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We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the

presence of a cosmological constant. For the case of negative cosmological constant, the Bañados-

Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for non-

warped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass

density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density.

Other than the well-known black string and soliton spacetimes, all the static solutions possess naked

singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-

known Kasner solutions. The speciality of those static regular solutions and the implication of singular

solutions are also discussed in the context of cylindrical matter collapse. For the case of positive

cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static

solutions are found to be naked singular.
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I. INTRODUCTION

One may define hypercylindrical spacetimes as space-
time configurations having translational symmetries along
some spatial directions. Black p-brane solutions have such
configurations and have been used in various studies in
string theory. In the context of the extra-dimensional mod-
els, a black hole observed in our four-dimensional universe
could be a part of the full dimensional black string or brane
configuration rather than a part of the full dimensional
black hole confined around our universe. Gregory and
Laflamme found that black string or p-brane backgrounds
are generically unstable on the small perturbations in the
string or brane directions. However, some black p-brane
configurations such as Bañados-Teitelboim-Zanelli (BTZ)
black string show absence of the Gregory-Laflamme insta-
bility. The origin and the evolution of such instability have
not been fully understood as yet. Therefore, it is very
important to know the full solution space for string or
brane configurations.

In general relativity, hypercylindrical static vacuum
solutions in five spacetime dimensions were found repeat-
edly by several authors [1–3]. Initially, these solutions
were investigated in the context of the Kaluza-Klein
dimensional reduction, including the interpretation of in-
tegral constants as mass and scalar charge. The correct

interpretation of the integral constants as Arnowitt-Deser-
Misner (ADM) mass density and gravitational tension
and the study on the geometrical properties were given
recently in Refs. [3,4]. The extension to spacetime dimen-
sions higher than five and the inclusion of dilatonic scalar
and antisymmetric form fields are considered in Refs. [5,6]
and in Refs. [7], respectively. (See also references therein.)
Stationary stringlike solutions having a momentum flow
along the string direction were found by Chodos and
Detweiler [2], and their geometrical properties were ana-
lyzed by Kim and Lee [8] in detail. Gravitational energy
conditions on ADM mass and momentum densities and
tension have also been analyzed recently [9], with present-
ing classification of solutions under boost transformations.
In this paper we search for the same type of solutions in

the presence of cosmological constant. The inclusion of
cosmological constant may change the behaviors of space-
time solutions drastically. For instance, the spacetime be-
comes asymptotically nonflat. The Gregory-Laflamme
instability [10] generically occurring for black string or
brane solutions disappears for a certain class of such solu-
tions with a negative cosmological constant [11]. Further-
more, in the presence of a positive cosmological constant, it
was shown that the cosmological anisotropy will be expo-
nentially washed away if the matter fields satisfy the domi-
nant energy condition except for special cases in Bianchi IX
[12]. Note also that our universe has a nonvanishing positive
cosmological constant. Therefore, it is very interesting to
see how string or branelike solutions behave differently in
the presence of cosmological constant.
At the present paper, we consider the case of

four-dimensional spacetime only. In the absence of
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cosmological constant, black string solutions cannot
exist in four dimensions [13], but start to appear from five
dimensions. In the presence of cosmological constant,
however, black string or brane solutions such as BTZ black
string and AdS C metrics in Ref. [14] exist even in four
dimensions. Therefore, instead of considering general
higher dimensional spacetime solutions, we search for a
wider class of string or branelike configurations in four
dimensions for simplicity. In addition, we also examine
whether or not a wider class of the Kasner solutions with
cosmological constant [15] exist.

In Sec. II, we consider a class of stringlike solutions that
are warped along a spatial direction. It is shown that the
BTZ black string is indeed the unique nontrivial stringlike
solution. In Sec. III, general stringlike solutions without
warping factor are considered. Static and time-dependent
solutions are presented for the cases of negative and posi-
tive cosmological constants. In Secs. IV and V, the causal
structures and geometrical properties of those solutions
are summarized. Conclusions are followed in Sec. VI and
physical implications are also discussed.

