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We investigate the propagation modes of gauge fields in an infinite Randall-Sundrum scenario. In this

model a sine-Gordon soliton represents our thick four-dimensional braneworld while an exponentially

coupled scalar acts for the dilaton field. For the gauge-field motion we find a differential equation which

can be transformed into a confluent Heun equation. By means of another change of variables we obtain a

related Schrödinger equation with a family of symmetric rational ð��!z2Þ=ð1� z2Þ2 potential func-

tions. We discuss both results and present the infinite spectrum of analytical solutions for the gauge field.

Finally, we assess the existence and the relative weights of Kaluza-Klein modes in the present setup.
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I. INTRODUCTION

One of the main purposes of superstring theory is the
inclusion of all the relevant fields of nature together in one
single Lagrangian. Field-theoretic scenarios inspired in
such a theory put in contact gauge and matter fields with
metric degrees of freedom, altogether defined in some
extra-dimensional space [1]. Extra dimensions, combined
with the influence of the gravitational field, modify non-
trivially all sectors so that gauge forces must be proven to
remain the same in the usual four-dimensional (4D) sub-
space or predict new physics in some consistent way.
Localization in the gauge sector is expected to hold and
the effective 4D electromagnetic force must be mediated
by massless photons as usual. On the other hand, higher-
dimensional spaces help solving fundamental problems
such as the hierarchy gap between the Planck scale and
gauge coupling constants in the standard model [2].

Also inspired in string theory is the use of branes to
represent our Universe. In string theory, gauge modes are
deposited on D-branes from open strings ending on them,
so we expect gauge fields in field-theoretic models to have
finite localized modes on stringy topological defects of
lower dimensionality. Actually, to obtain finite eigenstates
in 4D it has been shown that to fulfill this task we need not
just gravity but also a dilaton [3,4], a field already pre-
dicted in string theory.

In the present paper, we describe gauge fields in a
warped five-dimensional bulk with a dilaton and a brane
defect that mimics the ordinary world. Both brane and
dilaton configurations are geometrically consistent solu-
tions of a two scalar world action in a curved 5D space-
time where the field potential is of sine-Gordon type.

We show a relationship between the fundamental pa-
rameters of the 5D theory which is crucial to determine the
dynamics of the fields both in the bulk and ordinary space.
Indeed, for different choices of a parameter defined by the
quotient of some power of the sine-Gordon frequency
amplitude and the 5D Planck mass, the equations of motion

of the gauge field can be completely different. Notably, in
Ref. [5] we have been able to find the whole spectrum of a
theory involving both Maxwell and Kalb-Ramond fields
for a particular value of this parameter. As we will see,
there exists a minimal value for the dilaton coupling con-
stant above which the finiteness of the action is assured and
it is directly related to the localization of gauge fields.
In what follows we analytically obtain the propagation

modes (massless and massive) of a gauge theory in a
background of the sine-Gordon type that results in new
equations of motion. We show that the dynamics of the
quantum-mechanical system associated with the problem
is given by a simple (rational) potential function and that
the solutions to the Schrödinger equation are of the
Mathieu type (with a power-law factor). In a more general
case, we obtain the exact spectrum given by the set of
confluent Heun functions and show that Kaluza-Klein
(KK) states are strongly suppressed in ordinary space.
The paper is organized as follows. In the next section,

we present the geometrical background. In Sec. III we
introduce the action for the 5D gauge field coupled to
warped gravity and a dilaton background and derive the
5D equations of motion. In Sec. IV we obtain the quantum
analog problem showing explicitly the quantum-
mechanical Schrödinger potential. The eigenvalue spec-
trum is computed and graphically shown. Next, in
Secs. V and VI we discuss the general problem and draw
our conclusions. Other recent results about thick brane-
worlds can be found in e.g. [6].

II. GEOMETRICAL BACKGROUND

Our framework is a five-dimensional space-time embed-
ding a four-dimensional membrane also called thick brane.
The (spacelike) extra dimension is assumed infinite and the
brane will be dynamically obtained as a solution to the
Einstein equations for gravity coupled to a pair of scalar
fields. One of these scalars represents a domain wall defect
(the thick brane) while the other is the dilaton. The dilaton,
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together with the warping of the fifth dimension, happens
to be crucial in the gauge theory that will be developed and
makes more clear the stringy origin of the theory. Since
gauge-field theory is conformal [7], all the information
coming from the warping of the 4D metric is automatically
lost. As a consequence, the photon is non-normalizable in
the four-dimensional space unless the gauge coupling is
dynamically modified. Indeed, the exponential coupling of
both the dilaton and the 5D warping to the gauge field
conveniently modifies the scaling properties and the zero
mode becomes localized [3].

The five-dimensional world action which determines the
background is

SB ¼
Z

d4xdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detGMN

p

�
�
2M3R� 1

2
ð@�Þ2 � 1

2
ð@�Þ2 �V ð�;�Þ

�
; (1)

whereM is the Planck mass in 5D, andR is the Ricci scalar.
The solution for� represents the world membrane and the
corresponding field solution for � will be the dilaton
configuration consistent with the metric and the kink. As
usual we adopt Latin capitals on the bulk and Greek lower
case letters on 4D.

