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We systematically study black holes in the Horava-Lifshitz theory by following the kinematic approach,

in which a horizon is defined as the surface at which massless test particles are infinitely redshifted.

Because of the nonrelativistic dispersion relations, the speed of light is unlimited, and test particles do not

follow geodesics. As a result, there are significant differences in causal structures and black holes between

general relativity (GR) and the Horava-Lifshitz theory. In particular, the horizon radii generically depend

on the energies of test particles. Applying them to the spherical static vacuum solutions found recently in

the nonrelativistic general covariant theory of gravity, we find that, for test particles with sufficiently high

energy, the radius of the horizon can be made as small as desired, although the singularities can be seen, in

principle, only by observers with infinitely high energy. In these studies, we pay particular attention to the

global structure of the solutions, and find that, because of the foliation-preserving-diffeomorphism

symmetry, DiffðM;F Þ, they are quite different from the corresponding ones given in GR, even though

the solutions are the same. In particular, the DiffðM;F Þ does not allow Penrose diagrams. Among the

vacuum solutions, some give rise to the structure of the Einstein-Rosen bridge, in which two asymptoti-

cally flat regions are connected by a throat with a finite nonzero radius. We also study slowly rotating

solutions in such a setup, and obtain all the solutions characterized by an arbitrary function A0ðrÞ. The case
A0 ¼ 0 reduces to the slowly rotating Kerr solution obtained in GR.
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I. INTRODUCTION

Horava-Lifshitz (HL) theory, proposed recently by
Horava [1], and motivated by the Lifshitz theory of a scalar
field with anisotropic scalings [2],

x ! ‘x; t ! ‘zt; ðz � 1Þ; (1.1)

has attracted a lot of attention, due to its several remarkable
features. In particular, the effective speed of light in this
theory diverges in the UV, which could potentially resolve
the horizon problem without invoking inflation [3]. The
spatial curvature is enhanced by higher-order curvature
terms, and this opens a new approach to investigating
both the flatness problem and bouncing universes [4–6].
In addition, in the superhorizon region, scale-invariant
curvature perturbations can be produced without inflation
[3,7–10]. The perturbations become adiabatic during slow-
roll inflation driven by a single field, and the comoving
curvature perturbation is constant [11]. For more details,
we refer readers to [12–16].

Despite all these remarkable features, the theory is
plagued with three major problems: ghosts, strong cou-
pling, and instability. Although they are different, their

origins are the same: the breaking of the general covariance
[17]. The preferred time that breaks general covariance
leads to a reduced set of diffeomorphisms,

~t ¼ t� fðtÞ; ~xi ¼ xi � �iðt;xÞ; (1.2)

often denoted by DiffðM;F Þ. As a result, a spin-0 graviton
appears. This mode is potentially dangerous and may cause
the instability, ghost, and strong coupling problems, which
could prevent the recovery of general relativity (GR) in the
IR [12–16].
To resolve these problems, various modifications have

been proposed. But, so far there are only two that seem to
have the potential to solve these problems: One is due to
Blas, Pujolas, and Sibiryakov (BPS) [18], who introduced a
vector field

ai ¼ @i lnðNÞ;
where N denotes the lapse function.1 The other is due to
Horava and Melby-Thompson (HMT) [22], in which the
projectability condition
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1It is clear that the BPS model works only for the N ¼ Nðt; xÞ
case, in which the projectability condition N ¼ NðtÞ is broken.
Otherwise, the vector field ai will vanish identically. However,
violation of the projectability condition often leads to the incon-
sistency problem [19]. But, as shown in [20], this is not the case
in the BPS model. The inclusion of the vector field ai gives rise
to a proliferation of independent coupling constants [21], which
could potentially limit the predictive powers of the theory.

PHYSICAL REVIEW D 84, 084040 (2011)

1550-7998=2011=84(8)=084040(25) 084040-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.084040


N ¼ NðtÞ
was assumed. In the HMT setup, the foliation-preserving-
diffeomorphisms DiffðM;F Þ are extended to include a
local Uð1Þ symmetry, so that the total symmetry of the
theory is enlarged to

Uð1Þ2DiffðM;F Þ: (1.4)

This symmetry is realized by introducing a Uð1Þ gauge
field and a Newtonian prepotential, with which it can be
shown that the spin-0 graviton is eliminated [22,23]. As a
result, the instability problem does not exist in this setup.
Another remarkable feature of the setup is that it forces the
coupling constant � to take exactly its relativistic value
�GR ¼ 1. Since both the ghost and strong coupling prob-
lems are due precisely to the deviation of � from 1, this
implies that these two problems are also resolved.

However, it has been argued [24] that the introduction of
the Newtonian prepotential is so strong that actions with
� � 1 also have theUð1Þ2DiffðM;F Þ symmetry. Although
the spin-0 graviton is still eliminated for � � 1, as shown
explicitly by da Silva for de Sitter and anti–de Sitter back-
grounds [24], and Huang and Wang for the Minkowski
background [25], the ghost and strong coupling problems
arise again. Indeed, it was shown [25] that to avoid the
ghost problem, � must satisfy the constraints

� � 1 or � < 1=3:

In addition, the coupling becomes strong for processes with

energy higher than Mplj�� 1j5=4 in the flat Friedmann-

Robertson-Walker (FRW) background, and Mplj�� 1j3=2
in a static weak gravitational field. It should be noted that
for both cases to have nonvanishing gravitational perturba-
tions, matter fields are necessarily present [25].

To solve the strong coupling problem [26], two different
approaches have been proposed. One is the BPSmechanism
[27], in which a UV cutoff M� is introduced. By properly
choosing the coupling constants involved in the theory, BPS
showed thatM� can be lower than�SC, where�SC denotes
the strong coupling energy scale of the theory. Then, for
processes with energies higher thanM�, high-order deriva-
tive terms become important and need to be taken into
account. The appearance of these terms change the scalings
of the theory. In particular, all the irrelevant (nonrenorma-
lizable) terms are turned into either marginal (strictly re-
normalizable) or relevant (super-renormalizable) ones. As a
result, the would-be strong coupling scale �SC disappears,
due to the effects of high-order derivative terms, and the
theory becomes renormalizable.2 The other approach is to
provoke the Vainshtein mechanism [30], as shown recently

in the spherical static [12] and cosmological [28] space-
times in the SVW setup [29].
In this paper, we leave the investigations of the strong

coupling problem to a future study, and focus on another
important issue: black holes in the HL theory. In the HL
theory, due to the breaking of the general covariance, the
dispersion relations of particles usually contain high-order
momentum terms [12–16],

!2
k ¼ m2 þ k2

�
1þ Xz�1

n¼1

�n

�
k

Mn

�
2n
�
; (1.5)

for which the group velocity is given by [31]

vk ¼ k

!

�
1þ Xz�1

n¼1

ðnþ 1Þ�n

�
k

Mn

�
2n
�
: (1.6)

As an immediate result, the speed of light becomes un-
bounded in the UV. This makes the causal structure of the
spacetimes quite different from that given in GR, where the
light cone of a given point p plays a fundamental role in
determining the causal relationship of p to other events
[cf. Fig. 1]. However, once the general covariance is bro-
ken, the causal structure will be dramatically changed. For
example, in the Newtonian theory, time is absolute and the
speeds of the signals are not limited. Then, the causal
structure of a given point p is uniquely determined by
the time difference, �t � tp � tq, between the two events.

In particular, if �t > 0, the event q is to the past of p; if
�t < 0, it is to the future; and if �t ¼ 0, the two events are
simultaneous.
Another consequence of the breaking of the general

covariance is that now free particles do not follow geo-
desics. This immediately makes all the definitions of black
holes given in GR invalid [32–35]. To provide a proper
definition of black holes, anisotropic conformal boundaries
[36] and kinematics of particles [37] have been studied
within the HL framework. In this paper, we shall adopt the
approach of Kiritsis and Kofinas (KK) [38], where a hori-
zon is defined as the infinitely redshifted two-dimensional
(closed) surface of massless test particles. Clearly, such a
definition reduces to that given in GR when the dispersion

p

Future

Past

Future

Past

Simultaneous

    (a)                                            (b)

p

t

FIG. 1. (a) The light cone of the event p in special relativity.
(b) The causal structure of the point p in Newtonian theory.

2While this seems a very attractive mechanism, it turns out
[28] that it cannot be applied to the Sotiriou-Visser-Weinfurtner
(SVW) generalization [29] (see also [3]) because of the insta-
bility of the spin-0 graviton [28]. However, in the HMT setup,
the Minkowski spacetime is stable, and the BPS mechanism may
now become available.
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relation is relativistic [where �n ¼ 0, as shown in
Eq. (1.5)].

It should be noted that black holes in the HL theory with
or without the projectability condition have been exten-
sively studied, mainly using the definition borrowed di-
rectly from GR. In this paper, we shall show explicitly how
these definitions are changed by considering some particu-
lar examples, found in the HMT setup with � ¼ 1.

Another interesting approach is the equivalence between
the HL theory (without the projectability condition) and
the Einstein-aether theory in the IR [39], where the former
is equivalent to the latter for the case where the aether
vector field u� is hypersurface-orthogonal.3 From such

studies one already sees the difficulties in defining black
holes, because of the fact that different modes may have
different velocities even in the IR. In [39], black holes
are defined to possess both a metric horizon and a spin-0
mode horizon. Since the equivalence holds only in the IR,
it is still unclear how to extend such definitions to high-
energy scales, where high-order curvature terms become
important.

Specifically, the paper is organized as follows: In Sec. II,
we briefly review the HMT setup (with � ¼ 1), while in
Sec. III, we consider spherically symmetric black holes in
the HL theory with the KK approach [38]. To keep
our formulas as applicable as possible, in only this section
we consider spacetimes that may or may not satisfy the
projectability condition. We find that horizons are, in
general, observer dependent, and that with sufficiently
high energy, the radius of a horizon can be made arbitrarily
small. This is consistent with the fact that the speed of
light now becomes unbounded in the UV. In Sec. IV,
we study all the vacuum diagonal (Ni ¼ 0) solutions
obtained in the HMT setup [22,40,41], paying particular
attention to their global structure. Using the definition of
horizons, we study their existence in various cases. It is
remarkable that in some cases the structures of the
Einstein-Rosen bridge exist, where a throat with finite
nonzero radius connects two asymptotically flat regions.
Because of the restricted diffeomorphisms (1.4), Penrose
diagrams are not allowed. However, for the sake of
comparison, we present the corresponding Penrose dia-
grams obtained by assuming that the general transforma-
tions are still allowed. In Sec. V, we study the nondiagonal
(Ni � 0) vacuum solutions obtained in [40,41], while in
Sec. VI, our main conclusions are presented. There are also
two appendixes. In Appendix A, the 3-tensor Fij for the

spherical spacetimes is given, while in Appendix B, we
study slowly rotating solutions in the HMT setup, and
obtain all the solutions, which include the Kerr solution
given in GR.

II. NONRELATIVISTIC GENERAL
COVARIANT HL THEORY

The nonrelativistic general covariant HL theory is de-
scribed by the action [22,23]

S ¼ �2
Z

dtd3xN
ffiffiffi
g

p ðLK �LV þL’ þLA þ ��2LMÞ;
(2.1)

where g ¼ detgij, and

LK ¼ KijK
ij � K2;

L’ ¼ ’Gijð2Kij þrirj’Þ;
LA ¼ A

N
ð2�g � RÞ:

(2.2)

Here �g is a coupling constant and

Kij ¼ 1

2N
ð� _gij þriNj þrjNiÞ;

Gij ¼ Rij � 1

2
gijRþ�ggij;

(2.3)

where the Ricci terms all refer to the 3-metric gij. LM is

the matter Lagrangian density, and LV is a
Diffð�Þ-invariant local scalar functional. With the assump-
tions that the highest order derivatives are 6, and the parity
is conserved, LV takes the general form [29]

LV ¼ �2g0 þ g1Rþ 1

�2
ðg2R2 þ g3RijR

ijÞ

þ 1

�4
ðg4R3 þ g5RRijR

ij þ g6R
i
jR

j
kR

k
i Þ

þ 1

�4
½g7Rr2Rþ g8ðriRjkÞðriRjkÞ�; (2.4)

where the coupling constants gsðs ¼ 0; 1; 2; . . . ; 8Þ are all
dimensionless. The relativistic limit in the IR requires
g1 ¼ �1 and �2 ¼ 1=ð16�GÞ.
Then, it can be shown that the Hamiltonian and momen-

tum constraints are given, respectively, byZ
d3x

ffiffiffi
g

p ðLK þLV � ’Gijrirj’Þ ¼ 8�G
Z

d3x
ffiffiffi
g

p
Jt;

(2.5)

rjð�ij � ’GijÞ ¼ 8�GJi; (2.6)

where

Jt � 2
�ðNLMÞ

�N
;

�ij � �Kij þ Kgij;

Ji � �N
�LM

�Ni :

(2.7)

3In the spherically symmetric case, this is not a restriction as
the aether field u� is now always hypersurface-orthogonal.
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Variation of the action (2.1) with respect to ’ and A
yields

G ijðKij þrirj’Þ ¼ 8�GJ’; (2.8)

R� 2�g ¼ 8�GJA; (2.9)

where

J’ � ��LM

�’
; JA � 2

�ðNLMÞ
�A

: (2.10)

On the other hand, the dynamical equations now read

1

N
ffiffiffi
g

p ½ ffiffiffi
g

p ð�ij � ’GijÞ�;t ¼ �2ðK2Þij þ 2KKij

þ 1

N
rk½Nk�ij � 2�kðiNjÞ�

þ 1

2
ðLK þL’ þLAÞgij

þ Fij þ Fij
’ þ Fij

A þ 8�G�ij;

(2.11)

where ðK2Þij � KilKj
l , fðijÞ � ðfij þ fjiÞ=2, and

Fij � 1ffiffiffi
g

p �ð� ffiffiffi
g

p
LVÞ

�gij
¼ X8

s¼0

gs�
nsðFsÞij;

Fij
’ ¼ X3

n¼1

Fij
ð’;nÞ;

Fi
’ ¼ ðK þr2’Þri’þ Ni

N
r2’;

Fij
A ¼ 1

N
½ARij � ðrirj � gijr2ÞA�;

(2.12)

where ns ¼ ð2; 0;�2;�2;�4;�4;�4;�4;�4Þ, and the

geometric 3-tensors ðFsÞij and Fij
ð’;nÞ are given in [23].