II. WARPED SOLUTIONS

The action of the Einstein gravity with cosmological
constant in four dimensions is given by

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ: (1)

Here we are interested in searching for stringlike solutions
as general as possible. Let us first summarize some results
on the stringlike solutions for the case of five-dimensional
Einstein gravity without cosmological constant (i.e., � ¼
0). Consider hypercylindrical uniform static vacuum solu-
tions in five dimensions whose metric forms are given by

ds2 ¼ �Fð�Þdt2 þGð�Þðd�2 þ �2d�2
2Þ þ d�2 (2)

in the isentropic coordinate system. We find that the only
solution is the Schwarzschild black string where

Fð�Þ ¼
�
1� K=�

1þ K=�

�
2
; Gð�Þ ¼

�
1þ K

�

�
4
: (3)

This solution appears to be characterized by a single
parameter, namely, the ADM mass density Mð¼ 2KÞ.
However, we expect that there should be another physical
quantity (i.e., the ADM tension) associated with the trans-
lational symmetry along the � direction in this metric.
Actually, the above solution turns out to be a special case
where the ADM tension is given by � ¼ M=2 ¼ K. More
general stringlike solutions having arbitrary values of ten-
sion were indeed obtained by allowing the metric compo-
nent g�� arbitrary, e.g., g�� ¼ 1 ! Zð�Þ, and the solutions
are [3,4]

F ¼
��������1�

K
�

1þ K
�

��������2ð2�aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ða2�aþ1Þ

p
¼ Zð2�aÞ=ð2a�1Þ;

G ¼
�
1þ K

�

�
4
��������1þ

K
�

1� K
�

��������ð2ðaþ1Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ða2�aþ1Þ

p
Þ�2

:

(4)

These solutions are characterized by two parameters
(e.g., mass density and tension) and are still asymptotically
flat at � ¼ constant surfaces. However, most of them have
naked singularity at � ¼ K surface and the only regular
solutions occur when the tension to mass ratio (�=M � a)
is a ¼ 1=2, 2, which correspond to the Schwarzschild
black string and the Kaluza-Klein bubble, respectively.
Now let us consider what happens if a cosmological

constant is present. For simplicity we consider four dimen-
sions. In four-dimensional Einstein gravity with a negative
cosmological constant (�< 0), the well-known black
string metric is the BTZ solution given by

ds2¼�3=�

sin2�

�
�ð�Mþr2Þdt2þ dr2

�Mþr2
þr2d�2þd�2

�
:

(5)

Note that this solution is asymptotically AdS4 at r ! 1.
Note also that the string direction is not uniform, but
warped. In order to find a more general class of stringlike
static vacuum solutions we consider the following metric
ansatz, similarly to the case of the Schwarzschild black
string above,

ds2 ¼ H�2ð�;�Þ½�Fð�Þdt2 þGð�Þðd�2 þ �2d�2Þ
þ Zð�Þd�2�: (6)

Note here that the � dependence is allowed on the warping
factor in addition to the arbitrary � dependence in the g��
component.
The ð�;�Þ component of the field equations gives

@

@�

�
2
@Hð�;�Þ

@�
Zð�Þ �Hð�; �Þ@Zð�Þ

@�

�
¼ 0: (7)

Note first that this equation is easily solved if the warping
factor is a function of � only, i.e., Hð�; �Þ ¼ Hð�Þ. For
such case that the geometry is not warped in the � direc-
tion, we can set H ¼ 1 by redefining the functions F, G
and Z, and it will be considered separately in the next
section.
Now, if the geometry is warped in the � direction, i.e.,

@�H � 0, Eq. (7) gives

Hð�; �Þ ¼
ffiffiffiffiffiffiffiffiffiffi
Zð�Þ

q
½hð�Þ þ gð�Þ�: (8)

Thus, we can set

Zð�Þ ¼ 1; Hð�; �Þ ¼ hð�Þ þ gð�Þ (9)
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by redefining the functions F and G in Eq. (6). We first
consider the case that the warping factor is independent of
the � coordinate, e.g., gð�Þ ¼ 0. Then, solving the rest of
the field equations gives

F ¼ C1tan
2

ffiffiffiffiffi
M

p
lnð�=�0Þ;

G ¼ �M=�3

�2cos2
ffiffiffiffiffi
M

p
lnð�=�0Þ

;

H ¼ C2e
ffiffiffiffiffi
�3

p
� þ C3e

�
ffiffiffiffiffi
�3

p
�:

(10)

Here the integral constants are C1, C2, C3, �0, M and �3

with C2C3 ¼ �=ð12�3Þ, and they must be chosen suitably
to make the metric functions real.