We next adopt the following ansatz for the metric:

ds2 ¼ e2�ðyÞ���dx
�dx� þ e2�ðyÞdy2; (2)

where � and � depend just on the fifth coordinate, y,
and diag ð�Þ ¼ ð�1; 1; 1; 1Þ. The equations of motion for
Eq. (1) are

1
2ð�0Þ2 þ 1

2ð�0Þ2 � e2�ðyÞV ð�;�Þ ¼ 24M3ð�0Þ2;
1
2ð�0Þ2 þ 1

2ð�0Þ2 þ e2�ðyÞV ð�;�Þ
¼ �12M3�00 � 24M3ð�0Þ2 þ 12M3�0�0; (3)

and

�00 þ ð4�0 � �0Þ�0 ¼ e2�
@V
@�

;

�00 þ ð4�0 ��0Þ�0 ¼ e2�
@V
@�

;
(4)

where the prime means derivative with respect to y.
By means of a supergravity motivated functionalW ð�Þ

defined by [8]

�0 ¼ dW
d�

; (5)

the system of differential equations can be more easily
handled. This method is also applicable to nonsupersym-
metric domain walls [9,10] as the present one.

First, we consider the action in the absence of gravity
(and no dilaton) in order to obtain an expression for �.
Then, we put this solution into the equations of motion (3)
and (4).

The standard sine-Gordon Lagrangian reads

LSG ¼ �1
2@

2�� Vð�Þ (6)

with

Vð�Þ ¼ 1

b2
ð1� cosðb�ÞÞ:

The free parameter b signals bulk symmetries �� !
2n�=bðn 2 ZÞ among the vacua of this theory. Solutions
interpolating vacua are possible and, assuming they depend
only on y, one-solitons read

�ðyÞ ¼ 4

b
arctaney: (7)

These functions kink on our 4D-world slice, namely,
at y� 0.
In a gravitational background of the form (2), now

including also the dilaton, the equations of motion (3) and
(4) are still compatible with solutions (7) provided we find
the appropriate potential functional V for the general
action (1), viz.

V ð�;�Þ¼ expð�=
ffiffiffiffiffiffiffiffiffiffiffiffi
12M3

p
Þ
�
1

2

�
dW
d�

�
2� 5

32M3
W ð�Þ2

�
:

(8)

Taking into account Eq. (5), the superpotential functional
results

W ð�Þ ¼ � 4

b2
cos

�
b

2
�

�
(9)

and then

V ð�;�Þ¼�eð�=
ffiffiffiffiffiffiffiffiffi
12M3

p
Þ
�
4

b2
sin2

b

2
�þ 5

2M3b4
cos2

b

2
�

�
:

(10)

If we now conveniently write the Hamiltonian à la
Bogomol’nyi, we can detect the following relations among
the warping functions, the dilaton and the superpotential

�¼�
ffiffiffiffiffiffiffiffiffiffi
3M3

p
�; �¼�=4; �0 ¼�W =12M3: (11)

Finally, totally solving the equations of motion, the dilaton
field is given by

�ðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
3M3

p
b2

lncoshy; (12)

and

�¼� 1

3M3b2
lncoshy; �¼� 1

12M3b2
lncoshy: (13)
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The relation between� and� allows also writingV as

V ð�Þ¼� 4

b2

�
sin

b

2
�

�
1=6M3b2

�
1þ

�
5

8M3b2
�1

�
cos2

b

2
�

�
;

(14)

which fully shows its dependence on b andM (see Fig. 1).
As it happens with dilaton configurations related to

D-brane solutions, functions such as (7) and (12) are
singular when jyj ! 1. However, since the metric van-
ishes exponentially and both dilaton and warp factors
operate under an exponential coupling, the model is kept
free of divergences.

The warping functions amount to a shift in the effective
four-dimensional Planck scale, which remains finite with
the following definition:

M2
P � M3

Z 1

�1
dye4�ðyÞþ�ðyÞ: (15)

Using the consistency relation (11) just found, the action
reads

SB �
Z

dye4�ðyÞþð1=4Þ�ðyÞþð�=2Þ
ffiffiffiffiffiffiffi
3M3

p
�ðyÞSð4Þ; (16)

where Sð4Þ is the remaining part of the action. According to

the solution �ðyÞ ¼ 2a lnsechy [cf. Eqs. (11)–(13)] the 5D
factor is finiteZ

dyec� ¼
Z

dycosh�2acy <1; (17)

provided c�ð17þ2�
ffiffiffiffiffiffiffiffiffiffi
3M3

p Þ=4>0, namely � >

� 17

2
ffiffiffiffiffiffiffi
3M3

p ¼ �0.

Studying the fluctuations of the metric about the above
background configuration, it is possible to see that this
model supports a massless zero mode of the gravitational
field localized on the membrane even in the presence of the
dilaton. In order to prove the stability of the background

solution, we would have to show that there are no negative
mass solutions to the equations of motion of a perturbation
h�� of the metric. Actually, a gravitational Kaluza-Klein

spectrum appears, starting from zero and presenting no
gap. This can be easily seen after an appropriate change
of variables and decomposition of the gravitational field,
and a subsequent supersymmetric-type expression of the
Schrödinger-type operator resulting from the equation of
motion (see [3,11] for details). The issue of the coupling of
these massive modes to the brane has been analyzed in
detail in [12].