The stress 3-tensor �ij is defined as

�ij ¼ 2ffiffiffi
g

p �ð ffiffiffi
g

p
LMÞ

�gij
: (2.13)

The matter quantities ðJt; Ji; J’; JA; �ijÞ satisfy the con-

servation lawsZ
d3x

ffiffiffi
g

p �
_gkl�

kl� 1ffiffiffi
g

p ð ffiffiffi
g

p
JtÞ;t

þ 2Nk

N
ffiffiffi
g

p ð ffiffiffi
g

p
JkÞ;t�2 _’J’� A

N
ffiffiffi
g

p ð ffiffiffi
g

p
JAÞ;t

�
¼0; (2.14)

rk�ik � 1

N
ffiffiffi
g

p ð ffiffiffi
g

p
JiÞ;t � Jk

N
ðrkNi �riNkÞ � Ni

N
rkJ

k

þ J’ri’� JA
2N

riA ¼ 0: (2.15)

III. BLACK HOLES IN HL THEORY

KK considered a scalar field with a given dispersion
relation Fð�Þ [38]. In the geometrical optical approxima-
tions, � is given by � ¼ gijk

ikj, where ki denotes the

3-momentum of the corresponding spin-0 particle. With
this approximation, the trajectory of a test particle is
given by

Sp �
Z 1

0
Lpd�

¼ 1

2

Z 1

0
d�

�
c2N2

e
_t2 þ e½Fð�Þ � 2�F0ð�Þ�

�
; (3.1)

where e is a one-dimensional einbein, and � is now con-
sidered as a functional of t, xi, _t, _xi, and e, given by the
relation

�½F0ð�Þ�2 ¼ 1

e2
gijð _xi þ Ni _tÞð _xj þ Nj _tÞ; (3.2)

with _t � dt=d�, etc. For details, we refer readers to [38].
It should be noted that KK obtained the above action

starting from a scalar field. So, strictly speaking, it is valid
only for spin-0 test particles. However, what is really
important in their derivations is the dispersion relationship
Fð�Þ. As shown in [42], a spin-2 particle has a similar
dispersion relation. It is expected that spin-1 test particles,
such as photons, should have a similar dispersion relation
too [31,38]. Therefore, in the rest of this paper and without
proof, we simply consider the action (3.1) to describe all
massless test particles.
Spherically symmetric static spacetimes in the frame-

work of the HMT setup were studied systematically in
[40,41], and the metric for static spherically symmetric
spacetimes that preserve the form of Eq. (1.2) with the
projectability condition can be cast in the form [43]4

ds2 ¼ �c2dt2 þ e2�ðdrþ e���cdtÞ2 þ r2d2�; (3.3)

where d2� ¼ d�2 þ sin2�d	2, and

� ¼ �ðrÞ; � ¼ �ðrÞ; Ni ¼ fce���; 0; 0g: (3.4)

The corresponding timelike Killing vector is 
 ¼ @t, and
the diagonal case Nr ¼ 0 corresponds to � ¼ �1.
However, to study black hole solutions in a more general

case, in this (and only in this) section, we also consider the
case without the projectability condition, and write the
metric as

ds2 ¼ �N2c2dt2 þ 1

f
ðdrþ NrcdtÞ2 þ r2d2�; (3.5)

where N, f, and Nr are all functions of r. Without loss of
generality, in the rest of the paper we shall set c ¼ 1, which

4Note the slight difference between the gtr term defined here
and the one defined in [41,43].
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is equivalent to the coordinate transformations x0 ¼ ct,
�Nr ¼ Nr=c. Taking

Fð�Þ ¼ �n ðn ¼ 1; 2; . . .Þ; (3.6)

Eq. (3.2) yields

� ¼
�
_rþ Nr _t

ne
ffiffiffi
f

p
�
2=ð2n�1Þ �

�
D
e2

�
1=ð2n�1Þ

: (3.7)

Inserting this into Eq. (3.1), we find that, for radially
moving particles, Lp is given by

L p ¼ N2

2e
_t2 þ 1

2
ð1� 2nÞe1=ð1�2nÞDn=ð2n�1Þ: (3.8)

Then, from the equation �Lp=�e ¼ 0 we obtain

N2 _t2 � e2ðn�1Þ=ð2n�1ÞDn=ð2n�1Þ ¼ 0: (3.9)

On the other hand, since �Lp=�t ¼ 0, the Euler-Lagrange

equation

�Lp

�t
� 1

d�

�
�Lp

� _t

�
¼ 0

yields

N2 _t� e2ðn�1Þ=ð2n�1Þ N
rffiffiffi
f

p D1=½2ð2n�1Þ� ¼ eE; (3.10)

where E is an integration constant, representing the total
energy of the test particle.

To solve Eqs. (3.9) and (3.10), we first consider the case
n ¼ 1, which corresponds to the relativistic dispersion
relation. From such considerations, we shall see how to
generalize the definition of black holes given in GR to the
HL theory, where n is generically different from 1, as
required by the renormalizability condition in the UV.

A. n ¼ 1

In this case, Eqs. (3.9) and (3.10) reduce, respectively, to

N2 _t2 �D ¼ 0; (3.11)

N2 _t� Nr

ffiffiffiffiffi
D
f

s
¼ eE: (3.12)

Equation (3.11) simply tells us that now the particle moves
along null geodesics. The above equations can be easily
solved according to whether Nr vanishes or not.

1. Nr ¼ 0

When Nr ¼ 0, from Eq. (3.11) we find

dt ¼ � dr

N
ffiffiffi
f

p ; (3.13)

where ‘‘þ’’ (‘‘�’’) corresponds to outgoing (ingoing) light
rays. If f has an ath order zero and N2 a bth order zero at a
surface, say, r ¼ rg, that is,

f ¼ f0ðrÞðr� rgÞa; N ¼ N0ðrÞðr� rgÞb=2; (3.14)

where N0ðrgÞ � 0 and f0ðrgÞ � 0, then from the above

equations we find that, in the neighborhood of r ¼ rg,

t ’ t0 � 1

N0

ffiffiffiffiffi
f0

p
8<
:

2
2�ðaþbÞ ðr� rgÞ1�ðaþbÞ=2 aþ b � 2

lnjr� rgj aþ b ¼ 2:

(3.15)

Therefore, when

aþ b � 2; ðn ¼ 1Þ; (3.16)

the time t becomes unbounded, jtj � 1, as r ! rg. Hence,

the light rays are infinitely redshifted at this surface. This
indicates that an event horizon might exist at r ¼ rg,

provided that the spacetime has no curvature singularity
there. A simple example is the Schwarzschild solution,
N2 ¼ f ¼ ðr� rgÞ=r, which is also a solution of the HL

theory without the projectability condition, but with the
detailed balance condition softly broken [44], and for
which we have a ¼ b ¼ 1. Clearly, it satisfies the above
condition with the equality, so r ¼ rg indeed defines a

horizon.

2. Nr � 0

When Nr � 0, Eq. (3.11) yields

t ¼ t0 þ
Z �dr

N
ffiffiffi
f

p � �Nr
; (3.17)

where � ¼ þ1 (� ¼ �1) corresponds to outgoing
(ingoing) light rays. If

HðrÞ � N
ffiffiffi
f

p � �Nr (3.18)

has �th order zero at rg,

HðrÞ ¼ H0ðrÞðr� rgÞ�; (3.19)

with H0ðrgÞ � 0, we find that in the neighborhood r ¼ rg
Eq. (3.17) yields

t ¼ t0 þ �

H0ðrgÞ
1

1� �

� ðr� rgÞ1�� � � 1

lnðr� rgÞ � ¼ 1:
(3.20)

Clearly, when

� � 1; ðn ¼ 1Þ; (3.21)

jtj becomes unbounded as r ! rg, and an event horizon

might exist.
The Schwarzschild solution in the Painlevé-Gullstrand

coordinates [45] is given by
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N2
Sch ¼ fSch ¼ 1; Nr

Sch ¼ �1

ffiffiffiffiffi
rg
r

r
; (3.22)

where �1 ¼ �1. As shown in [40,41], this is also a vacuum
solution of the HL theory in the HMT setup [22]. Then, we

find thatHðrÞ ¼ 1� �1�
ffiffiffiffiffiffiffiffiffiffi
rg=r

q
. Thus, for the solution with

�1 ¼ þ1, the time of the outgoing null rays, measured by
asymptotically flat observers, becomes unbounded at rg,

and for the solution with �1 ¼ �1, the time of the ingoing
null rays becomes unbounded. Therefore, an event horizon
is indicated to exist at r ¼ rg in both cases.

In review of the above, KK generalized the notion
of black holes defined in GR to the case of a nonstandard
dispersion relation [38]. In particular, a horizon is defined
as a surface on which light rays are infinitely redshifted.
It should be noted that this redshift should be understood
as measured by asymptotically flat observers, at which
Nðr � rgÞ ’ 1 and Nrðr � rgÞ ’ 0, with r being the

geometric radius, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
A=4�

p
, of the 2-sphere: t, r ¼

Constants, where A denotes the area of the 2-sphere.

B. n � 2

In this case, eliminating e from Eqs. (3.9) and (3.10) we
find that

Xn � pðrÞX � qðr; EÞ ¼ 0; (3.23)

where

X �
� ffiffiffiffiffi

D
p
_t

�
1=ðn�1Þ ¼

�jr0 þ Nrj
n

ffiffiffi
f

p
�
1=ðn�1Þ

;

pðrÞ � Nrffiffiffi
f

p ; qðr; EÞ � EN1=ðn�1Þ; (3.24)

with r0 � _r= _t ¼ dr=dt. To solve the above equation, again
it is found convenient to consider the cases Nr ¼ 0 and
Nr � 0 separately.

1. Nr ¼ 0

When Nr ¼ 0, Eq. (3.23) has the solution

t ¼ t0 þ �
Z dr

nEðn�1Þ=n ffiffiffi
f

p
N1=n

; (3.25)

where � ¼ þ1 corresponds to outgoing rays, and � ¼ �1
to ingoing rays. Thus, if f has an ath order zero and N2 a
bth order zero at r ¼ rg, as given by Eq. (3.14), we haveffiffiffi
f

p
N1=n � ðr� rgÞðaþb=nÞ=2. Then, from the above, we find

that the time t, measured by asymptotically flat observers,
becomes infinitely large at r ¼ rg, provided that [38]

aþ b

n
� 2: (3.26)

For the solutions with the projectability condition (N ¼ 1,
b ¼ 0), this is possible only when a � 2.

Considering again the Schwarzschild solution,
N2 ¼ f ¼ ðr� rgÞ=r, one finds that this does not satisfy

the condition (3.26) with n � 2. Therefore, the
Schwarzschild black hole in GR is no longer a black hole
in the HL theory, because of the nonrelativistic dispersion
relations (1.5). This is expected, since even in GR when
quantum effects are taken into account, such as the
Hawking radiation, classical black holes are no longer
black.