(i) �< 0; In this case the spacetime is asymptotically
AdS4. The warping function in Eq. (10) can be re-
expressed as

H ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=3�3

p
sin

ffiffiffiffiffiffiffiffiffiffiffi��3

p ð�� �0Þ for �3 < 0:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3�3

p
sinh

ffiffiffiffiffiffi
�3

p ð�� �0Þ for �3 > 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3
p ð�� �0Þ for �3 ¼ 0;

(11)

The integral constants are restricted accordingly to
the sign of �3. That is, for �3 < 0, M, C1 > 0 and

C2 ¼ C�
3 with jC2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð12�3Þ

p
, and the metric is

written as

ds2 ¼ 3�3=�

sin2
ffiffiffiffiffiffiffiffiffiffiffi��3

p
�

�
�tan2

ffiffiffiffiffi
M

p
ln�dt2 þ M=ð��3Þ

�2cos2
ffiffiffiffiffi
M

p
ln�

ðd�2 þ �2d�2Þ þ d�2

�
: (12)

Here C1 is absorbed by rescaling the t coordinate, and �� �0 ! � and �=�0 ! � are used. For
�3 > 0, M, C1 < 0, and the metric is

ds2 ¼ 3�3=ð��Þ
sinh2

ffiffiffiffiffiffi
�3

p
�

�
�tanh2

ffiffiffiffiffi
�M

p
ln�dt2 þ �M=�3

�2cosh2
ffiffiffiffiffi
�M

p
ln�

ðd�2 þ �2d�2Þ þ d�2

�
: (13)

Here �M ¼ �M> 0. When �3 ¼ 0, we take M ! 0 and
C1 ! 1 with �M=�3 � G0ð>0Þ and C1M � F0ð>0Þ
fixed. Hence, one finds

ds2 ¼ �3=�

�2

�
�ln2�dt2 þ 1

�2
ðd�2 þ �2d�2Þ þ d�2

�
:

(14)

Here F0 and G0 are absorbed by rescaling the t and �
coordinates. Defining �r ¼ ln�, it may be rewritten as

ds2 ¼ �3=�

�2
ð��r2dt2 þ d�r2 þ d�2 þ d�2Þ: (15)

In order to see what these solutions look like geometrically,
we can re-express them in a more conventional form by
introducing the areal radial coordinate, e.g., r2 ¼ �2G,1

ds2 ¼ 1

H2ð�Þ
�
�ð�M��3r

2Þdt2

þ dr2

�M��3r
2
þ r2d�2 þ d�2

�
: (16)

Here the constant C1 is absorbed by rescaling the t coor-
dinate. The signs of �3 andM and the corresponding form
of the function H are as explained above. Note that the
value of �3 can be set to �1, 0, þ1 by rescaling the

coordinates according to its sign. Therefore, we see that
the case of �3 < 0 is the BTZ black string written in
Eq. (5), and that the cases of �3 > 0 and �3 ¼ 0 are
nothing but dS3 (de Sitter) and M3 (flat) foliations of the
same pure AdS4 spacetime, respectively.
(ii) �> 0; In this case the spacetime is asymptotically

dS4. The metric can be rewritten as in Eq. (16) as
well. However, the case of �3 < 0 is not allowed
since the function H cannot be real valued (e.g.,
jC2j2 ¼ �=ð12�3Þ cannot be positive). Therefore,
the solutions are nothing but dS3 and M3 foliations
of the same dS4 spacetime.

Now let us consider the case that the geometry is warped
not only along the � direction, but also along the �
direction (i.e., g � constant). By solving all other field
equations, we finally obtain

H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��=3ÞCp
sin

�� �0ffiffiffiffi
C

p þ A

Dþ ln�
;

F ¼ B

ðln�þDÞ2 ; G ¼ C

�2ðln�þDÞ2 :
(17)

Here we assumed B, C> 0. By defining r ¼ ln�þD and

rescaling
ffiffiffiffiffiffiffiffiffiffi
B=C

p
t ! t, ð�� �0Þ=

ffiffiffiffi
C

p ! �, A=
ffiffiffiffi
C

p ! A,
the metric in Eq. (6) can be expressed as2

1It should be point out that this coordinate transformation is
not defined well for the case of �3 ¼ 0. However, the metric in
Eq. (16) is well defined in the limit of�3 ! 0 with�M> 0, and
describes the pure AdS4 geometry.

2We point out that the above metric becomes identical to the
four-dimensional analogy of the solution found in Ref. [16] if we
perform triple Wick rotations; r ¼ i�, t ¼ ix and � ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3

p
b0y.
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ds2¼ 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3
p

rsin�þAÞ2
ð�dt2þdr2þd�2þr2d�2Þ:

(18)

This metric looks like a new solution, but it turns out to
be the pure AdS4. Defining x3 ¼ r sin�, x1 ¼ r cos� and
� ¼ x2, we find

ds2 ¼ �3=�

ðx3 � x30Þ2
ð�dt2 þ dx21 þ dx22 þ dx23Þ; (19)

which is the M3 foliation of pure AdS4 manifold. To
conclude, even if we considered a more general class of
warped solutions in the form of Eq. (6), we found that there
are no new solutions other than the known BTZ black
string solutions.