III. GAUGE-FIELD ACTION IN AWARPED
SPACE WITH DILATON

Let us consider the following 5D action where a five-
dimensional electromagnetic field AN is coupled to the
dilaton [13] in a warped space-time

Sg ¼
Z

dyd4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detGAB

p
e�ð�=2Þ�

�
� 1

4
FMNF

MN

�
; (18)

where FMN ¼ @½MAN�.
Assuming that the gauge-field energy density should not

strongly modify the geometrical background, we can study
the behavior of the propagating modes in the background
of the topological configuration studied in the last section.
In general, most of the attempts to stabilize 5D brane-
worlds by means of a scalar field in the bulk do not take
into account the backreaction of the scalar field on the
background metric [3,11,12,14] and those in order to com-
pute the scalar backreaction on the metric were unsuccess-
ful except in a few special cases [9,15].
The factor expð�� ��=2Þ, present in the integrand,

will lead to a change in the integration measure which is
crucial to conserve the effect of the warping function on the
4D gauge field. As a consequence, zero modes (namely
photons) are normalizable in the 4D effective theory. To
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FIG. 1 (color online). Family of background potential functionals V ð�Þ [Eq. (14)] for different values of a � 1=6M3b2: even
a ¼ 2; 4; 6; 8; 10 (solid line), odd a ¼ 1; 3; 5; 7; 9 (dashed line). For clarity we adopted thinner lines for bigger values of a.
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see it in detail, we need to solve the 5D equations of motion
for AM:

1ffiffiffiffiffiffiffiffi�G
p @MðGMRGNPFRP

ffiffiffiffiffiffiffiffi�G
p

e�ð�=2Þ�ðyÞÞ ¼ 0; (19)

where diagGMN ¼ ðe2����; e
2�Þ. For this, we adopt the

following gauge choice A5 ¼ 0, @�A
� ¼ 0 and separate

the fifth from the ordinary coordinates as follows:

A�ðx; yÞ ¼ a�ðxÞuðyÞ: (20)

Now, from Eq. (19) we just get�
hþ 1

uf
@5ðf@5uÞ

�
a� ¼ 0: (21)

Note that the warped metric and the dilaton deform the
solutions of this differential equation by means of the

factor fðyÞ � e4�þ����=2 multiplying uðyÞ and u0ðyÞ. A
full Kaluza-Klein spectrum results from the solution of the
general case

@5ðf@5uÞ ¼ �m2fu; (22)

where m2 is an arbitrary constant representing the 4D
squared boson mass of the vector gauge field. It means
that a� ¼ a�ð0Þeipx with p2 ¼ �m2.

By expanding Eq. (21), we obtain the most general
y-dependent equation of motion for the modified sine-
Gordon potential (14) derived from action (18) in a form
which exhibits its dependence on a ¼ 1

6M
3b2 and c:

u00ðyÞ þ að1� 2cÞ tanhyu0ðyÞ þm2sechayuðyÞ ¼ 0; (23)

where y 2 ð�1;1Þ as already stated. Looking back at the
definition of the auxiliary constants, we get the explicit
dependence of the solutions on the original parameters b,
�, and M.

Below, we will discuss the possible values of m2 as
resulting from an eigenvalue problem related to the equa-
tion of motion (23). Indeed, there exists a Schrödinger-like
equation equivalent to Eq. (23) with a potential function
which concentrates all the richness implicit in the compli-
cated Eq. (23). Note that the particular solution uðyÞ ¼
constant represents the m2 ¼ 0 photon state of the 5D
theory. Since this solution satisfies Eq. (23) for any value
of a and c, any member of the family of problems has a
guaranteed localized zero mode. See [5] for details.

Localization of gauge-field modes in the ordinary space
can be established by verifying that the corresponding 5D
action is finite. From Eq. (20), one has F�� ¼ f��uðyÞ,
where f�� ¼ G��G�	f�	, so that for a gauge mode Asol

M

the relevant part of Eq. (18) reads

Sg½Asol
M �¼

Z
dyu2ðyÞe4�ðyÞþ�ðyÞ���ðyÞ=2Zd4x1

4
f��f

��: (24)

Using the field solutions found in Eq. (7) and the equations
thereafter, the fifth dimension factor will remain finite for

each mode uðyÞ growing below eac at infinity. Thus, any
finite solution is a physically acceptable Kaluza-Klein
state (as we have seen above, to have a finite 5D Planck
mass and background action SB we already need c > 0,
i.e. � > �0).
It is known that by means of a transformation

uðyÞ ¼ e���=2UðzÞ; dz

dy
¼ e�	�; (25)

we can turn Eq. (23) into a Schrödinger-like equation in the
variable z (see e.g. [2,3]). In general, the existence of an
analog Schrödinger equation is useful to give us a feeling
of the physical profile of the solutions of the original
problem, as e.g. parity and eigenvalues. With � ¼
c� 1=4 and 	 ¼ �1=4, we can eliminate the first deriva-
tive term in U and have a pure mass term as usual. The
resulting differential equation reads precisely�

� d2

dz2
þVaðzÞ

�
UðzÞ ¼ m2UðzÞ;

where VaðzÞ ¼ e��=2ð�2 �00 � ��02Þ and � ¼ 1
4�ð12 � �Þ.

In a few cases the last expression can be inverted after
exact integration in order that an analytical expression for
the analog nonrelativistic potential comes about. In
Ref. [5] we have solved the a ¼ 2 case and found

V 2ðzÞ ¼ �2�½1� ð2�� 1Þtan2z�:
In this paper, for a ¼ 4 we find

V 4ðzÞ ¼ ð��!z2Þ
ð1� z2Þ2 ;

where � and ! are constants and we shall analyze it in
what follows.

IV. THE QUANTUM ANALOG

In the present case we can turn Eq. (23) into a Sturm-
Liouville problem by means of

z ¼ tanhy; (26)

uðyÞ ¼ ðcoshyÞ4c�1UðzÞ (27)

[see Eq. (25)]. Now, we have a related Schrödinger equa-
tion defined in the z variable�

� d2

dz2
þV4ðzÞ

�
UðzÞ ¼ m2UðzÞ; (28)

with

V 4ðzÞ ¼ 1� 4c

ð1� z2Þ2 ½1þ 2ð1� 2cÞz2�: (29)

We can see that the potential function diverges at z ¼ �1
and so the boundary conditions of this analog problem are
fUðz ¼ �1Þ ¼ 0; U0ðz ¼ �1Þfiniteg which must be in or-
der to match finite uðyÞ solutions to Eq. (23) at y ! �1.
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After solving the quantum analog, we have to transform
back variables and functions to check the finiteness and
continuity of the original solution uðyÞ in order to be
physically acceptable.