2. Nr � 0

In this case, let us consider an ingoing ray r0 < 0.
Suppose there is a horizon located at r ¼ rH. Then
r0ðrÞ ’ 0 as we approach the horizon. Thus, if Nr > 0
and bounded away from zero, ðr0 þ NrÞ will also be posi-
tive, when the ray is sufficiently near the horizon.
Conversely, if Nr < 0 and bounded away from zero, then
ðr0 þ NrÞ will be negative sufficiently near the horizon.
DefiningH byHðr; EÞ � r0, we find that for an ingoing ray
near the horizon, we have

t ¼ t0 þ
Z dr

Hðr; EÞ ; (3.27)

Hðr; EÞ ¼ �n
ffiffiffi
f

p
Xn�1 � Nr; (3.28)

where

� ¼
�
1 Nr > 0
�1 Nr < 0:

(3.29)

Dividing (3.23) by X and solving for Xn�1, we obtain

Xn�1 ¼ Nrffiffiffi
f

p þ EN1=n�1

X
:

Substituting this into (3.28), we find

H ¼ ð�n� 1ÞNr þ �n
ffiffiffi
f

p EN1=n�1

X
: (3.30)

It follows that if H has a zero at r ¼ rH, then

Xjr¼rH ¼ � �n
ffiffiffi
f

p
EN1=n�1

ð�n� 1ÞNr : (3.31)

The expression on the right-hand side is positive (negative)
for � ¼ �1 (� ¼ 1). Thus, H can have a zero only if
� ¼ �1. Thus, we will henceforth consider only this
case. Differentiation of (3.30) with respect to r yields

H0ðrÞ ¼ �ðnþ 1ÞNr0 � n
ffiffiffi
f

p ENð1=n�1Þ�1

ðn� 1ÞX N0

� n
ENð1=n�1Þ

2
ffiffiffi
f

p
X

f0 þ n
ffiffiffi
f

p ENð1=n�1Þ

X2
X0: (3.32)

On the other hand, differentiation of (3.23) with respect to r
yields
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X0ðrÞ ¼ 1

nXn�1 � Nrffiffi
f

p
��

1ffiffiffi
f

p dNr

dr
� Nr

2f3=2
df

dr

�
X

þ ENð1=n�1Þ�1

n� 1

dN

dr

�
: (3.33)

Substituting the above into Eq. (3.32), we find that

H0ðrÞjr¼rH ¼ � nþ 1

2

�
H1

H2

� Nrf0

f
þ 2NrN0

N � nN
þ 2Nr0

�
;

(3.34)

where

H1 � 2Eðnþ 1ÞfNrN0 þ Eðn� 1ÞnNðNrf0 � 2fNr0 Þ;

H2 � ðn� 1ÞnfN
�
Eþ ðnþ 1ÞN1=1�n

�
En

ffiffiffi
f

p
N1=n�1

ð�n� 1ÞNr

�
n
�
:

(3.35)

If H has a zero of order � > 0 at rH, we can write it in
the form

HðrÞ ¼ H0ðrHÞðr� rHÞ� þ 	 	 	 ; (3.36)

as r ! rH, where H0ðrHÞ � 0. Therefore,

H0ðrÞjr¼rH ¼
8><
>:
0 � > 1

H0ðrHÞ � ¼ 1

�1 0< �< 1:

(3.37)

Now t ! 1 as r ! rþH if and only if

� � 1; (3.38)

which happens if and only if dH=drjr¼rH is finite. This

gives an explicit condition on f, N, Nr, E, n for the blowup
of t at rH.

It should be noted that rH usually depends on the energy
E of the test particles, as can be seen from the above and
specific examples considered below.

Case n ¼ 2: In this case, we have

H0ðrÞjr¼rH ¼ H3

2N½4EfN þ 3ðNrÞ2� ; (3.39)

where

H3 � 3½4EN2ðNrf0 � 2fNr0 Þ
þ 8EfNNrN0 � 3ðNrÞ3N0�; ðn ¼ 2Þ: (3.40)

Again, for the Schwarzschild solution (3.22), we have

XðrÞ ¼ 1

2

�
�

ffiffiffiffiffi
rg
r

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Erþ rg

p ffiffiffi
r

p
�
;

HðrÞ ¼
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgð4Erþ rgÞ

q
þ 4Erþ 3rgffiffiffiffiffiffiffi

rrg
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð4Erþ rgÞ

q ;

(3.41)

so that HðrÞ ¼ 0 has the solution

rH ¼ 3rg
4E

; ðn ¼ 2Þ; (3.42)

at which we have

H0ðrHÞ ¼ � 2E3=2ffiffiffi
3

p
rg

: (3.43)

Then, according to Eq. (3.37), we have � ¼ 1; i.e., t
diverges logarithmically as r ! rþH . Therefore, in this
case there does exist a horizon. But, its location depends
on the energy E of the test particle, and approaches zero
when E � rg. This is understandable, as the speed of light

is unbounded in the UV, and, in principle, the singularity
located at r ¼ 0 can be seen by asymptotically flat observ-
ers, as long as the light rays sent by the observers have
sufficiently high energies.
Case n ¼ 3: In this case, we have

X3 � pðrÞX � qðr; EÞ ¼ 0: (3.44)

Assuming thatHðrÞ ¼ 0 has a real and positive root rH, we
find that

H0ðrÞjr¼rH ¼ H4

3Nð27E2f3=2N � 16ðNrÞ3Þ ; (3.45)

where

H4 � 162E2
ffiffiffi
f

p
N2Nrf0 þ 32ðNrÞ4N0

� 162E2f3=2Nð2NNr0 � NrN0Þ: (3.46)

For the Schwarzschild solution (3.22), we have pðrÞ ¼
�

ffiffiffiffiffiffiffiffiffiffi
rg=r

q
and qðr; EÞ ¼ E. Then, we find that

X3 þ
ffiffiffiffiffi
rg
r

r
X � E ¼ 0; (3.47)

HðrÞ ¼ 4

ffiffiffiffiffi
rg
r

r
� 3E

X
; (3.48)

from which we find that HðrÞ ¼ 0 has a solution,

rH ¼ rg

�
16

27E2

�
2=3

; ðn ¼ 3Þ; (3.49)

which also depends on E, and approaches zero as E ! 1.
Substituting rH into Eq. (3.45), we find H0ðrHÞ ¼
�27E2=ð16rgÞ. That is, the hypersurface r ¼ rH is also

an observer-dependent horizon in the case n ¼ 3, and the
radius of the horizon is inversely proportional to the energy
of the test particle. For E � rg, we have rH ’ 0.

Another (simpler) consideration for the existence of the
horizon is given as follows: First, from Eq. (3.24) we find
that
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X ¼
�jr0 þ Nrj

n
ffiffiffi
f

p
�
1=ðn�1Þ ’

�
�Nr

n
ffiffiffi
f

p
�
1=ðn�1Þ�

1þ H

ðn� 1ÞNr

�
;

(3.50)

for r ’ rH. Inserting it into Eq. (4.2), we have, to leading
order,�

1þ EN1=ðn�1Þ

ðn� 1Þð �Nr

n
ffiffi
f

p Þn=ðn�1Þ

�
Hðr; EÞ

¼ ð�n� 1ÞNr

�
1þ EN1=ðn�1Þ

ð�n� 1Þð �Nr

n
ffiffi
f

p Þn=ðn�1Þ

�
: (3.51)

Then, we obtain

EN1=ðn�1Þ

ðnþ 1Þð�Nr

n
ffiffi
f

p Þn=ðn�1Þ
��������r¼rH

¼ 1: (3.52)

Given this, we can further simplify Eq. (3.51) to

2n

n� 1
Hðr; EÞ

¼ �ðnþ 1ÞNrðrHÞ
�
1� EN1=ðn�1ÞðrÞ

ðnþ 1Þð�NrðrÞ
n
ffiffiffiffiffiffi
fðrÞ

p Þn=ðn�1Þ

�
: (3.53)

Then, using Eq. (3.36), we have the following constraint
for N, Nr, f to satisfy so that a horizon can indeed exist,

EN1=ðn�1ÞðrÞ
ðnþ 1Þð�NrðrÞ

n
ffiffiffiffiffiffi
fðrÞ

p Þn=ðn�1Þ

¼ 1þ 2nH0ðrHÞ
ðn2 � 1ÞNrðrHÞ

ðr� rHÞ� þ 	 	 	 : (3.54)

This equation can first be used to determine rH and then �,
once N, Nr, and f are given. To illustrate how to use it, let
us consider the Schwarzschild metric (3.22). For n ¼ 2, rH
can be obtained simply from the above, and is given
exactly by Eq. (3.42), for which we have

EN1=ðn�1ÞðrÞ
ðnþ 1Þð�NrðrÞ

n
ffiffiffiffiffiffi
fðrÞ

p Þn=ðn�1Þ ’ 1þ r� rH
rH

; (3.55)

that is, � ¼ 1.
For n ¼ 3, from Eq. (3.52) we find that rH is given by

Eq. (3.49), and

EN1=ðn�1ÞðrÞ
ðnþ 1Þð�NrðrÞ

n
ffiffiffiffiffiffi
fðrÞ

p Þn=ðn�1Þ ¼ 33=2Er3=4

4r3=4g

’ 1þ 3

4rH
ðr� rHÞþ 	 	 	 : (3.56)

Therefore, in this case we have � ¼ 1, too.

It should be noted that in the above analysis, we assumed
that Fð�Þ ¼ �n. In more realistic models, the dispersion
relation is a polynomial of � , as shown by Eq. (1.5), or
more specifically,

Fð�Þ ¼ � þ �2

M2
A

þ �4

M4
B

þ . . . ; (3.57)

where MA and MB are the energy scales, which can be
significantly different from the Planck one [27]. Therefore,
for observers in low-energy scales, where � 
 MA, MB,
the first term dominates, and some solutions, including the
Schwarzschild solution, look like black holes, as shown in
the case n ¼ 1. But, for observers with high energies, those
solutions may not be black holes any longer. Even if they
are, their horizons, in general, are observer dependent, as
shown in the cases n ¼ 2 and n ¼ 3 explicitly for the
Schwarzschild solution. To illustrate the main properties
of the dispersion relation (3.57), we shall consider the case
where only the first two terms are important.

C. Trajectories of test particles with the dispersion
relation Fð� Þ ¼ � þ �2=M2

A

For the sake of simplicity, we restrict ourselves to the
case Nr ¼ 0. Substituting

Fð�Þ ¼ � þ �2

M2
A

(3.58)

into Eq. (3.2), we find

�

�
1þ 2�

M2
A

�
2 ¼ _r2

e2f
: (3.59)

Solving this equation directly for � yields a very compli-
cated expression, and it is not clear how to proceed along
this direction. Instead, we note that our goal is to find the
analog of Eq. (3.9), i.e. of the equation �Lp=�e ¼ 0,

where

L p ¼ 1

2

�
N2

e
_t2 þ e½Fð�Þ � 2�F0ð�Þ�

�

¼ 1

2

�
N2

e
_t2 � e

�
� þ 3�2

M2
A

��
: (3.60)

Thus, we will first calculate ��=�e, implicitly by applying
�=�e to both sides of (3.59), which yields

��

�e
¼ � 2M4

A _r
2

e3fðM4
A þ 8M2

A� þ 12�2Þ : (3.61)

Substituting this into the expression

�Lp

�e
¼ 1

2

�
�N2

e2
_t2 �

�
� þ 3�2

M2
A

�
� e

�
��

�e
þ 6�

M2
A

��

�e

��
;

we find the following analog of Eq. (3.9),
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�ðe2M2
Aþ2N2 _t2Þþ5e2�2þ6e2�3

M2
A

þM2
A

�
N2 _t2�2 _r2

f

�
¼ 0;

(3.62)

where � is given implicitly by Eq. (3.59). Note that in the
limit MA ! 1, the above equation reduces precisely to
Eq. (3.9) for Fð�Þ ¼ � and Nr ¼ 0, as expected.

