

k
� 1

�
4
K4

2=3ðuÞ: (A15)

The asymptotic form of the power spectrum for k � m
and !n � k, i.e., u � 1, is3

dPn

d�
� ~��2s2G�2n�ð2=3Þ; (A16)

where ~�� 1. This is the same as the power spectrum for
gravitons, except that for gravitons there is no additional
coupling constant � and the numerical coefficient is some-
what different.
The average rate of moduli radiation per solid angle is

d _N

d�
¼ X

n

1

!n

dPn

d�
: (A17)

The sum over n can be converted into an integral over k by

using the relation !n ¼ 4�n
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
:

X
n

¼ L

4�

Z kdkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p : (A18)

Here we only consider the modulus bursts which have very
large Lorentz factors; thus we keep the leading order term

in the limit k >>m. In this limit, (A12) becomes u �
Lm3

12�k2
. By substituting (A15) into (A17), using (A18), and

also by making a change of variable u � Lm3

12�k2
, we obtain

d _N � �2s2G�2

m
K4

2=3ðuÞu2dud�: (A19)

The function K2=3ðuÞ dies out exponentially at u * 1.
Hence, the main contribution to the rate comes from the
region u & 1 which corresponds to

3When u � 1, K�ðuÞ � �ð�Þ
2 ð2uÞ�.
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k * kmin ¼ kc � 1

4
m

ffiffiffiffiffiffiffiffi
mL

p
: (A20)

For k >>kmin, Eq. (A19) gives

d _N � �2s2G�2L1=3k�5=3dkd�: (A21)

From (A21), the number of moduli emitted from a cusp in a
single burst, into solid angle d�, having momentum be-
tween (k, kþ dk) can be estimated as

dN � Ld _N � �2s2G�2L4=3k�5=3dkd�: (A22)

Here, we assumed one cusp event per oscillation period of
a loop.

Moduli are emitted into a narrow opening angle around
the direction of the string velocity v at the cusp. The
spectral expansion (A21) has been calculated for moduli
emitted in the direction of v. For moduli emitted at a small
angle # relative to v, Eq. (A21) still applies, but now the
spectrum is cut off at kmax � 1=L#3. In other words, the

opening angle for the emission of particles with momenta
* k is

#k � ðkLÞ�1=3: (A23)

Integration over � in (A21) gives a factor �#2
k ,

d _N � �2s2G�2L�1=3k�7=3dk: (A24)

The dominant contribution to the modulus emission comes
from k� kmin, and the total emission rate is

_N � �2s2G�2L�1=3k�4=3
min : (A25)

The corresponding opening angle is

#c � ��1 �m=kmin: (A26)

The total power of the modulus radiation can be similarly
calculated as

P� �2s2G�2L�1=3k�1=3
min : (A27)
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