We now better introduce the variable 
 by means of

z ¼ cos
 (30)

which results in equation

U00ð
Þ � cotð
ÞU0ð
Þ � 1� 4c

sin2

½1þ 2ð1� 2cÞcos2
�Uð
Þ

¼ �m2sin2
Uð
Þ (31)

for the analog wave function Uð
Þ with Uð
 ¼ �; 0Þ ¼ 0.
According to the arguments of localization seen in the

previous section, physically acceptable solutions require
c > 0 so we shall be restricted to that region.

A. The c ¼ 1=4 case

Equation (31) gets strongly simplified for the value
c ¼ 1=4. In this case we obtain

1

sin


d

d


�
1

sin

U0ð
Þ

�
þm2sin2
Uð
Þ ¼ 0 (32)

with solutions

Uð1Þð
Þ ¼ U0 sinðm cosð
ÞÞ (33)

Uð2Þð
Þ ¼ U0 cosðm cosð
ÞÞ; (34)

which in terms of the original variable and function read

uð1ÞðyÞ ¼ u0 sinðm tanhyÞ (35)

uð2ÞðyÞ ¼ u0 cosðm tanhyÞ (36)

(see Figs. 2 and 3). The zero mode, m ¼ 0, is then related
to uðyÞ ¼ u0 as already mentioned.

Since VðzÞ is an even function (in this case trivial),
solutions must have definite parity. Besides, the potential
divergence at z ¼ �1 implies that the corresponding solu-
tions are expected to be zero there. Thus, antisymmetric
solutions correspond to the eigenvalues of the Schrödinger
equation (28) m ¼ n� while symmetric solutions corre-
spond to m ¼ ð2nþ 1Þ�=2, with n 2 N [or simply m ¼
ðnþ 1Þ�=2 with n even for symmetric solutions and odd
for the antisymmetric ones].

B. Other analytical solutions

If we perform the transformation

Uð
Þ ¼ sin�
Mð
Þ; (37)

in place of Eq. (31) we get the following problem for
Mð
Þ:

M00ð
Þ þ ð2�� 1Þ cotð
ÞM0ð
Þ þ
�
�ð�� 2Þcot2ð
Þ

� �þ 1� 4c

sin2

½1þ 2ð1� 2cÞcos2
�

�
Mð
Þ

¼ �m2sin2
Mð
Þ: (38)

Now, we can choose a convenient power for the last trans-
formation, � ¼ 1=2, in order to turn this into

M00ð
Þ � 4

�
cot2ð
Þ

�
4c2 � 4cþ 15

16

�
þ 3

8
� c

�
Mð
Þ

¼ �m2sin2
Mð
Þ (39)

which, for 4c2 � 4cþ 15
16 ¼ 0, is known as the Mathieu

differential equation

FIG. 2 (color online). Plot of sinðm tanhðyÞÞ, for c ¼ 1=4,
m ¼ � (black line), m ¼ 2� (long-dashed blue line), and
m ¼ 3� (dashed red line).

FIG. 3 (color online). Plot of cosðm tanhðyÞÞ, for c ¼ 1=4,
m ¼ �=2 (black line), m ¼ 3�=2 (long-dashed blue line), and
m ¼ 5�=2 (dashed red line).
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M00ð
Þ þ ð4c� 3=2þm2sin2
ÞMð
Þ ¼ 0; (40)

with c ¼ 3=8 or c ¼ 5=8.

C. The case c ¼ 5=8

In this case, Eq. (40) results in

M00ð
Þ þ
�
1þm2

2
�m2

2
cosð2
Þ

�
Mð
Þ ¼ 0 (41)

whose analytic solutions are the general Mathieu functions

Mð1Þð
Þ ¼ Mc

�
1þm2

2
;
m2

4
; 


�
(42)

Mð2Þð
Þ ¼ Ms

�
1þm2

2
;
m2

4
; 


�
; (43)

which, in terms of the z variable, result in the analog wave
functions UðzÞ:
Uð1ÞðzÞ ¼ ð1� z2Þ1=4Mc

�
1þm2

2
;
m2

4
; arccosðzÞ

�
(44)

Uð2ÞðzÞ ¼ ð1� z2Þ1=4Ms

�
1þm2

2
;
m2

4
; arccosðzÞ

�
(45)

(see [16] for details about Mathieu functions).
As mentioned above, the boundary conditions of the

present problem are fUðz ¼ �1Þ ¼ 0; U0ðz ¼ �1Þfiniteg,
related to finite uðyÞ solutions to the original equation,
recalling that y 2 ð�1;1Þ. The first set of solutions,

Uð1ÞðzÞ, is not physically interesting because the derivatives
of these functions are divergent at the boundary. The
reason is that McðarccosðzÞÞ cannot be zero at z ¼ 1 for
any value of m. The second set, on the other hand, has
physically acceptable solutions for a discrete set of values
of m, the (twenty) first of which we show in Table I. These
solutions are symmetric or antisymmetric, as expected
(see Fig. 4). Note the presence of a zero mode.