III. SOLUTIONS WITHOUT WARPING FACTOR

In this section, let us consider the case that the geometry
is not warped, i.e., H ¼ 1 in Eq. (6). Here we consider
more general case in which the � and � coordinates are not
necessarily radial and angular coordinates, respectively,
e.g., � ! z and � ! x.

ds2¼�f0ðzÞdt2þfðzÞdz2þf1ðzÞdx2þf2ðzÞdy2: (20)

Note that these spacetimes can be regarded as a uni-
form foliation of three-dimensional spacetimes along
the y direction. Without loss of generality, we may set
fðzÞ ¼ f0ðzÞf1ðzÞf2ðzÞ by redefining the z coordinate.
Thus, the most general form of the metric is given by3:

ds2¼�e2Uðdt2�e2Vdz2Þþe2ðV�WÞdx2þe2Wdy2; (21)

where U, V and W are functions of z only. Solving the
Einstein equation gives

e2U ¼ �

�

�
d

12�

�
1=3

�
2c

1þ de�cz

�
2=3

e�ð2aþcÞz=3;

e2V ¼
�

d

12�

�
2=3

�
2c

1þ de�cz

�
4=3

e2ða�cÞz=3;

e2W ¼
�

d

12�

�
1=3

�
2c

1þ de�cz

�
2=3

eðbþa�cÞz=3;

(22)

with a constraint equation

a2 þ b2

3
¼ c2; (23)

where a, b, c, d and � are integration constants. This
solution was found in Ref. [17]. Note that, when c ¼ 0

and so a ¼ b ¼ 0, the solution reduces to the pureAdS4 or
dS4 metric depending on the sign of �, respectively.
Henceforth, we consider c � 0 case. However, the solution
for c ¼ 0 can be obtained as well by taking the c ! 0 limit
in the solutions with c � 0.
Let us introduce a new coordinate defined as

� ¼
�

2c

1þ de�cz

�
1=3

or e�cz ¼ 1

d

�
2c

�3
� 1

�
: (24)

By suitable rescalings4 of the coordinates t, x and y, the
metric in Eq. (22) can be rewritten as

ds2 ¼ �ð��Þ�2

3

�
1� K3

�3

���������1� K3

�3

��������2ðp�1Þ=3
dt2

þ d�2

ð��Þ�2

3 ð1� K3

�3 Þ
þ �2

��������1� K3

�3

��������ð1�pþqÞ=3
dx2

þ �2

��������1� K3

�3

��������ð1�p�qÞ=3
dy2: (25)

Here K ¼ ffiffiffiffiffi
2c3

p
, p ¼ a=c and q ¼ b=c, hence

p2 þ q2

3
¼ 1: (26)

Note that these solutions are characterized by two integral
constants K, p and the sign of q. We point out that the
metric in Eq. (25) is valid for both signs of �.
For�< 0, the spacetime is asymptotically anti-de Sitter

(� � K) and has a static boundary, allowing us to define
ADM quantities. By using the Hamiltonian formalism in
Refs. [18,19], the gravitational mass and tension densities5

associated with t, x and y translation symmetries for sta-
tionary solutions can be obtained as

M � ð��ÞK3

24�G
p; �1 � �ð��ÞK3

48�G
ðp� qÞ;

�2 � �ð��ÞK3

48�G
ðpþ qÞ;

(27)

respectively. We can see that the solutions denoted by
Eq. (25) are characterized by these three ADM parameters
restricted on the plane given by

Mþ �1 þ �2 ¼ 0: (28)

Furthermore, actual values of these ADM parameters
will be more restricted due to physical conditions for
them although such conditions are not well known for
asymptotically AdS spacetimes. Note that, in Eq. (25),
the spacetime described by �1< � � 0 is the same as

3This choice of metric functions makes the field equation,
Rab ��gab ¼ 0, be decoupled.

4t ! j�jð2jdjp=ð3j�jÞÞ1=3t, x ! ð12j�j=jdjp�
ffiffi
3

p
qÞ1=6x, y !

ð12j�j=jdjpþ
ffiffi
3

p
qÞ1=6y.