On the other hand, the analog of Eq. (3.10) is simply

N2 _t ¼ eE: (3.63)

Using Eqs. (3.59) and (3.63) to eliminate _r and _t from
Eq. (3.62), we find5

�Lp

�e
¼ 1

2

�
� þ �2

M2
A

� E2

N2

�
¼ 0:

Solving this equation for � , we infer that

� ¼ �M2
A

2
þMA

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 þM2

AN
2

q
:

Substitution of this expression into Eq. (3.62) yields

MAðN2ð2 _r2
e2f

þM2
AÞ þ 4E2Þ

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 þM2

AN
2

q � N2 _t2

e2
� 3E2

N2
�M2

A ¼ 0:

(3.64)

Replacing e by N2 _t=E and then solving the resulting
equation for _r= _t, we find6

_r2

_t2
¼ fNð4E2 þM2

AN
2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 þM2

AN
2

q
�MANÞ

2E2MA

:

Thus, the trajectory is given by

t ¼ t0 þ
Z dr

Hðr; EÞ ; (3.65)

where

Hðr; EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fNð4E2 þM2

AN
2Þ

2E2MA

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2 þM2

AN
2

q
�MAN

r
:

(3.66)

As an example, let us consider the Schwarzschild solu-
tion, N2 ¼ f ¼ 1� rg=r, for which we find

H ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

MAr
3=2
g

s
ðr� rgÞ3=4 þOððr� rgÞ5=4Þ;

as r ! rg, so that t remains finite. On the other hand, as

MA ! 1,

H ¼ r� rg
rg

þ 3E2

2M2
A

þO
�
1

M4
A

�
:

Thus, if we take the limit MA ! 1 before letting the
trajectory approach rg, then t will blow up logarithmically

as r ! rg. As a result, a horizon exists in this limit.

More generally, if f has an ath order zero and N2 has a
bth order zero at r ¼ rg, as given in Eq. (3.14), then we find

that

H ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef0ðrgÞN0ðrgÞ

MA

s
ðr� rgÞða=2Þþðb=4Þ

þOððr� rgÞða=2Þþð3b=4ÞÞ;
as r ! rg. It follows that

t ’ t0 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef0ðrgÞN0ðrgÞ

MA

r
8><
>:

ðr�rgÞ1�ða=2Þ�ðb=4Þ

1�a
2�b

4

a
2þ b

4 � 1

lnðr� rgÞ a
2þ b

4 ¼ 1:
(3.67)

Therefore, t blows up as r ! rg, if and only if

aþ b

2
� 2; (3.68)

which is exactly Eq. (3.26) for n ¼ 2, as expected.

IV. VACUUM SOLUTIONS WITH Nr ¼ 0

When Nr ¼ 0, the vacuum equations with Jt ¼ v ¼
pr ¼ p� ¼ JA ¼ J’ ¼ 0 yield the following most general

solutions [41],

fðrÞ ¼ 1þ C

r
� 1

3
�gr

2; N ¼ 1; Nr ¼ 0 ¼ ’;

(4.1)

with the Hamiltonian constraint

Z
LVe

�r2dr ¼ 0; (4.2)

where LV ¼ LVðr;�g; C; gsÞ, as defined in Eq. (2.4).

The gauge field A must satisfy the equations

A0 þ A�0 þ 1
2rFrr ¼ 0; (4.3)

r2ðA00 � �0A0Þ þ rðA0 þ �0AÞ � Að1� e2�Þ þ e2�F�� ¼ 0;

(4.4)

where Fij is given by Eqs. (2.12) and (A2). Then, from

Eq. (4.3) we find that

A ¼ A0e
�� � 1

2e
��
Z r

r0e�ðr0ÞFrrðr0Þdr0; (4.5)

where A0 is an integration constant. The solutions with
�g ¼ 0 were first studied in [22,40].

5In the limit MA ! 1, this equation reduces to � � E2

N2 ¼ 0,
which is again consistent with the case Fð�Þ ¼ � .

6In the limitMA ! 1, this equation becomes _r2

_t2
¼ fN2, which

is again consistent with the case Fð�Þ ¼ � .
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Since now we have N ¼ 1 and b ¼ 0, Eq. (3.26) shows
that a horizon exists only when a � 2. It can be shown that
for the solutions given by Eq. (4.1), this is impossible for
any chosen C and �g. Therefore, it is concluded that the

solutions given by Eq. (4.1) do not represent black holes.
However, in some cases fðrÞ ¼ 0 does have a real and

positive root. So, there indeed exists some kind of coor-
dinate singularities, and to obtain a maximally (geodesi-
cally) complete spacetime,7 some kind of extension is
needed. Such an extension is also needed in order to
determine the range of r, from which the Hamiltonian
constraint (4.2) can be carried out. Once this constraint is
satisfied, one can integrate Eq. (4.5) to obtain the gauge
field A. To this end, we divide the solutions into the
following cases: (i) C ¼ �g ¼ 0, (ii) C � 0, �g � 0,

(iii) C � 0, �g ¼ 0, and (iv) C � 0, �g � 0. The first

case is trivial, and it corresponds to the Minkowski space-
time with � ¼ � ¼ 0 and A ¼ A0. Thus, in the following
we shall consider only the last three cases.

A. C � 0, �g ¼ 0

In this case the metric takes the form

ds2 ¼ �dt2 þ dr2

1þ C
r

þ r2d2�; (4.6)

from which we find that

L V ¼ 2�þ 3g3C
2

2�2r6
þ 3g6C

3

4�4r9
þ 45g8C

2

2�4r8

�
1þ C

r

�
; (4.7)

where � ¼ g0�
2=2. To consider the Hamiltonian con-

straint (4.2), we need to further distinguish the cases
C> 0 and C< 0.

1. C> 0

When C> 0, the metric (4.6) is singular only at r ¼ 0,
so the solution covers the whole spacetime r 2 ð0;1Þ. The
singularity at the center is a curvature one [46], as it can be
seen from the expressions

RijRij ¼ 3C2

2r6
;

Ri
jR

j
kR

k
i ¼ � 3C3

4r9
;

ðriRjkÞðriRjkÞ ¼ 45C2

2r8

�
1þ C

r

�
:

(4.8)

Since event horizons do not exist forC> 0, this singularity
is also naked. Inserting it into Eq. (4.2), we find that the
Hamiltonian constraint is satisfied only when

� ¼ g3 ¼ g6 ¼ g8 ¼ 0: (4.9)

Considering Eq. (A2), we find that Fij now has only two

nonvanishing terms, given by

Fij ¼ �ðF1Þij þ g5
�4

ðF5Þij: (4.10)

Substituting this into Eqs. (4.3) and (4.4), we obtain

A ¼ 1þ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

r

s
; g5 ¼ 0: (4.11)

It should be noted that the above solution holds not only in
the IR regime but also in the UV.
To study the global structure of the spacetime, let us first

introduce a new radial coordinate r� via the relation

r� �
Z drffiffiffiffiffiffiffiffiffiffiffiffi

1þ C
r

q ¼ �C

2
ln
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ C
p þ ffiffiffi

r
p Þ2

C
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðrþ CÞp

¼
�
0 r ¼ 0

1 r ¼ 1:
(4.12)

In terms of r� the metric takes the form

ds2 ¼ �dt2 þ dr�2 þ r2ðr�Þd2�: (4.13)

Then, one might introduce the two double null coordinates
u and v via the relations

u ¼ tan�1ðtþ r�Þ; v ¼ tan�1ðt� r�Þ; (4.14)

so that the metric finally takes the form

ds2 ¼ � dudv

cos2ucos2v
þ r2ðu; vÞd2�; (4.15)

where ��=2 � u, v � �=2. The corresponding Penrose
diagram is given by Fig. 2.
However, the coordinate transformations (4.14) are not

allowed by the foliation-preserving diffeomorphisms
DiffðM;F Þ of Eq. (1.2). So, in the HL theory the restricted
diffeomorphisms do not permit Penrose diagrams. In addi-
tion, due to the breaking of the general covariance, even if
one were allowed to do so, the causal structure of the
spacetime cannot be studied in terms of it, as shown
explicitly in the previous sections for the Newtonian
theory.
The following coordinate transformations are allowed,

t ¼ tan�t; r� ¼ tan�r�; (4.16)

where ��=2 � �t � �=2 and 0 � �r� � �=2. Then, the
global structure of the spacetime is given by Fig. 3.

2. C< 0

In this case, setting C ¼ �2M< 0, the corresponding
metric reads

7Because of the breaking of the general covariance and the
restricted diffeomorphism (1.2), it is not clear if this requirement
is still applicable here in the HL theory. Even if it is not, some
kind of extension still seems needed.
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ds2 ¼ �dt2 þ
�
1� 2M

r

��1
dr2 þ r2d2�: (4.17)

This is the solution first found in [22], in which it was
argued that the relativistic lapse function should be N ¼
N � A in the IR. It is not clear how to then relate N to N
and A in other regimes. Instead, in this paper we shall
simply take the point of view that A and ’ are just gravi-
tational gauge fields, and their effects on the spacetime
itself occur only through the field equations [41]. With the
above arguments, we can consider the solution valid in any
regimes, including the IR and UV.
Let us first note that the metric (4.6) is asymptotically

flat and singular at both r ¼ 0 and r ¼ 2M. The singularity
at r ¼ 0 is a curvature one, as can be seen from Eq. (4.8),
but the one at r ¼ 2M is more peculiar. In particular, in the
region r < 2M both t and r are timelike, in contrast to GR
where t and r exchange their roles across r ¼ 2M. All the
above indicate that the nature of the singularity at r ¼ 2M
is now different. In fact, as to be shown explicitly below,
the region r < 2M is actually not part of the spacetime.
To see this closely, let us first consider the radial timelike

geodesics. It can be shown that they are given by

t ¼ E�þ t0;

� ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p fM ln½ðr�MÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 2MÞp �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 2MÞp g þ �0;

(4.18)

where E is an integration constant, and � denotes the
proper time. The constant �0 is chosen so that �ðr0Þ ¼ 0
at the initial position of the test particle, r ¼ r0 > 2M. The
‘‘þ’’ (‘‘�’’) sign corresponds to the outgoing (ingoing)
radial geodesics. It is clear that, starting at any given finite
radius r0, observers that follow the null geodesics will
arrive at r ¼ 2M within a finite proper time.8 Setting

e�ð0Þ �
dx�

d�
¼
�
E;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 � 1Þf

q
; 0; 0

�
; (4.19)

where f � 1� 2M=r, we find that the spacelike unit vec-
tors

e�ð1Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � 1

p
;�E

ffiffiffi
f

p
; 0; 0Þ;

e�ð2Þ ¼
1

r
ð0; 0; 1; 0Þ;

e�ð3Þ ¼
1

r sin�
ð0; 0; 0; 1Þ;

(4.20)

together with e�ð0Þ, form a freely falling frame,

C

B

0

i

i
−

+

  r
  =

  0
r 

 =
  0

A

Q

P

II

I

FIG. 3. The global structure of the spacetime in the ð�t; �r�Þ
plane for Nr ¼ 0, C> 0, and �g ¼ 0. The double vertical solid

lines represent the center (r ¼ 0), at which the spacetime is
singular. The vertical line AB represents the spatial infinity
r ¼ 1, while the horizontal line iþAði�BÞ is the line where
t ¼ 1 (t ¼ �1). The lines t ¼ Const are the straight lines
parallel to OC, while the ones r ¼ Const are the straight lines
parallel to i�iþ. The lines BP, B0, BQ, PA, 0A, and QA
represent the radial null geodesics.

r 
   

   
=

   
   

 0

t = Const.

r = Const.

i

i

i

−

+

0

II

I

FIG. 2. The Penrose diagram for Nr ¼ 0, C> 0, and �g ¼ 0.
The double vertical solid lines represent the center (r ¼ 0), at
which the spacetime is singular. This singularity is clearly naked.
Note that the restricted diffeomorphisms (1.2) do not allow for
the transformations needed in order to draw Penrose diagrams.
Therefore, these diagrams cannot be used to study the global
structures of spacetimes in the HL theory but are included only
for comparison.

8As shown in the last section, massless test particles in the HL
theory do not follow null geodesics, because of the nonrelativ-
istic dispersion relations (1.5). In other words, in the HL theory
particles that follow the null geodesics are not massless and may
not even be test particles.
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e�ðaÞe�ðbÞ ¼ 
ab; e�ð0ÞD�e
�
ðaÞ ¼ 0; (4.21)

where D� denotes the 4D covariant derivatives, and 
ab is
the 4DMinkowski metric with a; b;¼ 0; . . . ; 3. Then, from
the geodesic deviations,

D2
a

D�2
þKa

b

b ¼ 0; (4.22)

where Kab � �R����e
�
ðaÞe

�
ð0Þe

�
ð0Þe

�
ðbÞ denotes the tidal

forces exerted on the observers, we find that in the present
case Kab is given by

K ab ¼ �ðE2 � 1ÞM
r3

ð�2
a�

2
b þ �2

a�
3
bÞ: (4.23)

Clearly, Kab is finite at r ¼ 2M. All the above consider-
ations indicate that the singularity at r ¼ 2M is a coordi-
nate one, and to have a (geodesically) complete spacetime,
extension beyond this surface is needed. However, unlike
that in GR, any extension must be restricted to the
DiffðM;F Þ of Eq. (1.2). Otherwise, the resulting solutions
do not satisfy the field equations. Explicit examples of this
kind were given in [46].