In terms of y, we have

uð1ÞðyÞ ¼ coshyMc

�
1þm2

2
;
m2

4
; arccosðtanhyÞ

�
(46)

uð2ÞðyÞ ¼ coshyMs

�
1þm2

2
;
m2

4
; arccosðtanhyÞ

�
; (47)

where the set uð1ÞðyÞ diverges when y ! �1, as due from

the comments above, so we just keep the solutions uð2ÞðyÞ
(see Figs. 5 and 6).

TABLE I. List of the first 21 values of ms (symmetric solu-
tions) and ma (antisymmetric ones) for c ¼ 5=8.

ms ma

0.000 000 0 ��
4.064 986 0 2.380 795 9

7.296 211 5 5.691 401 9

10.478 088 0 8.890 261 3

13.643 145 8 12.061 959 6

16.800 275 6 15.222 418 5

19.952 989 30 18.377 053 8

23.102 972 0 21.528 253 1

26.251 140 9 24.677 243 35

29.398 071 6 27.824 723 8

32.544 043 9 30.971 123 52

� � � � � �

FIG. 4 (color online). Symmetric and antisymmetric eigen-
functions U in z space for c ¼ 5=8; m ¼ 0 (black line, sym-
metric), m ¼ 2:380 795 874 (dashed blue line, antisymmetric),
m ¼ 4:064 9860 (long-dashed red line, symmetric), m ¼
5:691 4019 (dotted black line, antisymmetric), and m ¼
7:296 2115 (solid green line, symmetric).

FIG. 5 (color online). Symmetric solutions uð2ÞðyÞ [Eq. (47)]
for c ¼ 5=8; m ¼ 0 (dash-dotted black line), m ¼ 4:064 986 0
(long-dashed blue line), m ¼ 7:296 211 5 (dashed red line), and
m ¼ 10:478 088 0 (solid black line).

M. S. CUNHA AND H.R. CHRISTIANSEN PHYSICAL REVIEW D 84, 085002 (2011)

085002-6



D. The case c ¼ 3=8

Now, Eq. (40) reads

M00ð
Þ þ
�
m2

2
�m2

2
cosð2
Þ

�
Mð
Þ ¼ 0 (48)

with solutions given by

Mð1Þð
Þ ¼ Mc

�
m2

2
;
m2

4
; 


�
(49)

Mð2Þð
Þ ¼ Ms

�
m2

2
;
m2

4
; 


�
; (50)

corresponding to

Uð1ÞðzÞ ¼ ð1� z2Þ1=4Mc

�
m2

2
;
m2

4
; arccosðzÞ

�
(51)

Uð2ÞðzÞ ¼ ð1� z2Þ1=4Ms

�
m2

2
;
m2

4
; arccosðzÞ

�
(52)

in the z space with the boundary conditions already seen.
As we discussed in the previous (c ¼ 5=8) case, only the

second set of solutions is physically relevant and just for a
discrete (infinite) sequence of m eigenvalues. For such
values solutions have definite parity according to VðzÞ,
Eq. (29) (see Figs. 7 and 8).
Note that the solutions to the Schrödinger equation

[the analytical expressions (51) and (52)] are not compat-
ible with a zero mode for the z-boundary conditions
given above. Actually, as a general result, for any value

excluded from the sequence starting in Table II, Uð1ÞðzÞ—
Eq. (51)—has divergent derivatives at z ¼ �1 and

FIG. 6 (color online). Antisymmetric solutions uð2ÞðyÞ for
c ¼ 5=8; m ¼ 2:380 795 9 (solid black line), m ¼ 5:691 401 9
(long-dashed blue line), m ¼ 8:890 261 3 (dashed red line), and
m ¼ 12:061 959 6 (solid black line).

FIG. 7 (color online). Symmetric solutions Uð2ÞðzÞ for
c ¼ 3=8; m¼ 1:14718042 (solid black line), m¼ 4:30206964
(long-dashed blue line), m ¼ 7:448 792 88 (dashed red line), and
m ¼ 13:736 298 72 (solid green line).

FIG. 8 (color online). Antisymmetric solutions Uð2ÞðzÞ for
c ¼ 3=8; m¼ 2:72632477 (solid black line), m¼ 5:87592007
(long-dashed blue line), m ¼ 9:021 100 25 (dashed red line), and
m ¼ 15:307 712 12 (solid green line).

TABLE II. List of the first 20 values ofms andma for c ¼ 3=8.

ms ma

�� ��
1.147 180 42 2.726 324 77

4.302 069 64 5.875 920 07

7.448 792 88 9.021 100 25

10.593 050 44 12.164 759 84

13.736 298 72 15.307 712 12

16.879 030 28 18.450 274 34

20.021 459 51 21.592 597 04

23.163 695 47 24.652 708 00

26.305 799 84 27.876 815 05

29.447 810 28 31.018 788 23

� � � � � �
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Uð2ÞðzÞ—Eq. (52)—is not even symmetric. For this reason
the zero-mass solutions of Eq. (48), Mð
;m ¼ 0Þ 2
fcons; 
g, do not correspond to valid solutions of the
Schrödinger problem. In Fig. 9 we can see all the first
mass values of the sequence which nullify the Mathieu
functions Ms at the boundary. These values, also listed in

Table II, guarantee finite derivatives of Uð2ÞðzÞ. The ab-
sence of the zero mode in this list indicates a limitation of
the Schrödinger analogue approach. We will come again to
this point in the next section. In terms of y we have

uð1ÞðyÞ ¼ Mc

�
m2

2
;
m2

4
; arccosðtanhyÞ

�
(53)

uð2ÞðyÞ ¼ Ms

�
m2

2
;
m2

4
; arccosðtanhyÞ

�
; (54)

of which uð2Þ represents the only nondivergent set of solu-
tions, as we illustrate in Figs. 10 and 11 for the first
quantum values of m.