5We point out that the ADM densities here are defined for unit
coordinate intervals, not for unit proper distances, as in
Refs. [18,19].
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the spacetime described by 0 � � <1 with opposite sign
of K. Thus we restrict the range of � to be nonnegative.
Suppose K is negative, e.g., �K ¼ �K > 0. Then, Eq. (27)
shows that the corresponding ADM parameters are the
same for both ðK; p; qÞ and (� K, �p, �q). Although
the metrics look different very much for these two cases,
this invariance indicates that both cases actually describe
the same geometry. In fact, this equivalence can be explic-
itly shown by the coordinate transformation �3 þ �K3 ! �3

with K ! �K. Note that we may restrict the value of K be
nonnegative using such symmetry. For given values of M,
�1 and �2, the integral constants appeared in Eq. (27) can
be obtained by

K3 ¼ 24�G

ð��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ðM2 þ �21 þ �22Þ

s
;

p ¼ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 ðM2 þ �21 þ �22Þ

q ;

q ¼ �1 � �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 ðM2 þ �21 þ �22Þ

q :

(29)

The topology of the extra two dimensional space de-
pends on how the exponents of gxx and gyy components

behave. If ð1� p� qÞ=3 � 1, the range of x and y could
be unbounded and these two dimensional space are simply
flat for a given �. Both directions or either one could also
be compactified. On the other hand, if ð1� pþ qÞ=3 ¼ 1
or ð1� p� qÞ=3 ¼ 1, x or y should be an angle coordinate
centered at � ¼ K, respectively, describing a stringlike
object rather than a two brane object. In this case the
solutions are described by the mass density and a single
tension.

The case of p ¼ 1 (i.e., �1 ¼ �2 ¼ �M=2) with nega-
tive� corresponds to the well-known solutions appeared in
Refs. [20–23],

ds2 ¼ �ð��Þ�2

3

�
1� K3

�3

�
dt2 þ d�2

ð��Þ�2

3 ð1� K3

�3 Þ
þ �2ðdx2 þ dy2Þ: (30)

This solution is a black 2-brane metric6 in which the event
horizon locates at � ¼ K and a spacelike curvature singu-
larity exists at � ¼ 0. The double Wick rotations of this
solution for t and x coordinates corresponds to p ¼ �1=2
and q ¼ �3=2 (i.e., ð�1; �2Þ ¼ ð�2M;MÞ or (M, �2M)),
which maybe called as four-dimensional static bubble.7

The metric for q ¼ 3=2 becomes

ds2 ¼ �ð��Þ
3

�2dt2 þ d�2

ð��Þ
3 �2ð1� K3

�3 Þ

þ �2

�
1� K3

�3

�
dx2 þ �2dy2: (31)

Here, the conical singularity at � ¼ K can be removed
by assigning a suitable periodicity on the coordinate x
(e.g., x � xþ 4�

K
ffiffiffiffiffiffiffiffi�3�

p ). Thus, the range of the coordinate

� runs from K to infinity, the geometry is regular every-
where, and its Penrose diagram is given in Figure 1. The
geometrical properties for other cases will be analyzed
in detail below.
The curvature squared for the metric becomes

RabcdRabcd ¼ 4�2

�
1þ 1

6
ð1þ pÞð2p� 1Þ2

�
K6

�6
� 1

�

þ 1

6
ð1� pÞð2pþ 1Þ2

��
�3

K3
� 1

��2 � 1

��
:

(32)

Thus we see that curvature singularities occur at
� ¼ 0 and � ¼ K generically. However, the curvature
singularity exists only at � ¼ 0 for p ¼ 1 and at � ¼ K
for p ¼ �1. These curvature singularities turn out to be
mostly naked as will be explained in more detail below.
The cases where the curvature singularity is enclosed by an
event horizon are only for p ¼ 1 with negative cosmologi-
cal constant.

IV. PROPERTIES OF THE SOLUTIONS WITH
NEGATIVE COSMOLOGICAL CONSTANT

Let us consider the case of negative cosmological con-
stant (�< 0). It can be easily seen that all geometries in
Eq. (25) become pure AdS4 as � ! 1. Thus the spatial
infinity � ¼ 1 is the timelike AdS boundary.

FIG. 1. Penrose diagram of the bubble solution.

6As mentioned above, when one of the x and y coordinates is
compactified properly, this metric becomes the black string
discovered by Lemos [20].