In [22], the isotropic coordinate � was introduced,

r ¼ �

�
1þ M

2�

�
2
; (4.24)

in terms of which the metric (4.6) takes the form

ds2 ¼ �dt2 þ
�
1þ M

2�

�
4ðd�2 þ �2d2�Þ; (4.25)

which is nonsingular for � > 0. However, this cannot be
considered as an extension to the region r < 2M, as now
the geometrical radius r is still restricted to r 2 ð2M;1Þ
for � > 0, as shown by curve (a) in Fig. 4. Instead, it
connects two asymptotic regions, where r ¼ 2M acts as
a throat, a situation quite similar to the Einstein-Rosen
bridge [47]. However, a fundamental difference of the
metric (4.25) from the corresponding one in GR is that it
is not singular for any � 2 ð0;1Þ, while in GR the metric

still has a coordinate singularity at � ¼ M=2 (or r ¼ 2M)
[47]. Therefore, in the HL theory Eq. (4.25) already rep-
resents an extension of the metric (4.6) beyond the surface
r ¼ 2M. Since this extension is analytical, it is unique. It is
remarkable to note that in this extension the metric has the
correct signature.
It should be noted that the Einstein-Rosen bridge is not

stable in GR [47]. Therefore, it would be very interesting to
know if this is still the case in the HL theory.
To study its global structure, we introduce the coordinate

r� by

r� �
Z �

1þ M

2�

�
2
d� ¼ M ln

�
2�

M

�
þ �

�
1� M2

4�2

�

¼
��1 � ¼ 0

1 � ¼ 1:
(4.26)

Then, in terms of r� the metric can also be cast in the form
of Eq. (4.13). Following what was done in that case, one
can see that the global structure of the spacetime is given
by Fig. 5.
To compare it with that given in GR, the corresponding

Penrose diagram is presented in Fig. 6, although it is
forbidden in the HL theory by the foliation-preserving
diffeomorphisms DiffðM;F Þ of Eq. (1.2), as mentioned
above.
It is interesting to see which kind of matter fields can

give rise to such a spacetime in GR. To this purpose, we

r

ρ

2Μ

Μ/20

(a)
  (b)

(y)

FIG. 4. The function r defined in (a) by Eq. (4.24) and in (b) by
Eq. (4.31).

 I’ Ii i0 0

C D

A B
−

+

0

Q

P

i

FIG. 5. The global structure of the spacetime for Nr ¼ 0, C ¼
�2M< 0, and �g ¼ 0. The vertical line iþi� represents the

Einstein-Rosen throat (r ¼ rg � 2M), which is nonsingular and

connects the two asymptotically flat regions I and I0. The
horizontal line ABðCDÞ is the line where t ¼ �1ð1Þ, while
the vertical lines CA and DB are the lines where r ¼ 1. The
lines t ¼ Const are the straight lines parallel to i0i0, while the
ones r ¼ Const are the straight lines parallel to i�iþ. The curved
dotted lines AD and BC, as well as the straight solid lines AD
and BC, are the radial null geodesics.
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first calculate the corresponding four-dimensional Einstein
tensor,

ð4ÞG�� ¼ 2M

r3f
�r
��

r
� �M

r
ð��

��
�
� þ sin2��	

��
	
� Þ; (4.27)

which corresponds to an anisotropic fluid, TGR
�� ¼

�GRu�u� þ pGR
r r�r� þ pGR

� ð��
��

�
� þ sin2��	

��
	
� Þ, with

�GR ¼ 0; pGR
r ¼ M=ð4�GR3Þ and pGR

� ¼ �Mr=ð8�GÞ,
where u� ¼ �t

� and r� ¼ f�1=2�r
�. Clearly, such a fluid

does not satisfy any of the energy conditions [32]. In
particular, when r � 1 the tangential pressure becomes
unbounded from below, while the radial pressure vanishes.
Such a fluid is usually considered as nonphysical in GR.
However, in the current setup the spacetime is vacuum, and
one cannot eliminate it by simply considering the energy
conditions. Then, if the configuration is stable, one can use
it to construct time machines [48].

Inserting Eq. (4.7) into Eq. (4.2), and considering the
fact that the range of r is now r 2 ð2M;1Þ, we find that the
Hamiltonian constraint is satisfied, provided that

� ¼ 0; 20ðg6 � 3g8Þ � 231g3�
2M2 ¼ 0: (4.28)

Then, Eqs. (4.3) and (4.4) have the solution

A ¼ 1þ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

s
þ g3

40�2M2r6
½16ðr�MÞr5

� 8M2ðrþMÞr3 � 3M3ð5r2 þ 7Mrþ 1050M2Þ�;
g5 ¼ g8 ¼ 0: (4.29)

It is interesting to note that, replacing � by �y we find
that, in terms of y, metric (4.25) takes the form

ds2 ¼ �dt2 þ
�
1� M

2y

�
4ðdy2 þ y2d2�Þ; (4.30)

from which we can see that the geometrical radius is now
given by

r ¼ y

�
1� M

2y

�
2
: (4.31)

Clearly, the whole region 0 � r <1 is now mapped to
0< y � M=2, as shown by curve (b) in Fig. 4. Metric
(4.30) can also be obtained from metric (4.25) by the
replacement M ! �M and � ! y. So, it must correspond
to the case C> 0, i.e., the one with a negative mass,
described in the previous subcase.

B. C ¼ 0, �g � 0

We have

� ¼ �1
2 lnð1� 1

3�gr
2Þ; (4.32)

for which we find that

LV ¼ 2ð���gÞ þ 4ð3g2 þ g3Þ
3�2

�2
g

þ 8ð9g4 þ 3g5 þ g6Þ
9�4

�3
g;

Fij ¼
gij

9�4
½3�4ð�g � 3�Þ þ 2�2ð3g2 þ g3Þ�2

g

þ 4ð9g4 þ 3g5 þ g6Þ�3
g�: (4.33)

To study the solutions further, we consider the cases
�g > 0 and �g < 0, separately.

1. �g < 0

In this case, defining rg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=j�gj

q
, we find that the

corresponding metric takes the form

ds2 ¼ �dt2 þ dr2

1þ ð rrgÞ2
þ r2d2�; (4.34)

which shows that the metric is not singular except at r ¼ 0.
But, it can be shown that this is a coordinate singularity.
Setting

r� �
Z drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð rrgÞ2
q ¼ rg ln

�
r

rg
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
r

rg

�
2

s �
; (4.35)

one can cast the metric (4.34) exactly in the form of
Eq. (4.13). Then, its global structure is that of Fig. 3, and
the corresponding Penrose diagram is given by Fig. 2, but
now the center r ¼ 0 is free of any spacetime singularity.
Thus, the range of r is now r 2 ½0;1Þ. We then find that

r 
 =

  2
M

r 
  =

   
2M

r = Const.

t = Const.

  i

i

i

0 i0

+

−

FIG. 6. The Penrose diagram for Nr ¼ 0, C ¼ �2M< 0, and
�g ¼ 0. The straight lines iþi0 represent the future null infinities
at which we have r ¼ 1 and t ¼ 1, while the ones i�i0
represent the past null infinities where r ¼ 1 and t ¼ �1.
The vertical line iþi� represents the Einstein-Rosen throat
(r ¼ 2M), which is nonsingular and connects the two asymptoti-
cally flat regions.
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the Hamiltonian constraint (4.2) is satisfied, provided
that LV ¼ 0, i.e.,

��4r6g þ 6ð3g2 þ g3Þ�2r2g � 12ð9g4 þ 3g5 þ g6Þ
¼ �3�4r4g: (4.36)

Inserting the above into Eqs. (4.3) and (4.4), we obtain the
solution

A ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
r

rg

�
2

s
þ A1; (4.37)

where A1 is a constant, given by

A1 � 1��r2g � 3� 3g2 � g3
�2r2g

: (4.38)

2. �g > 0

In this case, the corresponding metric takes the form

ds2 ¼ �dt2 þ dr2

1� ð rrgÞ2
þ r2d2�: (4.39)

Clearly, the metric has a wrong signature in the region
r > rg. In fact, the hypersurface r ¼ rg already represents

the geometrical boundary of the spacetime, and any exten-
sion beyond it is not needed. To see this clearly, we first
introduce the coordinate r� via the relation

r� �
Z drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð rrgÞ2
q ¼ rg arcsin

�
r

rg

�
: (4.40)

Then, in terms of r� the corresponding metric can be cast in
the form ds2 ¼ r2gd�s

2, where

d�s2 ¼ �d�t2 þ dx2 þ sin2xd2�; (4.41)

with �t ¼ t=rg, x ¼ r�=rg. But, this is exactly the homoge-

neous and isotropic Einstein static universe, which is
geodesically complete for �1< �t <1, 0 � x � �, 0 �
� � �, and 0 � 	 � 2�, with an R� S3 topology [32].
Then, it is easy to see that its global structure is given by
Fig. 3, but now the vertical line i�iþ is free of spacetime
singularity, and the line AB is the one where r ¼ rg (or

x ¼ �). The corresponding Penrose diagram is given by
Fig. 7.

Therefore, in this case the range of r is r 2 ½0; rg�. Then,
the Hamiltonian constraint (4.2) requires

��4r6g þ 6ð3g2 þg3Þ�2r2gþ 12ð9g4 þ 3g5 þg6Þ ¼ 3�4r4g:

(4.42)

Hence, Eqs. (4.3) and (4.4) have the solution

A ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
r

rg

�
2

s
þ A2; (4.43)

where A2 is another integration constant, given by

A2 � 1þ�r2g þ 3� 3g2 � g3
�2r2g

: (4.44)

It should be noted that in GR the Einstein static universe
is obtained by the exact balance between the gravitational
attraction of matter (�m ¼ �c, pm ¼ 0) and the cosmic
repulsion (� ¼ �c), where �c ¼ 4�G�c. As a result, the
configuration is not stable against small perturbations [49].
However, in the present case since the spacetime is vac-
uum, Eq. (4.42) suggests that the balance is made by the
attraction of the high-order curvature derivatives and the
cosmic repulsion, produced by both � and �g. Then, it

would be very interesting to know whether it is stable or
not in the current setup.

C. C � 0, �g ¼ 0

When �gC � 0, we find that

RijRij ¼
9C2 þ 8�2

gr
6

6r6
;

Ri
jR

j
kR

k
i ¼

1

36r9
ð27C3 þ 108�gC

2r3 þ 32�3
gr

9Þ;

ðriRjkÞðriRjkÞ ¼ 45C2

2r8

�
1þ C

r
� 1

3
�gr

2

�
; (4.45)

r 
   

   
 =

   
   

  0

r = Const.

t = Const.

i

i

i+

−

0

FIG. 7. The Penrose diagram for Nr ¼ 0, C ¼ 0, and �g > 0,
which is the Einstein static universe. The curves i�i0 and iþi0
are, respectively, the lines where t ¼ �1, x ¼ �, and t ¼ þ1,
x ¼ �.
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from which one can see that the spacetime is singular at
r ¼ 0. Moreover, we find from (A2) that

Frr ¼ 1

36r8�4FðrÞ f�27C3ð22g5 þ 25g6 � 20g8Þ
� 81C2rð8g5 þ 9g6 � 7g8Þ
� 9C2r3½�gð�26g5 � 30g6 þ 25g8Þ þ �2g3�
þ 12Cr6½�3�4 þ�g�

2ð12g2 þ 5g3Þ
þ�2

gð36g4 þ 14g5 þ 6g6 � g8Þ�
þ 4r9½�3�4ð3���gÞ þ 2�2�2

gð3g2 þ g3Þ
þ 4�3

gð9g4 þ 3g5 þ g6Þ�g; (4.46)

where the third-order polynomial FðrÞ is defined by

FðrÞ ¼ Cþ r��g

3
r3; i:e: e2� ¼ r

FðrÞ :

The function LV is given by

L V ¼ �þ �rþ �r3 þ �r9

36r9�4
; (4.47)

where

�¼ 27C3g6 þ 810C3g8;

�¼ 810C2g8;

�¼ 108C2g5�g þ 108C2g6�g � 270C2g8�gþ 54C2g3�
2;

�¼ 144g2�
2�2

g þ 288g4�
3
g þ 96g5�

3
gþ 32g6�

3
g

þ 48g3�
2�2

g þ 72�4�� 72�4�g:

All the quantities in (4.45) are finite for any r � 0. On
the other hand, from Eq. (4.1) one can see that the metric
coefficient grr could become singular at some points. To
study the nature of these singularities, we distinguish the
four cases: C> 0,�g > 0; C> 0,�g < 0; C< 0,�g > 0;

and C< 0, �g < 0.

1. C> 0, �g > 0

In this case, the polynomial FðrÞ has exactly one real
positive root at, say, r ¼ rgðC;�gÞ> 0, as shown in Fig. 8.