V. THE CONFLUENT HEUN EQUATION

We now investigate our original problem by relaxing the
quantum analog condition. In order to obtain the general
solution of Eq. (23) we perform the following change of
variable:

x ¼ tanhy: (55)

It maps the y space to x 2 ð�1; 1Þ and we will eventually
transform it back in order to come into the original space
and variables. Note that Eq. (23) is symmetric under a
parity transformation and thus the differential equation
admits even as well as odd parity solutions, as it should.
Now, Eq. (23) becomes

u00ðxÞþð2� ~cÞ x

x2�1
u0ðxÞþm2ð1�x2Þða=2Þ�2uðxÞ¼0;

(56)

which is an homogeneous second-order linear differential
equation with polynomial coefficients provided a is even.
Here ~c ¼ að1� 2cÞ so that ~c ¼ ð�1; aÞ. Now, Eq. (56)
looks more familiar if we change x2 into z:

FIG. 9 (color online). Mathieu function at the boundary
(
¼�) as a function of the mass for c ¼ 3=8, Msðm2

2 ;
m2

4 ;
¼�Þ.
At the other boundary,Msðm2

2 ; m
2

4 ; 
 ¼ 0Þ ¼ 0.

FIG. 10 (color online). Symmetric solutions uð2ÞðyÞ, Eq. (54),
for c ¼ 3=8; m ¼ 1:147 1804 2 (solid black line), m ¼
4:302 069 64 (long-dashed blue line), m ¼ 7:448 792 88 (dashed
red line), and m ¼ 13:736 298 72 (solid black line).

FIG. 11 (color online). Antisymmetric solutions uð2ÞðyÞ,
Eq. (54), for c ¼ 3=8; m ¼ 2:726 324 77 (solid black line), m ¼
5:875 920 07 (long-dashed blue line), m ¼ 9:021 100 25 (dashed
red line), and m ¼ 15:307 712 12 (solid black line).
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u00ðzÞ þ
�
1=2

z
þ 1� ~c=2

z� 1

�
u0ðzÞ þm2

4

uðzÞ
z

¼ 0; (57)

for the case under study. Formally, this equation has
two regular singular (Fuchsian) points at z ¼ 0; 1, and an
irregular one at z ¼ 1. This is known as a confluent Heun
equation [17–19].

We can compare Eq. (57) with the canonical nonsym-
metrical general form of the confluent Heun equation as
given in [18–20],

Hc00ðzÞþ
�
�þ	þ1

z
þ�þ1

z�1

�
Hc0ðzÞ

þ
�½�þ�

2 ð	þ�þ2Þ�zþ�þ	
2þ1

2ð���Þð	þ1Þ
zðz�1Þ

�
HcðzÞ

¼0; (58)

whose solutions around z ¼ 0 are denoted by

Hð1Þ ¼ Hcð�;	; �; �; �; zÞ (59)

Hð2Þ ¼ z�	Hcð�;�	;�; �; �; zÞ: (60)

In general, there are two linearly independent local series
solutions around each singular point. In the region of
interest, z < 1, we look for a regular local solution around
z ¼ 0 which is defined by the Heun series as

HcðzÞ ¼ X1
n¼0

dnz
n: (61)

Here the constants dn (with d�1 ¼ 0 and d0 ¼ 1) are
determined by the three-term recurrence relation [21]

Andn ¼ Bndn�1 þ Cndn�2; (62)

where

An ¼ 1þ 	

n
! 1� 1

2n
(63)

Bn ¼ 1þ��þ 	þ �� 1

n

þ �þ ð�� 	� �Þ=2� �	=2þ 	�=2

n2

! 1þ�~c=2� 3=2

n
þ ~c=2þ 1=2�m2=4

n2
(64)

Cn ¼ 1

n2

�
�þ �ð	þ �Þ

2
þ �ðn� 1Þ

�
! m2

4n2
: (65)

By comparing Eqs. (57) and (58), it is easy to identify
� ¼ 0, 	 ¼ �1=2, � ¼ �~c=2, � ¼ m2=4, and � ¼
~c=8þ 1=4�m2=4. Then the solutions of Eq. (23) are
given by

uð1ÞðyÞ¼Hc

�
0;�1

2
;�~c

2
;
m2

4
;
1

4
þ ~c

8
�m2

4
;tanh2y

�
(66)

uð2ÞðyÞ¼ tanhyHc

�
0;
1

2
;�~c

2
;
m2

4
;
1

4
þ ~c

8
�m2

4
;tanh2y

�
(67)

for arbitrary values of ~c (or c), namely, of the dilaton
coupling constant. The conditions these Heun uðyÞ
solutions must obey to be acceptable are the original
ones, i.e. finiteness and continuity in the whole space.
A noteworthy point in the present approach is that now,

depending on ~c, the mass values m2 can be quantized, as
we saw in Sec. IV, or not, as we will explain in what
follows.
After a lengthy numerical exam, we found clear evi-

dence that for ~c � 0 (namely � 	 �1 � 15=17�0) all the
mass spectra are discrete. For ~c 2 ð0; 4Þ; �0 < �< �1, on
the other hand, the corresponding spectra start with a zero
mode and grow continuously. This sharp contrast may be
traced back to Eq. (23) where the second term of the
differential equation flips precisely with the sign of ~c.
Note that for any well-behaved solution uðyÞ, the third
term of Eq. (23) can be disregarded at infinity. The re-
mainder differential equation can be easily solved showing
that, for ~c > 0, solutions are always convergent to zero and
for ~c � 0 they diverge at the boundary. Guided by this
result, we performed a numerical survey in each region
arriving at the conclusion above: for ~c > 0 there exist
physical solutions for arbitrary m while, otherwise, only
a discrete sequence of masses allow for finite solutions at
the border.
It should be mentioned that for small values of ~c the