7This solution appeared as the so-called AdS soliton in
Ref. [22].
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For the case of p ¼ �1, the metric becomes

ds2 ¼ �ð��Þ�2

3

�
1� K3

�3

���������1� K3

�3

���������4=3

dt2

þ d�2

���2

3 ð1� K3=�3Þ
þ �2

��������1� K3

�3

��������2=3ðdx2 þ dy2Þ:

(33)

The Penrose diagram of this metric for the range K �
� <1 is given in Fig. 2. Namely, the curvature singularity
at � ¼ K surface is naked. Note that � plays the role of a
time coordinate if 0< �<K. Since � ¼ 0 surface is not a
curvature singularity in this case, the spacetime will be
extended even for negative �. Allowing negative values of
�, we can see that the spacetime covered by�1< � � K
is, in fact, equivalent to the case of p ¼ 1 with
0 � � <1.8 Therefore, we do not need to consider the
region with � < K in this case. We point out that the mass
density of this solution in Eq. (27) is negative and that two
tension densities are equal and positive.

For the cases other than p ¼ �1, �1=2, there are two
curvature singularities at � ¼ 0 and � ¼ K as can be seen
in Eq. (32). The causal structure of this spacetime can be
seen in Fig. 3. The singularity at � ¼ K divides the solution
into two disjoint regions, namely, a time-dependent one
described by � 2 ð0; KÞ and a static one by � 2 ðK;1Þ.

The static spacetime is asymptotically anti-de Sitter and
bounded by a naked singularity inside at � ¼ K. The
geometry in x and y spatial directions is interesting as we
approach to the � ¼ K surface. Whether its spatial distance
shrinks or expands depends on the exponents in Eq. (25).
For a given mass density the sign of this exponents solely
depends on the value of the tension density �i. For instance,
the spatial distance in x shrinks to zero if �1 >�M=2 for
positive mass density and if �1 >M for negative mass

density and vice versa for the spatial distance in y.
For �1 ¼ �M=2ð¼ �2Þ, both directions are regular. Note
that �1 þ �2ð¼ �MÞ should be conserved for a given M.
For M> 0, thus, if one of the spatial distance diverges,
then the other should shrink as � ! K. For M< 0, on
the other hand, both distances shrink if M< �1 <�2M.
The x direction still shrinks, but y direction diverges if
�1 >�2M. If �1 <M, the x direction diverges while the
y direction shrinks. For �1 ¼ �2M (and so �2 ¼ M), the
x direction shrinks but the y direction is regular. These
properties are similar to the case of hypercylindrical space-
times in the absence of cosmological constant in five
dimensions.
It is interesting to see the behaviors of spatial distances.

At t ¼ constant and � ¼ constant, the spatial lengths in
x and y directions with unit coordinate distance are

Lx � ffiffiffiffiffiffiffi
gxx

p ¼ �

�
1� K3

�3

�ð1�pþqÞ=6
and

Ly � ffiffiffiffiffiffiffi
gyy

p ¼ �

�
1� K3

�3

�ð1�p�qÞ=6
;

(34)

respectively. As � ! K, they shrink to zero or finite size, or
diverge to infinity depending on the values of p and q. The
total volume becomes

Vxy � LxLy ¼ �2

�
1� K3

�3

�ð1�pÞ=3
: (35)

Thus we see that it always shrinks to zero as � ! K except
for the case of p ¼ 1 since p � 1 in Eq. (26).
The time-dependent spacetime for 0 � � < K is inter-

esting. Since � plays the role of time, we define a cosmo-
logical proper time as follows,

�t¼
Z �

0

ffiffiffiffiffiffiffiffiffiffi
g�0�0

p
d�0 ¼ 2ffiffiffiffiffiffiffiffiffiffi

3j�jp �
�

2
� tan�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3

�3
�1

s ��
: (36)

FIG. 2. Penrose diagram of the solution with p ¼ �1. Thick
lines denote curvature singularities.

FIG. 3. Penrose diagram of the solution with negative cosmo-
logical constant with p � �1, �1=2. Thick lines denote curva-
ture singularities.

8We use the change of variable �3 � K3 ¼ ��03.
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Thus, � ¼ 0 and K corresponds to �t ¼ 0 and �=
ffiffiffiffiffiffiffiffiffiffi
3j�jp

,
respectively. In terms of the proper time and t ! z the
metric can be rewritten as

ds2 ¼ �d�t2 þ K2

�
sin2��t

2�

�
2=3

��
tan��t

�

�
2ðp�qÞ=3

dx2

þ
�
tan��t

�

�
2ðqþpÞ=3

dy2 þ
�
tan��t

�

��4p=3
dz2

�
: (37)

Here � ¼ ffiffiffiffiffiffiffiffiffiffi
3j�jp

=2 and the coordinates x, y and z are
scaled suitably. Note that this metric becomes exactly the
Kasner solution as � ! 0 [24]. Therefore, this class of
solutions we found is the extension of Kasner solution in
the presence of negative cosmological constant. We point
out that this AdS-Kasner solution starts from an initial
singularity, but ends up with a final singularity, contrary
to the case of Kasner solutions, in a finite time (�=2�).
Furthermore, the total spatial volume shrinks to zero at the
future infinity due to the oscillating overall scale factor.