We find that

e2� ¼ r

DðrÞðrg � rÞ ; (4.48)

where DðrÞ � �gðr2 þ rgrþ dÞ=3, d ¼ r2g � 3=�g, and

DðrÞ> 0 for all r > 0. Introducing the coordinate x via
the relation

x ¼
Z dr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg � r

p ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg � r

p
; (4.49)

or, inversely, r ¼ rg � x2, the corresponding metric in

terms of x takes the form

ds2 ¼ �dt2 þ 4ðrg � x2Þ
DðxÞ d2xþ ðrg � x2Þ2d2�; (4.50)

where DðxÞ ¼ �gðx4 � 3rgx
2 þ 3r2g � 3=�gÞ=3> 0 for

jxj< ffiffiffiffiffi
rg

p
. Clearly, the coordinate singularity at r ¼ rg

(or x ¼ 0) is now removed, and the metric is well defined
for jxj< ffiffiffiffiffi

rg
p

. At the points, x ¼ � ffiffiffiffiffi
rg

p
(or r ¼ 0), the

spacetime is singular, as shown by Eq. (4.45). Thus, in
the present case the spacetime is restricted to the region
jxj< ffiffiffiffiffi

rg
p

, �1< t <1 in the ðt; xÞ plane, with the two

spacetime singularities located at x ¼ � ffiffiffiffiffi
rg

p
as its bounda-

ries. The global structure of the spacetime and the corre-
sponding Penrose diagram are shown in Fig. 9.

r

F(r)

− r r

r

m m

g0

FIG. 8. The function FðrÞ � re�2� for Nr ¼ 0, C> 0, and

�g > 0, where rm ¼ 1=
ffiffiffiffiffiffiffi
�g

q
.

t

x

0− x x

(a)

r 
 =

  0

r  =
  0

i

i

 (b)

+

−

00

FIG. 9. (a) The spacetime in the ðt; xÞ plane, where x0 � ffiffiffiffiffi
rg

p
.

(b) The Penrose diagram for Nr ¼ 0, C> 0, �g > 0. The curves

i�iþ are the lines where r ¼ 0, at which the spacetime is
singular. The straight line i�iþ represents the surface r ¼ rg.
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The change of variables (4.49) can be understood by
considering the one-form

e�dr ¼
ffiffiffi
r

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðrÞðrg � rÞ
q :

Even though the denominator of the right-hand side van-
ishes at r ¼ rg, we can turn e�dr into a nonsingular one-

form by introducing a Riemann surface. Indeed, if we
promote r to a complex variable and define the genus 1
Riemann surface � as the two-sheeted cover of the com-
plex r plane obtained by introducing two branch cuts along
the intervals ½0; rg� and ½r1; r2�, where r1 and r2 are the two
(possibly complex) zeros of DðrÞ, e�dr is a holomorphic
one-form on �. Letting ð0; rg�1 and ð0; rg�2 denote the

covers of the interval ð0; rg� in the first and second sheets

of �, respectively, the spacetime consists of points
ðr; �; 	; tÞ with r 2 ð0; rg�1 [ ð0; rg�2. The variable x ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rg � r
p

introduced in (4.49) is analytic near the branch

point at r ¼ rg, and r 2 ð0; rg�1 [ ð0; rg�2 corresponds to

x 2 ð� ffiffiffiffiffi
rg

p
;
ffiffiffiffiffi
rg

p Þ. We can fix the definition of x by choos-

ing the branch of the square root so that, say, x � 0 for
r 2 ð0; rg�1. Thus, in terms of the variable x, the spacetime

manifold can be covered by a single global chart (no
double cover is necessary), and the metric ds2, which
involves the square of the differential e�dr, is manifestly
nonsingular at r ¼ rg. In particular, the metric of the

extended spacetime is analytic, which ensures that the
extension is unique.

The Hamiltonian constraint isZ rg

0
LVe

�r2dr ¼ 0: (4.51)

Indeed, the Hamiltonian constraint (2.5) should be inter-
preted as Z

LVVolg ¼ 0; (4.52)

where Volg is the volume form induced by the metric gij
and the integration extends over a spatial slice of the
spacetime. Using the variables ðr; �;	Þ, we have

Vol g ¼ e�r2 sin�drd�d	;

and the integration extends over � 2 ½0; ��, 	 2 ½0; 2��,
and r 2 ½0; rg�1 [ ½0; rg�2. By symmetry, the contributions

from the sets where r 2 ½0; rg�1 and r 2 ½0; rg�2 are equal.
Since each contribution is proportional to the left-hand side
of (4.51), the constraint reduces to (4.51).

In view of (4.47), the constraint (4.51) becomes

Z rg

0

�þ �rþ �r3 þ �r9

36r7�4
ffiffiffiffiffiffiffiffiffi
FðrÞp ffiffiffi

r
p

dr ¼ 0: (4.53)

Denoting the integrand in (4.53) by IðrÞ, we see that jIðrÞj
is bounded by a constant times 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg � r

p
as r ! rg. Thus,

the integral converges near rg. On the other hand, as r ! 0,

IðrÞ ¼ �

36r13=2�4
ffiffiffiffi
C

p þO

�
1

r11=2

�
;

so that (4.53) can only be satisfied if � ¼ 0. Using similar
arguments, we infer that the coefficients �, �, � must also
vanish, i.e.,

� ¼ � ¼ � ¼ � ¼ 0:

Solving these equations, we conclude that the Hamiltonian
constraint is satisfied if and only if the gj’s satisfy the

following four conditions:

g4 ¼
�4ð�g ��Þ � 2g2�

2�2
g

4�3
g

;

g5 ¼ � g3�
2

2�g

; g6 ¼ 0; g8 ¼ 0:

(4.54)

Using the conditions (4.54) in the expression (4.46) for
Frr, we find that Eqs. (4.3) and (4.4) have the solution

AðrÞ ¼ �
ffiffiffiffiffiffiffiffiffi
FðrÞp
2

ffiffiffi
r

p
Z r

r0

Frrðr0Þðr0Þ3=2dr0ffiffiffiffiffiffiffiffiffiffiffi
Fðr0Þp ; (4.55)

where

Frr ¼ � 1

36r8�2�gFðrÞ
f�297C3g3 � 324C2rg3

þ 126C2r3�gg3 þ 12Cr6½2�2
gð3g2 þ g3Þ

þ �2ð9�� 6�gÞ� þ 8r9�g½2�2
gð3g2 þ g3Þ

þ �2ð9�� 6�gÞ�g; (4.56)

and r0 2 ð0; rgÞ is a constant. The integrand in (4.55) is

smooth for 0< r < rg. Thus, AðrÞ is a smooth function of

r 2 ð0; rgÞ. Unless g3 ¼ 0, the integral diverges as r ! 0,

so that AðrÞ has a singularity at r ¼ 0. As r ! rg, the

integrand is bounded by const� ðrg � rÞ�3=2. This implies

that AðrÞ is bounded as r ! rg. In fact, viewed as a

function on the Riemann surface �, AðrÞ is analytic near
r ¼ rg. This follows since the integrand in (4.55) is a

meromorphic one-form with a pole of at most second order
at r ¼ rg. Thus, the integral has a pole of at most order one

at rg, which is canceled by the simple zero of the prefactorffiffiffiffiffiffiffiffiffi
FðrÞp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðrÞðrg � rÞ

q
. In conclusion, the gauge field A

given by (4.55) is a smooth function everywhere on the
extended spacetime away from the singularity at r ¼ 0.

2. C> 0, �g < 0

In this case, FðrÞ> 0 for r > 0 and the metric coefficient
grr is positive and nonsingular except at the point r ¼ 0, at
which a naked spacetime singularity appears. The corre-
sponding Penrose diagram is given by Fig. 2 with r 2
ð0;1Þ. The Hamiltonian constraint (4.2) requires that
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Z 1

0
LVe

�r2dr ¼ 0: (4.57)

As in the previous subsection, this constraint is equivalent
to the conditions given in (4.54).

The function AðrÞ is again given by the formulas (4.55)
and (4.56) and is a smooth function of r 2 ð0;1Þ. As
r ! 1, the absolute value of the integrand is bounded by
constant� r�2. Thus, choosing r0 ¼ 1 in (4.55), we find
that AðrÞ is bounded as r ! 1. Unless g3 ¼ 0, the integral
diverges as r ! 0, so that AðrÞ has a singularity at r ¼ 0.

3. C< 0, �g > 0

In this case, if �g > 4=ð9C2Þ, e2� ¼ r=FðrÞ is strictly

negative for all r > 0, so that, in addition to t, the coor-
dinate r is also timelike. The physics of such a spacetime is
unclear, if there is any. Therefore, in the following we
consider only the case

0<�g <
4

9C2
: (4.58)

Then, we find that FðrÞ is positive only for 0< r� < r <
rþ, where r�ð�g; CÞ are the two positive roots of FðrÞ ¼ 0,

as shown in Fig. 10. We write e2� as

e2� ¼ r

ðrþ r0Þðr� r�Þðrþ � rÞ ; (4.59)

where r0ð�g; CÞ> 0. To extend the solution beyond

r ¼ r�, we shall first consider the extension beyond
r ¼ r�. Such an extension can be obtained via

x ¼
Z dr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r�

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� r�

p
; (4.60)

or inversely, r ¼ x2 þ r�. Since r < rþ, we find that
�x0 < x< x0 with x0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ � r�
p

. It can be seen that

the coordinate singularity at r ¼ r� disappears, and
the extended region is given by jxj< x0, as shown by
Fig. 11(a).

To extend the solution beyond rþ, we introduce x via the
relation

r ¼ rþ � ðx
 x0Þ2; (4.61)

where the ‘‘�’’ sign applies when x > x0 and the ‘‘þ’’ sign
applies when x <�x0. Figure 11(b) shows the graph of r
as a function of x. From Fig. 11 we can see that the
extensions along both the positive and the negative direc-
tions of x need to continue in order to have a maximal
spacetime. This can be done by repeating the above process
infinitely many times, so finally the whole ðt; xÞ plane is
covered by an infinite number of finite strips, in each of
which we have r� � r � rþ. The global structure is that of
Fig. 12, and the corresponding Penrose diagram is given by
Fig. 13. Thus, in this case we have r 2 ½r�; rþ�.
The Hamiltonian constraint (4.2) requires that

Z rþ

r�

�þ �rþ �r3 þ �r9

36r7�4
ffiffiffiffiffiffiffiffiffi
FðrÞp ffiffiffi

r
p

dr ¼ 0: (4.62)

r

F(r)

r

r

−

+0− r

r m

m

    − r0

FIG. 10. The function FðrÞ ¼ re�2� for C< 0 and �g > 0,

where rm � 1=
ffiffiffiffiffiffiffi
�g

q
. FðrÞ ¼ 0 has two positive roots r� only for

�g < 4=ð9C2Þ. When �g � 4=ð9C2Þ, FðrÞ is always nonpositive
for any r > 0.

0− x x

x

r(x)

r +

r −

r(x)

x

0 x                     x

r +

r−

 (a) (b)

0  0 1− x                   − x 01 0

FIG. 11. (a) The function r vs x given by Eq. (4.60), where
x0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ � r�
p

. (b) The function r vs x given by Eq. (4.61),

where x1 � x0 þ ffiffiffiffiffi
x0

p
.

E    A    i   B   F

  G   C   i   D   H
−

+

...        II’   I’    I   II       ...

FIG. 12. The global structure of the spacetime for C< 0,
�g > 0, and �g < 4=ð9C2Þ. The vertical line iþi� is the one

where r ¼ r�, and the ones AC and BD represent the lines
where r ¼ rþ, while on the lines EG and FH we have r ¼ r�.
The spacetime repeats itself infinitely many times in both
directions of the x axis.
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Geometrically, this condition can be understood by intro-
ducing a Riemann surface � as a double cover of the
complex r plane with two branch cuts along ½r�; rþ� and
½�r0; 0�. The integrand in (4.62) is a one-form ! on �
which is holomorphic in the neighborhood of the closed
curve a1 � ½r�; rþ�1 [ ½rþ; r��2. Topologically, the ellip-
tic curve � is a torus, a1 is a nontrivial cycle, and the
condition (4.62) states that the integral of! along the cycle
a1 vanishes. This imposes a constraint on the coefficients
�, �, �, �, which translates into a condition on the gj’s

involving elliptic integrals. Assuming this condition holds,
the function AðrÞ is given by (4.55) with r0 2 ðr�; rþÞ and
Frr as in (4.46).