solutions stabilize quickly. On the contrary, for ~c & �10
the numerical calculation is more difficult and more digits
are needed in the mass precision to stabilize solutions at
large values of y. For example, for ~c ¼ �30, which corre-
sponds to � ¼ 0, more than 30 significant digits were
necessary in the mass spectrum to find the solutions as
shown in Figs. 12 and 13. In Table III we listed the first
values of the mass up to the eighth decimal place.
As awaited, for the cases studied in the previous section

we find again the same results. Note however that the zero
mode in the ~c ¼ 1ðc ¼ 3=8Þ case now appears explicitly.
This was expected since there exists an analytical m ¼ 0
solution to Eq. (23), namely u0ðyÞ ¼ e1 arctanðeyÞ þ e2,
which must be present in a full approach. Furthermore,
for ~c ¼ 1 the Heun solution indicates that Table II would
not only start from zero but would also be continuously
filled in as mentioned above. In Figs. 14 and 15 we can see
finite analytic Heun solutions, given by Eqs. (66) and (67),
for some arbitrary values of m besides the quantum-
mechanical analog ones. Another way to see it is by means
of Figs. 16 and 17 wherem has been fixed arbitrarily to one
of the eigenvalues of ~c ¼ 1 and ~c is then varied. In the
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~c ¼ �1ðc ¼ 5=8Þ case, the spectrum still obeys quantized
values as given in Table I.

Thus, although Mathieu functions have been sufficient
to characterize a part of the spectrum of the Schrödinger
analog of our problem, we actually need to consider
confluent Heun functions to cover all the cases. In other
words, even when we achieved fully analytical solutions
of the quantum analog differential equation, the spectra

appeared just discrete not revealing that some of them
could be eventually continua.

The set of confluent Heun functions therefore provides

all the possible physical solutions of the actual problem in

the 5D space. This was not apparent from the Hamiltonian

point of view which assumes the Sturm-Liouville operator

H ¼ ½� d2

dz2
þVðzÞ� to represent the physical situation.

3 2 1 1 2 3

20

10

10

20

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

(a)

FIG. 13 (color online). Antisymmetric solutions of the Heun equation (~c ¼ �30) for m ¼ 5:909 530 31 (black solid),
m ¼ 11:035 472 47 (blue dashed), m ¼ 15:178 367 81 (red dashed), m ¼ 18:97642242 (brown solid). (a) Solutions Eq. (67) near
the origin.

3 2 1 1 2 3

1.0

0.5

0.5

1.0

1.0 0.5 0.5 1.0

0.05

0.05

(a)

FIG. 12 (color online). Symmetric solutions of the Heun equation (~c ¼ �30) form ¼ 0 (black dash dotted),m ¼ 8:693 553 30 (blue
dashed), m ¼ 13:168 601 26 (red dashed), m ¼ 17:106 433 40 (black solid), m ¼ 20:803 071 54 (brown solid), m ¼ 24:362 698 18
(orange solid). Curves required masses with 30 significant digits of which only the first are shown. (a) Solutions Eq. (66) near the
origin.
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VI. FINAL REMARKS AND CONCLUSION

In order to physically assess massive modes, one can
evaluate the variation of the effective gauge coupling as a
function of the Kaluza-Klein masses. Actually, KK con-
tributions cannot be significant as compared with the
Coulomb potential because the coupling of massive modes
to (fermion) matter on the brane develops a Yukawa-type
potential in the nonrelativistic limit. To show that this
is a decreasing function of m, we should evaluate the

FIG. 14 (color online). Symmetric solutions [Eq. (66)] for
~c ¼ 1; m ¼ 0 (dash-dotted black line), m ¼ 1:147 180 42 (solid
black line), m ¼ 4 (dotted green line), m ¼ 4:302 069 64 (solid
blue line), m ¼ 7 (dashed black line), and m ¼ 7:448 792 88
(solid red line).

FIG. 15 (color online). Antisymmetric solutions [Eq. (67)] for
~c ¼ 1; m ¼ 0 (solid black line), m ¼ 2:726 324 772 (solid blue
line), m ¼ 3:5 (dotted green line), m ¼ 5 (long-dashed black
line),m ¼ 5:5 (dashed black line), andm ¼ 5:875 920 066 (solid
red line).

FIG. 16 (color online). Symmetric Heun solutions, Eq. (66),
for m ¼ 4:302 069 64 and several values of ~c: ~c ¼ 0:7
(solid black line), ~c ¼ 1 (long-dashed blue line), ~c ¼ 1:5
(solid red line), ~c ¼ 2 (dashed green line), and ~c ¼ 3
(dotted black line).