V. PROPERTIES OF THE SOLUTIONS WITH
POSITIVE COSMOLOGICAL CONSTANT

In this section, we analyze the properties for the case of
positive cosmological constant. For �> 0, we re-express
the metric in (25) as

ds2 ¼ ���2

3

�
K3

�3
� 1

���������K
3

�3
� 1

��������2ðp�1Þ=3
dt2

þ d�2

��2

3 ðK3

�3 � 1Þ
þ �2

��������K
3

�3
� 1

��������ð1�pþqÞ=3
dx2

þ �2

��������K
3

�3
� 1

��������ð1�p�qÞ=3
dy2: (38)

First of all, we see that the metric with K ¼ 0 corresponds
to the pure de Sitter spacetime where the �-coordinate
plays the role of time.9 If K � 0, we can set it to be �1
by rescaling coordinates. As described below Eq. (28) for
the case of�< 0, we can also restrict the range of � and K
as 0 � � <1 and K � 0, respectively.

The causal structures of the spacetimes in this case can
be easily understood since the only difference from the
case of �< 0 is that the signs of gtt and g�� are flipped.

Consequently, the role of t and � coordinates are swapped
and so the Penrose diagrams are same as those of the�< 0
case, but tilted by 90 degrees.

The case of p ¼ 1 is shown in Fig. 4. The curvature
singularity locates at � ¼ 0, which is naked. The spacetime
region in 0< �< K is static, but the region in K < �<1

becomes time-dependent, describing a Kasner spacetime.
We point out that the spacetime with p ¼ �1=2 is indeed
the same as that with p ¼ 1. In the case of �< 0, both
metrics are related through the double Wick rotations,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=3
p

t $ ix, while in the case of �> 0 the two metrics

are simply related by renaming
ffiffiffiffiffiffiffiffiffi
�=3

p
t $ x.

The Penrose diagram for the case of p ¼ �1 is given by
Fig. 5. The metric in the range of � < K turns out to be
equivalent to the metric with p ¼ 1 as in the case of�< 0.
The left hand side in the Penrose diagram describes a
cosmological spacetime starting from an initial singularity
and ending up with a de Sitter spacetime. The right hand
side corresponds to a cosmological spacetime starting from
a de Sitter metric which collapses to a singularity in the
future.
Finally, the causal structures for the cases other than

p ¼ �1, �1=2 can be seen in the Penrose diagram
in Fig. 6. Explicit form of the metric describing the K �
� <1 is given by

ds2 ¼ �d�t2 þ K2

�
sinh2��t

2�

�
2=3

��
tanh��t

�

�
2ðp�qÞ=3

dx2

þ
�
tanh��t

�

�
2ðqþpÞ=3

dy2 þ
�
tanh��t

�

��4p=3
dz2

�
:

(39)

Here � ¼ ffiffiffiffiffiffiffi
3�

p
=2 and the coordinates x, y and z are

scaled suitably. The comoving time �t is related to the �
coordinate by

FIG. 4. Penrose diagram of the solution with p ¼ 1, �1=2 in
the case of �> 0.

FIG. 5. Penrose diagram of the solution with p ¼ �1 in the
case of �> 0.

9� ¼ e
ffiffiffiffiffiffiffi
�=3

p
t̂ and t ¼ z=

ffiffiffiffiffiffiffiffiffi
�=3

p
give the coordinate chart which

covers only half the full de Sitter spacetime.
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�t ¼
Z �

K

ffiffiffiffiffiffiffiffiffiffiffiffi
jg�0�0 j

q
d�0 ¼ 1

�
log

0
B@

ffiffiffiffiffiffi
�3

K3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3

K3
� 1

s 1
CA: (40)

This class of solutions is indeed the extension of the
Kasner solution in the presence of positive cosmological
constant.