4. C< 0, �g < 0

In this case, the function FðrÞ ¼ re�2� is positive only
for r > rg, as shown in Fig. 14. Thus, e2� can be written in

the form

e2� ¼ r

DðrÞðr� rgÞ ; (4.63)

whereDðrÞ> 0 for r > 0. The extension can be carried out
by introducing a new coordinate x via the relation

r ¼ x2 þ rg: (4.64)

In terms of x the coordinate singularity at r ¼ rg disap-

pears, and the extended spacetime is given by �1< t,
x <1 in the ðt; xÞ plane. Its global structure is given by
Fig. 5, while the corresponding Penrose diagram is given
by Fig. 6. Thus, in this case the range of r is r 2 ½rg;1Þ.

The Hamiltonian constraint (4.2) requires that

Z 1

rg

�þ �rþ �r3 þ �r9

36r7�4
ffiffiffiffiffiffiffiffiffi
FðrÞp ffiffiffi

r
p

dr ¼ 0:

The behavior of the integrand as r ! 1 implies that

� ¼ � ¼ � ¼ � ¼ 0;

so that the constraint reduces to (4.54) and the function
AðrÞ is given by (4.55) and (4.56), which is not singular
everywhere in the extended spacetime.

V. VACUUM SOLUTIONS WITH Nr � 0

When Nr � 0, the vacuum solutions are given by [41]

ds2 ¼ �dt2 þ e2�ðdrþ e���dtÞ2 þ r2d2�; (5.1)

with

� ¼ 1

2
ln

�
2m

r
þ 1

3
�r2 � 2AðrÞ þ 2

r

Z r
Aðr0Þdr0

�
;

� ¼ ’ ¼ �g ¼ 0;
(5.2)

where the gauge field A must satisfy the Hamiltonian
constraint Z 1

0
rA0ðrÞdr ¼ 0: (5.3)

Otherwise, it is free. However, as shown in [41], the solar
system tests seem to uniquely choose the Schwarzschild
solution A ¼ 0. Therefore, in the following we shall con-
sider only this case,

�¼ 1

2
ln

�
2m

r
þ 1

3
�r2

�
; �¼’¼�g ¼ A¼ 0: (5.4)

It should be noted that if ðN; �; NrÞ is a solution of the
vacuum equations, so is ðN; �;�NrÞ. The latter can be
easily obtained by the replacement t ! �t. With such
changes, we have Kij ! �Kij (in the static case).

Clearly, these do not affect the singularity behavior. We
then obtain [43,46]9

  ...     II’    I’     I     II    ...

i

ii

i

r = rr = r   −+

0 0

+

−

r 
=

 r
   

   
   

 r
 =

 r
−

−

FIG. 13. The Penrose diagram for C< 0, �g > 0, and �g <
4=ð9C2Þ.

F(r)

r

0

r

− |C|

g

FIG. 14. The function FðrÞ ¼ re�2� for C< 0 and �g < 0,
where rg is the only positive root of FðrÞ ¼ 0.

9There is a typo in the expression of K given by Eq. (3.2) in
[46]. Although it propagates to other places, this does not affect
our main conclusions, as K and KijK

ij have similar singularity
behavior.
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Rij ¼ 0;

K ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

r3ð6mþ�r3Þ

s
ð3mþ�r3Þ;

KijK
ij ¼ 27m2 þ 6m�r3 þ�2r6

r3ð6mþ�r3Þ ;

(5.5)

where �1ð¼ �1Þ originates from the expression Nr ¼
�1e

�, obtained by the replacement t ! �t, as mentioned
above. To further study the above solutions, let us consider
the following cases separately: (1) m ¼ 0, � ¼ 0;
(2)m ¼ 0,� ¼ 0; and (3)m ¼ 0,� ¼ 0. We shall assume
that m � 0, while � can take any value.

A. m ¼ 0, � � 0

In this case, only �> 0 is allowed [41], as can be seen
from Eq. (5.2). That implies that the anti–de Sitter space-
time cannot be written in the static form of Eq. (3.3) with
the projectability condition. Then, we have N2 ¼ f ¼ 1,
Nr ¼ �1r=‘, or

ds2 ¼ �dt2 þ
�
drþ �1

r

‘
dt

�
2 þ r2d2�; (5.6)

where ‘ � ffiffiffiffiffiffiffiffiffiffiffiffi
3=j�jp

. Without loss of generality, we shall
consider only the case �1 ¼ �1, as the case �1 ¼ 1 can be
simply obtained from the one �1 ¼ �1 by inverting the
time coordinate. In terms of N, Ni, gij or their inverses, Ni,

gij, the metric is nonsingular, except for the trivial r ¼ 0
and � ¼ 0, �. In addition, from Eq. (5.5) we also find that

K ¼ �
ffiffiffiffiffiffiffi
2�

p
; KijK

ij ¼ �; ðm ¼ 0Þ: (5.7)

On the other hand, in terms of the four-dimensional metric,
g�� and g��, it is not singular either, as one can see from

the expressions

ðð4Þg��Þ ¼
� ‘2�r2

‘2
; � r

‘ �
r
i

� r
‘ �

r
i ; gij

 !
;

ðð4Þg��Þ ¼
�1; � r

‘ �
i
r

� r
‘ �

i
r; gij � r2

‘2
�i
r�

j
r

0
@

1
A;

(5.8)

although the nature of the radial coordinate does change,

g��r;�r;� ¼ 1� r2

‘2
¼
8><
>:
timelike r > ‘

null r ¼ ‘

spacelike r < ‘:

(5.9)

To study the solution further in the HL theory, we consider
two different regimes, E 
 M� and E � M�, whereM� ¼
minfMA;MB; . . .g andMn’s are the energy scales appearing
in the dispersion relation (3.57).

1. E 
 M�
When the energy E of the test particle is much less

than M�, from Eq. (3.57) one can see that Fð�Þ ’ � .

This corresponds to the relativistic case (n ¼ 1), studied
in Sec. III A 2. Then, for the ingoing test particles
(� ¼ �1), we have

H ¼ N
ffiffiffi
f

p þ Nr ¼ ‘� r

‘
: (5.10)

Thus, the hypersurface r ¼ ‘ is indeed a horizon. In fact,
it represents a cosmological horizon, as first found in
GR [50].
However, because of the restricted diffeomorphisms

(1.2), it is very interesting to see the global structure of
the de Sitter spacetime in the HL theory. To this purpose,
let us consider the coordinate transformations

t0 ¼ ‘e�t=‘; r0 ¼ re�t=‘; (5.11)

in terms of which the corresponding metric takes the form

ds2 ¼ �dt2 þ e2t=‘ðdr02 þ r02d2�Þ

¼
�
‘

t0

�
2ð�dt02 þ dr02 þ r02d2�Þ: (5.12)

From Eq. (5.11) we can see that the whole ðt; rÞ plane,
�1< t <1, r � 0, is mapped to the region t0, r0 � 0.
However, the metric now becomes singular at t0 ¼ 0, 1
(or t ¼ �1). To see the nature of these singularities, one
may recall the five-dimensional embedding of the de Sitter
spacetime in GR [32], from which we find that in terms of
the five-dimensional coordinates v and w, t0 is given by
t0 ¼ ‘2=ðvþ wÞ. Therefore, t0 � 0 corresponds to vþ
w � 0. Thus, the region t0, r0 � 0 only represents the
half hyperboloid vþ w � 0, as shown by Fig. 16 (ii) in
[32]. In particular, t0 ¼ 0 represents the boundary of the
spacelike infinity, so extension beyond this surface may not
be needed. Although the extension given in [32] in terms of
the static Einstein universe coordinates ð�t; ��; ��; �	Þ is
forbidden here by the restricted diffeomorphisms (1.2), as
that extension requires

t ¼ ‘ ln

�
cosh

� �t
‘

�
cosð ��Þ þ sinh

� �t
‘

��
;

the extension across t0 ¼ 1 (or vþ w ¼ 0þ) seems
necessary.
Another way to see the need of an extension beyond

t0 ¼ 0 is that the metric (5.12) is well defined for t0 < 0. So,
one may simply take �1< t0 <1. But, this cannot be
considered as an extension, as the metric (5.12) is singular
at t0 ¼ 0, and the two regions t0 > 0 and t0 < 0 are not
smoothly connected in the t0, r0 coordinates. In this sense, a
proper extension is still needed. However, due to the
restricted diffeomorphisms (1.2), it is not clear if such
extensions exist or not. Figure 15 shows the global struc-
ture of the region t0 � 0, which is quite different from its
corresponding Penrose diagram [50].
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2. E � M�
When the energy E of the test particle is greater thanM�,

from Eq. (3.57) one can see that high-order momentum
terms become important, and Fð�Þ ’ �n (n � 2). For the
sake of simplicity, we consider the case with n ¼ 2 only.
Then, from Eqs. (3.23) and (3.28) we find that

X¼ 2‘Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ4‘2E

p
þ r

; H¼ r

‘
� 4‘Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ4‘2E
p

þ r
: (5.13)

Thus, Hðr; EÞ ¼ 0 has only one real root,

rH ¼
�
4‘2E

3

�
1=2

; (5.14)

at which we find that

HðrH; EÞ ¼ 12‘E

4‘2Eþ 3r2H
> 0: (5.15)

Equations (3.37) and (3.38) then tell us that the surface
r ¼ rH is a horizon for a test particle with energy E. It
should be noted that, in contrast to the Schwarzschild case
studied in Sec. III B 2 [cf. Eq. (3.42)], rH is now propor-
tional to E; that is, the higher the energy of the test particle,
the larger the radius of the horizon. To understand this, let
us consider the acceleration of a test particle with its four-
velocity u� ¼ ��t

r, located on a surface r. Then, we find
that

a� � u�;�u
� ¼

�� m
r2
�r
� Schwarzschild

r
‘2
�r
� de Sitter:

(5.16)

That is, for the Schwarzschild solution, the test particle
feels an attractive force, while for the de Sitter solution, it
feels a repulsive one. Because of this difference, in the
de Sitter spacetime rH is proportional to E, in contrast to

the Schwarzschild one, where it is inversely proportional to
E, as shown explicitly in Eq. (3.42).

B. m > 0, � ¼ 0

When� ¼ 0 andm> 0, it is the Schwarzschild solution
studied in Secs. III B 2 and III C in detail. In particular, in
the IR, the surface r ¼ 2m represents a horizon, while for
high-energy particles, the radius of the horizon is energy
dependent, as explicitly given by Eq. (3.42) for n ¼ 2. So,
we shall not repeat these studies, but simply note that now
the solution takes the form

ds2 ¼ �dt2 þ
�
dr�

ffiffiffiffiffiffiffi
2m

r

s
dt

�
2 þ r2d�2; (5.17)

which is singular only at r ¼ 0, as can be seen from
Eq. (5.5). So, it already represents a maximal spacetime
in the HL theory.
It is interesting to note that the above metric covers only

half of the maximally extended spacetime given in GR.
This can be seen easily by introducing the coordinate
� [43],

� � t�
Z ffiffiffiffiffiffiffiffiffi

2mr
p
r� 2m

dr

¼ t� 2
ffiffiffiffiffiffiffiffiffi
2mr

p � 2m ln

�
r� 2m

ð ffiffiffi
r

p þ ffiffiffiffiffiffiffi
2m

p Þ2
�
; (5.18)

in terms of which, the solution takes the standard
Schwarzschild form ds2 ¼ �fðrÞd�2 þ f�1ðrÞdr2 þ
r2d�2 with fðrÞ ¼ 1� 2m=r. Of course, the above trans-
formations are forbidden by Eq. (1.2).

C. m > 0, � � 0

In this case, it is convenient to further distinguish the two
subcases �> 0 and �< 0.

1. �> 0

In this case, the metric takes the form

ds2 ¼ �dt2 þ
�
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

r
þ r2

‘2

s
dt

�
2 þ r2d�2: (5.19)

When E 
 M�, as in the last case the dispersion relation
becomes relativistic, and Fð�Þ ’ � , for which we have
n ¼ 1. Then, we find that

HðrÞ ¼ 1þ Nr ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

r
þ r2

‘2

s
¼ FðrÞ

‘2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r þ r2

‘2

q
Þ
;

(5.20)

but now FðrÞ � �ðr3 � ‘2rþ 2m‘2Þ. Clearly, FðrÞ has
one maximum and one minimum, respectively, at

r¼�rm, where rm¼‘=
ffiffiffi
3

p
and FðrmÞ¼�2‘2ðm�

1=ð3 ffiffiffiffi
�

p Þ, as shown in Fig. 10. Thus, when
m2 > 1=ð9�2Þ, HðrÞ ¼ 0 has no real positive root, and a

A

DC

B

 r  
 =

   l

r 
  =

   
0

t’   =   0

FIG. 15. The global structure of the de Sitter solution N2 ¼
f ¼ 1, Nr ¼ � ffiffiffiffiffiffiffiffi

r=‘
p

in the HL theory with the restricted diffeo-
morphisms (1.2) for the region t0 � 0. The horizontal line AB
corresponds to t0 ¼ 1 (or t ¼ �1), while the vertical line BD to
r0 ¼ 1 (or r ¼ 1).
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horizon does not exist even in the IR. Therefore, the
singularity at r ¼ 0 is naked. When m2 < 1=ð9�2Þ,
HðrÞ ¼ 0 has two real and positive roots, r� (rþ > r�),
where r ¼ rþ is often referred to as the cosmological
horizon and r ¼ r� the black hole event horizon [50].
When m2 ¼ 1=ð9�2Þ, the two horizons coincide. In GR,
the corresponding Penrose diagrams were given in [50].
However, as argued above, in the HL theory these diagrams
are not allowed, as they are obtained by coordinate trans-
formations that violate the restricted diffeomorphisms
(1.2). Nevertheless, since the metric is not singular in the
current form, it already represents a maximal spacetime.