TABLE III. List of first values of ms and ma for ~c ¼ �30.

ms ma

0 ��
8.693 553 30 5.909 530 31

13.168 601 26 11.035 472 47

17.106 433 40 15.178 367 81

20.803 071 54 18.976 422 42

24.362 698 18 22.596 204 20

� � � � � �

FIG. 17 (color online). Antisymmetric Heun solutions,
Eq. (67), for m¼ 2:72632477 and several values of ~c: ~c ¼ 0:7
(solid black line), ~c ¼ 1 (long-dashed blue line), ~c ¼ 1:5 (solid
red line), ~c ¼ 2 (dashed green line), and ~c ¼ 3 (dotted black
line).
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coefficients that multiply the relevant sector of the
four-dimensional action:

�
Z
dye����

�
u2m¼0ðyÞþ

X
n

u2mn
ðyÞ

�Z
d4xf��f

��: (68)

However, in order to simplify this computation we
can assume that the coupling with the brane takes place
exactly on the 4D ordinary space-time, namely, at y ¼ 0. It
is precisely at this value of y where the relevant physical
effects should be much stronger. For simplicity let us
consider the series of the quantum analog eigenvalues
which serves as a discrete representative of the continuum.
Thus, the effective 4D electrostatic potential would
read

VðrÞ � q1q2

�
c20
r
þX

n

e�mnr

r
u2mn

ð0Þ
�
; (69)

where q1, q2 are two test charges separated a distance r in
ordinary 3D space and the Kaluza-Klein masses m are
numbered with n in ascending order. See Fig. 14 where

the first uð1ÞevenðyÞ modes are fully displayed, and Fig. 18
where the first and the tenth modes are compared. See
Fig. 19 to appreciate the first ten values at the origin.
This, together with the negative exponential factor, essen-
tially decouples the massive modes from the physics
on the domain wall. Far from the membrane, all massive
modes become constants like the zero mode is, and
as a consequence the 5D phenomenology results com-
pletely modified from ordinary 4D electromagnetism. See
e.g. Refs. [2,12] for the study of this issue in the case of
gravity.

In this paper we have studied bulk and four-dimensional
gauge propagation modes in a warped extra-dimensional
space with a dilaton field. We have set up a sine-Gordon
thick membrane which bounces at the extra-coordinate
origin. A five-dimensional metric was dynamically gener-
ated consistently with the soliton brane and the dilaton
background. In such a framework we studied the solutions
of a five-dimensional gauge field.
First, we have found the exact quantum-mechanical

analog of our original five-dimensional stringy problem.
We have shown that the corresponding Schrödinger po-
tential function is a quotient of simple second- and
fourth-order polynomials that we could solve analytically.
We next obtained the exact quantum-mechanical analog
eigenspectrum and used it as a guide to analyze eventu-
ally the general solution. A localized zero mode corre-
sponding to the ordinary photon was guaranteed for a
dilaton coupling constant above �0. In general, we have
found that the gauge-field dynamics are analytically given
by confluent Heun functions which we have displayed for
several representative cases. Furthermore, in contrast to
the quantum analog results, in the general approach the
mass of the gauge-field modes can be arbitrary for � 2
ð�0; �1Þ. In any case, we have shown that the Kaluza-
Klein gauge spectrum is strongly attenuated on the brane
as compared to the zero mode of the theory. On the
other hand, we observed that in the bulk, far from the
brane, the amplitude of an infinite tower of massive
modes gets progressively relevant. Interestingly, the
quantum-mechanical discrete mass eigenfunctions are
completely decoupled in that region.

FIG. 18. First and tenth even KK eigenmodes exhibit their
relative weights.

FIG. 19 (color online). Sequence of the first KK values of
u2evenð0Þ for c ¼ 3=8 displaying the relative weights of the KK
modes on the brane.

M. S. CUNHA AND H.R. CHRISTIANSEN PHYSICAL REVIEW D 84, 085002 (2011)

085002-12



[1] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, England, 1998), Vols. 1&2.

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999); 83, 3370 (1999).

[3] A. Kehagias and K. Tamvakis, Phys. Lett. B 504, 38
(2001).

[4] D. Youm, Nucl. Phys. B589, 315 (2000); Phys. Rev. D 64,
127501 (2001).

[5] H. R. Christiansen, M. S. Cunha, and M.K. Tahim, Phys.
Rev. D 82, 085023 (2010).

[6] Y.-X. Liu et al., J. High Energy Phys. 06 (2011)
135; Chun-E Fu, Yu-Xiao Liu, and Heng Guo, Phys.
Rev. D 84, 044036 (2011); Y.-X. Liu et al.,
arXiv:1102.4500; R. R. Landim et al., J. High Energy
Phys. 08 (2011) 071.

[7] G. Dvali and M. Shifman, Phys. Lett. B 396, 64 (1997);
407, 452(E) (1997); G. Dvali, G. Gabadadze, and M.
Shifman, Phys. Lett. B 497, 271 (2001).

[8] M. Cvetic, S. Griffies, and S. Rey, Nucl. Phys. B381, 301
(1992).

[9] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karsch,
Phys. Rev. D 62, 046008 (2000).

[10] K. Skenderis and P.K. Townsend, Phys. Lett. B 468, 46
(1999).

[11] M. Gremm, Phys. Lett. B 478, 434 (2000).
[12] C. Csaki, J. Erlich, T. J. Hollowood, and Y. Shirman,

Nucl. Phys. B581, 309 (2000); C. Csaki, J. Erlich,

and T. J. Hollowood, Phys. Rev. Lett. 84, 5932
(2000).

[13] P. Mayr and S. Stieberger, Nucl. Phys. B412, 502
(1994).

[14] W.D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83,
4922 (1999); J. Garriga, O. Pujolas, and T. Tanaka, Nucl.
Phys. B605, 192 (2001).

[15] C. Csaki, M. Graesser, L. Randall, and J. Terning, Phys.
Rev. D 62, 045015 (2000); C. Csaki, M. Graesser, and G.
Kribs, Phys. Rev. D 63, 065002 (2001).

[16] Higher Transcendental Functions, edited by A. Erdélyi
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