VI. SUMMARYAND DISCUSSIONS

We have investigated string or branelike solutions of
four-dimensional vacuum Einstein equations in the pres-
ence of cosmological constant. In the case of warped
stringlike solutions, we have shown that the BTZ black
string is the only solution in the form of metrics given
in Eq. (6).10 The general solutions for the metric form (20)
in the case of nonwarped stringlike configurations are
given by Eq. (25). When the cosmological constant is
negative, these nonwarped stringlike configurations are
characterized by ADM mass (M) and tension densities
ð�1; �2Þ with a constraint of �1 þ �2 ¼ �M. The case of
equal tension densities (i.e., �1 ¼ �2 ¼ �M=2) turns out
to be the well-known black 2-brane metric (30). The case
that one of the tension densities is twice of the other with
opposite sign (e.g., �1 ¼ ��2=2 ¼ M) is the AdS soliton
spacetime (31) whose geometry is regular everywhere.
The cases other than these two possess a naked singularity.
The time-dependent solutions shown in Fig. 3 can be
regarded as the AdS extension of the well-known Kasner
solutions. For the positive cosmological constant, on the
other hand, the time-dependent metric turns out to be the
Kasner-de Sitter spacetime [15] and the time independent
solutions possess naked singularities.

It is worth considering the stability of solutions we
described. In the absence of the cosmological constant,
it was shown [26] that both the black string and the

Kaluza-Klein bubble solutions in spacetime dimensions
higher than or equal to five are unstable due to the
Gregory-Laflamme instability [10]. One may expect that
the black 2-brane metric in Eq. (30) is also unstable due to
the Gregory-Laflamme instability occurring in generic
brane or stringlike spacetimes. According to the Gubser-
Mitra conjecture [27], however, this expectation might be
wrong. The conjecture states that a black string or brane
spacetime is stable if and only if it is thermodynamically
stable. Being considered as a thermodynamic system, the
black 2-brane in Eq. (30) givesM ¼ ð8�2k3B=3Gj�j2ℏ3ÞT3

where the black hole temperature T ¼ ðℏj�j=4�kBÞK is
used. Thus the heat capacity for the black hole is always
positive, indicating classical stability of this spacetime
through the Gubser-Mitra conjecture. Indeed the classical
linearized stability has been studied for this background
spacetime, showing the absence of instability [28]. In
addition, Chen, Schleich and Witt [29] showed that the
warped AdS black string is also stable.
The static bubble solution in Eq. (31) turns out to be

stable as well. This solution is a special case of p ¼ 2
in Ref. [22], where Horowitz and Myers proposed the so-
called new positive energy theorem. According to it, this
metric is the ground state among all spacetime configura-
tions having the same boundary behaviors. Thus this
spacetime is presumably stable under perturbations.
Actually, the similar solution in the case of p ¼ 3 in
Ref. [22], which is called as the AdS soliton spacetime in
five dimensions, is shown to be stable under small pertur-
bations [30].
We have seen that solutions for the class of metric

form (20) are mostly singular except for several regular
solutions for specific values of parameters. What the im-
plications of this fact would be? One may simply discard
all these singular solutions. Or, since these metrics are
static vacuum solutions, they might be the end states of
matter collapses. Note that the physical parameters char-
acterizing the initial matter distribution in such processes
could be arbitrary as long as they satisfy suitable phys-
ical conditions. Therefore, the appearance of many naked
singular solutions through such dynamical processes
could be an example of violating the cosmic censorship
conjecture.
On the other hand, however, there might be a third

scenario. For the spacetime solutions having naked singu-
larities at the present consideration, their stability behav-
iors are not known as yet explicitly. We speculate though
that these four-dimensional spacetimes are unstable, ex-
cept for the case that the singularities are located at the past
(future) infinity. In the case of five dimensions without
having cosmological constant, these singular solutions
are known to be unstable under small perturbations [5].
If this speculation is true, such instability probably drives
the matter collapse to some stable states before they reach
to singular states, avoiding a violation of the cosmic

FIG. 6. Penrose diagram of the solution with p � �1,�1=2 in
the case of �> 0.

10We mention that a warped BTZ black 2-brane solution is
recently found even in five-dimensional gravity with a Gauss-
Bonnet term [25].
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censorship conjecture. Actually, a recent numerical study
showed that, although there exists an electrovacuum solu-
tion containing a naked singularity, dynamical collapses of
charged scalar fields in (2þ 1) anti-de Sitter background
do not produce such a singular solution [31].

In the presence of positive cosmological constant, it was
shown that the Kasner-de Sitter spacetime is unstable
because the tensor mode perturbations increase indefinitely
at the initial anisotropic stage [15]. However, it was also
shown that the spacetime with p ¼ 1 is stable under the
perturbation [32,33].
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