When E � M�, the high momentum terms dominate,
and for n ¼ 2, we find that

XðrÞ ¼ 2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r þ r2

‘2
þ 4E

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r þ r2

‘2

q ;

HðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

r
þ r2

‘2

s
� 2X ¼ FðrÞ

�ðrÞ ;
(5.21)

where �ðrÞ> 0 for any r 2 ð0;1Þ, and FðrÞ �
r3 � 4E‘2r=3þ 2m‘2. It can be shown that when m2 >

8‘E3=2=27, HðrÞ ¼ 0 has no real and positive roots. Thus,
in this case there are no horizons, and the singularity at

r ¼ 0 must be naked. When m2 < 8‘E3=2=27, HðrÞ ¼ 0
has two real and positive roots, say, r1;2 (r2 > r1), but now
r1;2 ¼ r1;2ðE;m; ‘Þ. Thus, in this case there also exists

two horizons, but each of them depends on E. When m2 ¼
8‘E3=2=27, we have r1 ¼ r2, and the two horizons
coincide.

2. �< 0

In this case, the metric takes the form

ds2 ¼ �dt2 þ
�
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

r
� r2

‘2

s
dt

�
2 þ r2d�2; (5.22)

where ‘ � ffiffiffiffiffiffiffiffiffiffiffiffi
3=j�jp

. Then, from Eq. (5.5), it can be seen

that the spacetime is singular at rs � ð2m‘2Þ1=3 [46]. This
is different from GR, in which the only singularity of the
anti–de Sitter Schwarzschild solution is at r ¼ 0.

When E 
 M�, as in the last case, the dispersion rela-
tion becomes relativistic. Then, we find that

HðrÞ ¼ 1þ Nr ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

r
� r2

‘2

s
¼ FðrÞ

r‘2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � r2

‘2

q
Þ
;

(5.23)

but now with FðrÞ � r3 þ ‘2r� 2m‘2, which is a mono-
tonically increasing function, as shown by Fig. 14. Thus,
HðrÞ ¼ 0 has one and only one real and positive root, rH ¼
rHðm; ‘Þ. But, rH is always less than rs, i.e., rH < rs. Thus,
the singularity at r ¼ rs is a naked singularity.

When E � M�, let us consider only the case n ¼ 2.
Then, we find that

XðrÞ ¼ 2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � r2

‘2
þ 4E

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
r � r2

‘2

q ;

HðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

r
� r2

‘2

s
� 2X ¼ FðrÞ

�ðrÞ ;
(5.24)

where �ðrÞ> 0 for any r 2 ð0;1Þ, and FðrÞ �
r3 þ 4E‘2r=3� 2m‘2. It can be shown that this FðrÞ is
also a monotonically increasing function, as shown by
Fig. 14, and FðrÞ ¼ 0 has only one real and positive root,
rH ¼ rHðm;E; ‘Þ. Again, since HðrsÞ ¼ 1 and HðrHÞ ¼ 0,
we find that rH is also always less than rs, although now rH
depends on E. Thus, the singularity at r ¼ rs is a naked
singularity.

VI. CONCLUSIONS

In this paper, we have systematically studied black holes
in the HL theory, using the kinematic method of test
particles provided by KK in [38], in which a horizon is
defined as the surface at which massless test particles are
infinitely redshifted. Because of the nonrelativistic disper-
sion relations (1.5), in Sec. III we have shown explicitly the
difference between black holes defined in GR and the ones
defined here. In particular, the radius of the horizon usually
depends on the energy of the test particles.
When applying this definition to the spherically sym-

metric and static vacuum solutions found recently in
[22,40,41], in Secs. IV and V we have found that for test
particles with sufficiently high energy, the radius of the
horizon can be made arbitrarily small, although the singu-
larities at the center can be seen, in principle, only by test
particles with infinitely high energy.
In Secs. IV and V, we paid particular attention to the

global structures of the static solutions. Because of the
restricted diffeomorphisms (1.5), they are dramatically
different from the corresponding ones given in GR,
although the solutions are the same. In particular, the
restricted diffeomorphisms (1.5) do not allow us to draw
Penrose diagrams, although one can create something
similar to them; for example, see Figs. 3, 5, 9, 12, and
15. But, it must be noted that, since the speed of the test
particles in the HL theory can be infinitely large, the
causality in this theory is also dramatically different from
that of GR [cf. Fig. 1]. In particular, the light-cone structure
in GR does not apply to the HL theory. Among the static
solutions, a very interesting case is the one given by Fig. 5,
which corresponds to an Einstein-Rosen bridge. In GR, this
solution is made of an exotic fluid, as one can see from
Eq. (4.27), which is clearly unphysical, and most likely
unstable, too. However, in the HL theory, the solution is a
vacuum one, and it would be very interesting to see if this
configuration is stable or not in the HMT setup.
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Finally, in Appendix B we have studied the slowly
rotating solutions in the HMT setup [22], and explicitly
found all such solutions which are characterized by an
arbitrary function A0ðrÞ. When A0 ¼ 0 they reduce to the
slowly rotating Kerr solution obtained in GR. When the
rotation is switched off, they reduce to the static solutions
obtained in [41].
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APPENDIX A: THE FUNCTIONS ðFsÞij
For the solution

� ¼ � 1

2
ln

�
1þ C

r
� 1

3
�gr

2

�
; (A1)

the functions ðFsÞij appearing in Eq. (2.12) are given by

ðF0Þij ¼ � 1

2
gij ¼ � 1

2
e2��r

i�
r
j �

1

2
r2�ij;

ðF1Þij ¼ � 1

2
gijRþ Rij ¼ e2�

3r3
ð3C��gr

3Þ�r
i�

r
j �

1

6r
ð3Cþ 2�gr

3Þ�ij;

ðF2Þij ¼ � 1

2
gijR

2 þ 2RRij � 2rðirjÞRþ 2gijr2R ¼ 2�ge
2�

3r3
ð6Cþ�gr

3Þ�r
i�

r
j �

2�g

3r
ð3C��gr

3Þ�ij;

ðF3Þij ¼ � 1

2
gijRmnR

mn þ 2RikR
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mn
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36r6
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3 þ 8�2
gr

6Þ�r
i�

r
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18r4
ð9C2 � 15C�gr

3 þ 4�2
gr

6Þ�ij;

ðF4Þij ¼ � 1

2
gijR

3 þ 3R2Rij � 3rðirjÞR2 þ 3gijr2R2 ¼ 4�2
ge

2�
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k
j �rðirjÞðRmnRmnÞ � 2rnrðiRRjÞn þ gijr2ðRmnRmnÞ þ r2ðRRijÞ
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¼ e2�

6r9
ð�99C3 þ 39C2�gr
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gr
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where �ij � ��
i �

�
j þ sin2��	

i �
	
j .
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APPENDIX B: SLOWLY ROTATING VACUUM
SOLUTIONS

Slowly rotating vacuum solutions in other versions of
the HL theory have been studied by several authors [51].
The goal of this section is to derive slowly rotating black
hole solutions in the HMT setup. We will seek a solution of
the form

ds2¼�dt2þr2ðd�2þsin2�d	2Þ
þe2�ðrÞ½drþe�ðrÞ��ðrÞðdt�a!ðrÞsin2�d	Þ�2; (B1)

where the functions �ðrÞ, �ðrÞ, and !ðrÞ are independent
of ðt; �; 	Þ. By requiring that the metric satisfy the equa-
tions to first order in the small rotation parameter a, we will
be able to determine �, �, and !.

The ansatz (B1) is motivated by the fact that it agrees
with the Kerr solution to first order in a. Indeed, the
Kerr line element expressed in Doran coordinates [52] is
given by

ds2Kerr¼�dt2þðr2þa2cos2�Þd�2þðr2þa2Þsin2�d	2

þr2þa2cos2�

r2þa2

�
�
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mrðr2þa2Þp
r2þa2cos2�

ðdt�asin2�d	Þ
�
2
; (B2)

where m and a are parameters. As a ! 0, this metric
coincides with (B1) to first order in the rotation parameter
a, provided that

�ðrÞ ¼ 0; �ðrÞ ¼ log

ffiffiffiffiffiffiffi
2m

r

s
; !ðrÞ ¼ 1:

In particular, when a ¼ 0, it reduces to the Schwarzschild
metric in Painlevé-Gullstrand form.

Note that the form (B1) of the line element is compatible
with the projectability condition N ¼ NðtÞ; its Arnowitt-
Deser-Misner coefficients are

N ¼ 1; Ni ¼ ðe�ðrÞ��ðrÞ; 0; 0Þ:
Working in the gauge ’ ¼ 0, the momentum constraint
(2.6) for the metric (B1) reduces to

� 2e��3��0

r
þOða2Þ ¼ 0;

ae2��2�

2r4
½r2ð!00 þ!0ð4�0 � �0ÞÞ

� 2!ð1� r2�00 þ r2�0�0 � 2r2�02 þ r�0Þ�
þOða2Þ ¼ 0; (B3)

while Eq. (2.9) obtained from variation with respect to A
yields

ð1� r2�gÞe2� þ 2r�0 � 1þOða2Þ ¼ 0: (B4)

The first equation in (B3) implies that � is constant, and
then (B4) shows that

� ¼ 0; �g ¼ 0:

This yields

Rij ¼ Oða2Þ;
LK ¼ � 2

r2
e2�ð1þ 2r�0Þ þOða2Þ;

LV ¼ 2�þOða2Þ:
(B5)

The ðrrÞ component of the dynamical equations (2.11)
gives

2rA0
0 � r2�þ 2re2��0 þ e2�

r2
þ 2A0

1

r
aþOða2Þ ¼ 0;

(B6)

where we have assumed that AðrÞ has the form
AðrÞ ¼ A0ðrÞ þ A1ðrÞaþOða2Þ: (B7)

The terms of Oð1Þ in (B6) imply that

�ðrÞ ¼ 1

2
ln

�
2m

r
þ 1

3
r2�� 2A0ðrÞ þ 2

r

Z r

r0

A0ðsÞds
�
;

(B8)

where r0 > 0 is a constant, while the terms of OðaÞ imply
that A1 is a constant. With these choices, all the compo-
nents of the dynamical equations, as well as the equations
obtained from variation with respect to A and ’, are
satisfied to first order in a, and the Hamiltonian constraint
(2.5) becomes

Z 1

0
rA0

0ðrÞdrþOða2Þ ¼ 0:

Finally, the second equation in the momentum constraint
(B3) is satisfied to OðaÞ provided that

!ðrÞ ¼ e�2�

�
d1
r
þ d2r

2

�

¼ d1 þ d2r
3

2mþ 2
R
r
r0
A0ðsÞds� 2rA0 þ �

3 r
3
; (B9)

where d1 and d2 are the integration constants.
In summary, the ansatz (B1) gives a solution to first

order in a provided that �ðrÞ is given by (B8), !ðrÞ is
given by (B9), and

� ¼ 0; AðrÞ ¼ A0ðrÞ þ aA1 þOða2Þ; (B10)

where r0 > 0, m, �, A1, d1, d2 are arbitrary constants, and
A0ðrÞ can be freely chosen as long asZ 1

0
rA0

0ðrÞdr ¼ 0:
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We recover the slowly rotating version of the Kerr solution
by taking A0 ¼ 0, � ¼ 0, and d2 ¼ 0. Setting a ¼ 0, on
the other hand, we recover the static solutions obtained
in [41].

Let us point out that the standard Einstein equations also
allow for a nonzero value of d2 in the slowly rotating limit.
Indeed, substituting the ansatz (B1) with � ¼ 0 into the
vacuum Einstein equations

R�� � 1
2g��R ¼ 0; �; � ¼ 0; 1; 2; 3;

we find that they are satisfied to order OðaÞ if and only if

�ðrÞ ¼ 1

2
ln

�
2m

r

�
;

where m> 0 is a constant, and !ðrÞ is given by (B9) with
arbitrary constants d1 and d2.
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